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Abstract

Tamoxifen is an estrogen receptor (ER) ligand with widespread use in clinical and basic

research settings. Beyond its application in treating ER-positive cancer, tamoxifen has been

co-opted into a powerful approach for temporal-specific genetic alteration. The use of

tamoxifen-inducible Cre-recombinase mouse models to examine genetic, molecular, and

cellular mechanisms of development and disease is now prevalent in biomedical research.

Understanding off-target effects of tamoxifen will inform its use in both clinical and basic

research applications. Here, we show that prenatal tamoxifen exposure can cause structural

birth defects in the mouse. Administration of a single 200 mg/kg tamoxifen dose to pregnant

wildtype C57BL/6J mice at gestational day 9.75 caused cleft palate and limb malformations

in the fetuses, including posterior digit duplication, reduction, or fusion. These malformations

were highly penetrant and consistent across independent chemical manufacturers. As

opposed to 200 mg/kg, a single dose of 50 mg/kg tamoxifen at the same developmental

stage did not result in overt structural malformations. Demonstrating that prenatal tamoxifen

exposure at a specific time point causes dose-dependent developmental abnormalities,

these findings argue for more considerate application of tamoxifen in Cre-inducible systems

and further investigation of tamoxifen’s mechanisms of action.

Introduction

Tamoxifen is the oldest synthetic selective estrogen receptor (ER) modulator and is widely

used in both clinical and basic research applications. Included in the World Health Organiza-

tion list of essential medicines, tamoxifen is used to treat individuals with ER-positive breast

cancer. Tamoxifen is also increasingly applied in biomedical research as part of powerful

genetic recombination systems that leverage a fusion protein of Cre recombinase and a

mutated ligand binding domain of the human ER (ERT). Upon tamoxifen binding to the ERT,

nuclear translocation of the fusion protein facilitates Cre-mediated excision of loxP-flanked

sequences in DNA [1]. Tamoxifen-inducible systems that allow temporally controlled genetic
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recombination are used for gene deletion, gene overexpression, and lineage tracing. This

toolkit is applied to examine genetic, molecular, and cellular mechanisms, including those gov-

erning embryonic and postnatal development.

Although tamoxifen-inducible Cre models are widely employed to achieve temporal-spe-

cific gene alteration, developmental effects independent of Cre recombination have been sug-

gested in multiple reports [2–10]. Animal model studies have shown that in utero tamoxifen

exposure can cause mammary tumors, proliferative uterine lesions, oviduct hyperplasia, and

impaired oocyte differentiation in offspring [5–7]. However, some reports also suggest that

tamoxifen may have additional impacts on development that are not linked to ER signaling

and endocrine disruption. Two recent reports described structural malformations in mouse

embryos following maternal tamoxifen treatment [8, 11], while published human case reports

document congenital anomalies associated with tamoxifen treatment during pregnancy,

including craniofacial and limb defects [9, 10].

Here, we examined the impact of acute prenatal tamoxifen exposure on embryonic devel-

opment in wildtype C57BL/6J mice. Our findings demonstrate that prenatal tamoxifen expo-

sure causes structural limb and craniofacial malformations in a dose-dependent manner and

suggest a previously unrecognized mechanism of action that may have significant implications

for its use in clinical and basic research settings.

Results

Tamoxifen-induced malformations

Timed pregnant wildtype C57BL/6J mice were administered a single dose of 50 mg/kg or 200

mg/kg tamoxifen (Sigma) or vehicle alone by IP injection at gestational day (GD)9.75. Dams

were euthanized at GD17, and uteri were carefully inspected. The number of live fetuses and

resorptions in each litter as well as mean crown-rump length were calculated (Table 1). No sta-

tistically significant differences in average number of surviving fetuses, average number of

resorptions, or average fetal crown-rump length were detected between treatment groups. No

overt structural malformations were observed in either the vehicle-exposed control group (Fig

1A, 1A’, 1F, 1F’, 1I, 1I’) or in the 50 mg/kg tamoxifen-exposed group. In the 200 mg/kg tamox-

ifen dose group, limb malformations were observed including posterior digit reduction (Fig

1B and 1C), posterior digit duplication with or without fusion (Fig 1D, 1G and 1H), and other

distal limb defects (Fig 1E). Bone and cartilage staining of animals with gross limb malforma-

tions further revealed abnormalities in the metacarpals and phalanges (Fig 1B’–1E’, 1G’ and

1h’). Inspection of the oral cavity also revealed cleft palate in the group exposed to 200 mg/kg

tamoxifen (Fig 1J and 1J’) but not in the group exposed to 50 mg/kg tamoxifen.

The incidence of tamoxifen-induced structural malformations as visualized by whole

mount brightfield imaging is shown in Fig 2. In the 200 mg/kg treatment group, gross struc-

tural malformations were observed in 59.14% of fetuses collected (n = 55/93) with affected

fetuses identified in 15/21 litters. The majority of affected fetuses exhibited limb malformations

(n = 54/93) including apparent posterior digit duplication with or without fusion (n = 48/54),

apparent posterior digit reduction (n = 16/54), or other defects (n = 10/54). Limb abnormality

patterns within individually affected fetuses were diverse and included both reduction and

duplication phenotypes in separate limbs (n = 10/54), duplication and non-reduction/duplica-

tion phenotypes in separate limbs (n = 8/54), and reduction and non-reduction/duplication

phenotype in separate limbs (n = 2/54). Malformations were present in both hindlimbs and

forelimbs (n = 30/54), restricted to forelimbs (n = 11/54), or restricted to hindlimbs (n = 13/

54). Cleft palate was observed in 20.43% of fetuses (n = 19/93), with 18 of 19 fetuses with cleft

palate also exhibiting limb malformations.
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To test whether these outcomes were dependent upon chemical manufacturer, a parallel trial

was conducted using tamoxifen supplied by an independent manufacturer and distributor (Sell-

eckchem). No statistical differences in average number of surviving fetuses, average number of

resorptions, or fetal crown-rump length were detected when comparing the 200 mg/kg Selleck-

chem tamoxifen group against the 200 mg/kg Sigma tamoxifen group and vehicle-exposed

groups (Table 1). In the 200 mg/kg Selleckchem tamoxifen group, malformations were observed

in 83.33% of fetuses (n = 15/18), with affected individuals identified in each of the 3 litters. All

affected fetuses exhibited limb malformations, including posterior digit duplication with or

without fusion (n = 15/15), posterior digit reduction (n = 5/15), or other defects (n = 3/15). All

animals that exhibited a posterior digit reduction or other defect additionally exhibited a dupli-

cation malformation. In this tamoxifen (Selleckchem) cohort, most affected fetuses exhibited

malformations affecting both the fore- and hindlimbs (n = 12/15), while a minority had only

forelimb (n = 1/15) or only hindlimb abnormalities (n = 2/15). Cleft palate was 16.67% pene-

trant in these fetuses (n = 3/18) and always accompanied by limb malformations.

Discussion

The tamoxifen/CreERT genetic recombination system is a powerful and widely used approach

to examine molecular and cellular mechanisms of development and disease. However, off-tar-

get effects of tamoxifen treatment, including Cre toxicity [12], may confound interpretation of

results from the use of these models [13]. Previous studies examining the potential of tamoxi-

fen to affect developmental processes have focused upon outcomes related to endocrine modu-

lation. Here, we demonstrate that in utero high-dose tamoxifen exposure results in

developmental abnormalities in the absence of genetic recombination and causing structural

malformations in wildtype C57BL/6J mice. Specifically, we found that prenatal tamoxifen

exposure at a precise critical period of development results in malformations of the limbs and

palate. These findings are consistent with several published reports of prenatal tamoxifen

exposure. One clinical case report described limb (“club foot”) and craniofacial (micrognathia

and cleft palate) malformations in a child exposed to tamoxifen during the first trimester [14].

Two recent reports noted structural malformations in mice exposed to tamoxifen in utero,

including neural tube defects, cleft palate, and eye abnormalities [8, 11]. These observations

suggest that tamoxifen has off-target effects that may impact its use in mouse model research

and that usage of lower doses may be a strategy to mitigate these off-target effects.

Tamoxifen is used in CreERT transgenic models to trigger temporally specific Cre-recom-

binase activity in adult mice, neonates, and embryos and fetuses in utero via maternal adminis-

tration. Across published studies, protocols for tamoxifen administration to pregnant dams in

order to induce recombination in embryos vary considerably with respect to preparation,

route, dose, duration of exposure, and co-administration with other drugs such as

Table 1. Descriptors of the wildtype C57BL/6J study population found in Fig 2.

Treatment (Distributor) Litters Collected Live Fetuses (Mean ± SD) Resorptions (Mean ± SD) Crown-rump Mean ± SD (mm)

Vehicle 9 52 (5.8 ± 1.91) 14 (1.56 ± 1.61) 16.63 ± 0.73

TAM 50 mg/kg (Sigma) 11 67 (6.1 ± 2.07) 13 (1.18 ± 1.40) 17.03 ± 1.24

TAM 200 mg/kg (Sigma) 21 93 (4.4 ± 2.85) 61 (2.90 ± 2.89) 16.80 ± 1.08

TAM 200 mg/kg (Selleckchem) 3 18 (6 ± 3.56) 1 (0.33 ± 0.47) 16.25 ± 1.12

Timed-pregnant wildtype C57BL/6J mice were administered the indicated doses of tamoxifen (TAM) at gestational day (GD)9.75 and inspected at GD17 for live fetuses

and resorptions. One-way ANOVA was used to compare mean numbers of live fetuses, resorptions, and crown-rump lengths between vehicle- and TAM-treated

groups. No statistically significant differences were detected across treatment groups. TAM, tamoxifen; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0256299.t001
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progesterone [15–39]. In this study, we chose a single IP administration of 50 or 200 mg/kg to

encompass commonly utilized administration regimens [19, 26, 36–39]. We also tested

whether developmental effects caused by tamoxifen were consistent across multiple suppliers

of tamoxifen. While a high dose of tamoxifen from both suppliers caused structural malforma-

tions, there was a (not statistically significant) trend toward higher resorptions and lower mal-

formation penetrance in the Sigma cohort and lower resorptions and higher malformation

Fig 1. Tamoxifen-induced limb and craniofacial malformations. Along with representative vehicle controls of forelimb (a), hindlimb (f), and palate (i’), examples

of malformations in forelimbs (b-e), hindlimbs (g, h), and palate (j’) of 200 mg/kg tamoxifen-treated animals are shown at GD17. Bone and cartilage staining of

tamoxifen-treated animals revealed underlying skeletal abnormalities compared to controls (a’-h’). In the forelimbs of animals with reduction malformations (b, c),

dysmorphology in both the metacarpals and phalanges of the 5th digit are apparent. Additionally, the distal-most phalanx of the 4th digit appears to be duplicated in

these animals (b’, c’). An animal with a forelimb duplication malformation (d) exhibited a replication of the distal phalanx of the 4th digit (d’). In hindlimbs of

animals with duplication malformations (g, h), staining revealed replications of the distal and middle phalanges of the 4th digit (g’, h’). In an animal with a non-

reduction/duplication phenotype (e), no overt skeletal abnormalities are apparent (e’). Secondary cleft palate (j’) was also observed in 200 mg/kg tamoxifen-treated

animals. TAM, tamoxifen. Scale bars in a, a’, f, and f’: 0.5 mm; Scale bar in i: 2.0 mm; Scale bar in i’: 1.0 mm.

https://doi.org/10.1371/journal.pone.0256299.g001
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Fig 2. Incidence of tamoxifen-induced limb and craniofacial malformations. The incidence of malformations occurring in animals treated with tamoxifen

or vehicle at GD9.75 are summarized (a-d). The percentage of animals displaying at least one structural malformation in each treatment group is shown (a).

Structural malformations appeared in animals treated with 200 mg/kg Sigma or Selleckchem tamoxifen, and these affected animals displayed either limb

malformations, craniofacial malformations, or co-occurring limb and craniofacial malformations (b). Except for a single animal exhibiting an isolated

secondary cleft palate, all affected animals exhibited limb malformations (b). Therefore, limb abnormalities were further classified according to apparent

dysmorphology (c) and limb-specific localization of the abnormality (d). Examples of limb morphology in vehicle controls and tamoxifen-treated animals (e-

p). A duplication phenotype was assigned to limbs that exhibited an extra posterior digit with or without cutaneous fusion to adjacent digits in both forelimbs

(f, g) and hindlimbs (m, n, o). Posterior digit reduction phenotypes were exclusive to forelimbs and included apparent absence of a 5th digit (h), or a shortening

of the 5th digit (i). Non-reduction/duplication phenotypes included apparent hyperplasia of interdigital tissue between the 2nd and 3rd forelimb digits (j) and

laterally displaced 5th digits in forelimbs (k) and hindlimbs (p). Scale bar in a: 0.5 mm. TAM, tamoxifen; SG, Sigma; SL, Selleckchem; Dup, duplication; Red,

reduction.

https://doi.org/10.1371/journal.pone.0256299.g002
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penetrance in the Selleckchem cohort. Whether the activity demonstrated here for tamoxifen

administration is retained by other tamoxifen manufacturers, administration routes, drug

preparations, or administration of tamoxifen metabolites that also activate ERT (e.g., 4-hydro-

xytamoxifen) is unclear and should be examined.

The observations reported herein follow two recent reports of structural malformations in

wildtype mice following prenatal tamoxifen exposure. In one report, repeated tamoxifen expo-

sure targeting slightly later critical periods of development (~GD10.5–13.5) was found to

cause cleft palate [11]. In another report, embryos and fetuses from pregnant dams dosed with

10–200 mg/kg tamoxifen between GD5.5 and GD7.5 exhibited abnormal development and

malformations, including neural tube defects, cleft palate, and eye abnormalities [8]. In this

previous study, 8 out of 8 dams were reported to develop severe intrauterine hemorrhaging,

and maternal toxicity was implicated as a causal or contributing factor to the observed devel-

opmental outcomes. The observations collected for the study described herein, however, are

not consistent with a significant role for maternal toxicity in causing the malformations that

followed targeted administration of tamoxifen. In our study cohort of wildtype C57BL/6J

mice, a total of 11 dams were treated with 50 mg/kg tamoxifen and 24 dams were treated with

200 mg/kg tamoxifen at GD9.75. Signs of overt maternal toxicity were not observed, and no

significant differences were detected in litter size at GD17, number of resorbs, or crown-rump

lengths of fetuses (Table 1). Rather than a constellation of developmental outcomes, targeted

tamoxifen exposure produced consistent and specific malformations that, to our knowledge,

are not associated with maternal toxicity. While a role of maternal toxicity cannot be excluded,

the observations reported herein better align with the premise that tamoxifen disrupts embry-

onic developmental through a currently unknown mechanism.

Tamoxifen’s biological effects are thought to be predominantly mediated through its binding

to ERα and ERβ [40, 41]. To our knowledge, neither limb nor palate malformations have been

reported to directly result from endocrine disruption and have not been reported in Esr1 (ERα)

or Esr2 (ERβ) knockout mice [42, 43]. We performed preliminary experiments to examine the

impact of in utero tamoxifen exposure in Esr1-/- and Esr2-/- mice (Jax strains 026176 and

004745, respectively) where timed-pregnant dams were administered 200 mg/kg tamoxifen

(Sigma) at GD9.75, and structural malformations in offspring were examined at GD17 as in our

wildtype cohort. While the sample size generated was not large enough for statistical analyses of

malformation incidence across each genotype, limb malformations were observed in some

Esr1-/- and Esr2-/- fetuses (S1 Fig and S1 and S2 Tables). A previous study also reported that

mRNA expression of Esr1 and Esr2 was not detected in the limb during the critical period

examined here for tamoxifen-induced limb malformations [44]. Together, these findings sug-

gest that the mechanism by which tamoxifen exposure results in structural malformations may

be independent of ER signaling, but determining whether ER or G protein coupled ER signaling

plays any role in tamoxifen-induced structural malformations will require further investigation.

While thought to act predominantly through ER signaling, tamoxifen has previously been

shown to affect processes such as proliferation, apoptosis, and angiogenesis through ER-inde-

pendent mechanisms [45–54]. Additionally, tamoxifen or its metabolites have been reported

to directly bind to off-target receptors such as aryl hydrocarbon receptor [55] and histamine,

muscarinic, and dopamine receptors [53]. Previous studies have also reported that tamoxifen

potently interferes with cholesterol synthesis in vitro and in vivo and that this activity is ER-

independent [56–58]. Several signaling pathways are dependent upon cholesterol biosynthesis,

including the Sonic hedgehog (Shh) signaling pathway. Covalent binding of cholesterol pro-

duces fully active SHH peptide that initiates signaling in effector cells through the Smoothened

protein [59], the activity of which was recently also shown to be dependent upon cholesterol

binding [60, 61]. Shh signaling plays multiple roles in development including craniofacial and
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limb morphogenesis, and disruption of this pathway at the same time point as the one used in

this study has been shown to cause cleft palate and limb malformations [62], consistent with

those reported herein to result from in utero tamoxifen exposure. This period during develop-

ment encompasses major tissue patterning events, including limb and orofacial morphogene-

sis, and these processes may be particularly susceptible to chemical perturbation [63]. Future

investigation into the mechanism(s) underlying the biological impacts of tamoxifen should

benefit from demonstration herein that in utero tamoxifen exposure at a specific critical period

in development results in specific malformations.

Here, we present a previously unreported action of tamoxifen that may have important

implications for its use in both clinical and basic research settings. Demonstrating that a high

dose of tamoxifen during a specific critical period in development causes structural malforma-

tions in the absence of genetic recombination suggests previously undescribed mechanisms

for this widely used drug. We focused on structural malformations because they are novel,

robust, and highly penetrant, but the importance of understanding whether and how tamoxi-

fen acts through additional mechanisms is likely not limited to developmental contexts, as

most developmental signaling pathways play roles in postnatal homeostasis, healing and

repair, and disease processes. These findings, along with other reports illustrating off-target

effects in utilization of CreERT models, support a more considerate use of these systems and

interpretation of generated experimental results.

Methods

Materials

Tamoxifen used in these studies was obtained from two independent chemical distributors.

Tamoxifen from MilliporeSigma (Catalog No. T5648, Lot No. WXBC7537V) was manufac-

tured by AstraZeneca and had a supplier-stated purity of 99.00%. In this study, tamoxifen

from MilliporeSigma is abbreviated as “Sigma”. Tamoxifen from Selleckchem (Catalog No.

S1238, Lot No. S123802) was manufactured by Selleckchem and had a supplier-stated purity of

99.04%. Both vendors reported tamoxifen to have a solubility of 50 mg/ml in DMSO as well as

a melting point between 96–98˚C.

Timed mouse mating

These studies were conducted in strict accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National Institute of Health. The protocol was

approved by the University of Wisconsin School of Veterinary Medicine Institutional Animal

Care and Use Committee (Protocol No. 13–081.0). Wildtype C57BL/6J (Strain No. 00664)

mice were purchased from The Jackson Laboratory and housed under specific pathogen-free

conditions in disposable, ventilated cages. Rooms were maintained at 22 ± 2˚C and 30–70%

humidity on a 12-h light, 12-h dark cycle. Mice were fed Irradiated Soy Protein-Free Extruded

Rodent Diet (Catalog No. 2920x; Envigo Teklad Global) until day of plug, when dams received

Irradiated Teklad Global 19% Protein Extruded Rodent Diet (Catalog No. 2919; Envigo Teklad

Global). For timed matings, 1–2 nulliparous female mice were placed with a single male for

1–2 h and subsequently examined for the presence of copulation plugs as previously described

[64]. The beginning of the mating period was designated as gestational day (GD)0.

Tamoxifen exposure

Tamoxifen (Sigma or Selleckchem) was dissolved into solution with corn oil (Acros Organics).

Aliquots were stored at 4˚C and used within 3 weeks of preparation. Pregnant mice were
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administered an intraperitoneal (IP) injection of either 50 mg/kg tamoxifen, 200 mg/kg

tamoxifen, or corn oil vehicle at GD9.75 ± 0.05.

Dissection and imaging

Pregnant females were euthanized by CO2 asphyxiation followed by cervical dislocation at

GD17 ± 2 h. Fetuses were placed in phosphate buffered saline on ice for no less than 30 min

before dissection. Crown-rump measurements and initial gross phenotyping were conducted

before fetal specimens were fixed in 10% formalin for at least 24 h before imaging. Images

were taken of whole body, face, and palate using a MicroPublisher 5.0 camera connected to an

Olympus SZX-10 stereomicroscope.

Phenotypic assessment

Fetuses were assessed for gross malformations by thorough visual inspection. For each fetus,

whole mount brightfield images were captured to document morphology, with a focus on the

limbs and craniofacial regions. Limb malformations were grouped into one of three classes of

overt distal limb abnormalities: apparent posterior digit duplication with or without fusion,

apparent posterior digit reduction, and additional defects that do not exhibit overt digit reduc-

tion or duplication (Fig 2E–2P). Craniofacial malformations were characterized by the pres-

ence of secondary palate clefting. Animals were classified as affected by displaying at least one

of these malformations.

Bone & cartilage staining

Bone and cartilage staining was employed to reveal underlying skeletal abnormalities in ani-

mals classified as affected based upon careful scrutiny of light images. Following euthanasia,

fetal specimens with overt structural malformations were skinned, eviscerated, and fixed in

95% or 100% ethanol for at least 3 d, then placed overnight in an alcian blue staining solution

containing 8 ml of 100% ethanol, 10 ml of 100% glacial acetic acid, and 2 ml of 1% alcian blue

in 3% acetic acid. They were then rinsed twice for 1 h and subsequently left overnight in 100%

ethanol. Following clearing for 2 h in 1% potassium hydroxide, staining in 0.005% alizarin red

in 2% potassium hydroxide for 4 h was performed. Fetuses were then rinsed in 2% potassium

hydroxide once quickly, once for 1 h, and then left overnight in 1% potassium hydroxide.

Finally, they were transferred to 1:3 solution of glycerol: 2% potassium hydroxide for 8 h and

stored and imaged in a 1:1 solution of glycerol: 2% potassium hydroxide.

Statistics

Graphpad Prism 8 was used for all statistical analyses. One-way analysis of variance (ANOVA)

with Tukey’s post hoc test for multiple comparisons was used for analyses of litter sizes, resorp-

tions, and crown-rump lengths. An alpha value of 0.05 was maintained for determination of

significance for all experiments.

Supporting information

S1 Fig. Structural malformations in Esr1 and Esr2 animals. Representative examples of distal

limb dysmorphology in hindlimbs of 200 mg/kg tamoxifen-treated animals (b, d, f, h) are

shown along with vehicle controls (a, c, e, g). TAM 200, tamoxifen 200 mg/kg. Scale bars in a,

e: 0.5 mm.

(TIF)
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S1 Table. Descriptors of the Esr1 and Esr2 study populations. Female Esr1+/- mice were

mated with male Esr1+/- mice, and female Esr2+/- mice were mated with either Esr2+/- or

Esr2-/- male mice. Timed-pregnant dams were administered 200 mg/kg of tamoxifen at gesta-

tional day (GD)9.75. At GD17, dams were inspected for live fetuses and resorptions, and

fetuses were measured for crown-rump length and genotyped from tail tissue. TAM, tamoxi-

fen; SD, standard deviation.

(DOCX)

S2 Table. Incidence of malformations by genotype in Esr1 and Esr2 animals. Incidence of

limb malformations, cleft palate, or limb malformations or cleft palate are listed for each geno-

type and treatment group of the Esr1 and Esr2 study populations. TAM, tamoxifen.

(DOCX)
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