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ABSTRACT	 Hepatitis B virus (HBV) infections are a global public health issue. HBV covalently closed circular DNA (cccDNA), the template for the 

transcription of viral RNAs, is a key factor in the HBV replication cycle. Notably, many host factors involved in HBV cccDNA epigenetic 

modulation promote the development of hepatocellular carcinoma (HCC). The HBV cccDNA minichromosome is a clinical obstacle 

that cannot be efficiently eliminated. In this review, we provide an update on the advances in research on HBV cccDNA and further 

discuss factors affecting the modulation of HBV cccDNA. Hepatitis B virus X protein (HBx) contributes to HBV cccDNA transcription 

and the development of hepatocarcinogenesis through modulating host epigenetic regulatory factors, thus linking the cccDNA to 

hepatocarcinogenesis. The measurable serological biomarkers of continued transcription of cccDNA, the effects of anti-HBV drugs 

on cccDNA, and potential therapeutic strategies targeting cccDNA are discussed in detail. Thus, this review describes new insights into 

HBV cccDNA mechanisms and therapeutic strategies for cleaning cccDNA, which will benefit patients with liver diseases.
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Introduction

Chronic infection with hepatitis B virus (HBV) remains a 

major public health issue. Globally, more than 296 million 

people were chronically infected with HBV in 2019 and were 

therefore at risk of end-stage liver disease and hepatocellular 

carcinoma (HCC)1-3. HBV covalently closed circular DNA 

(cccDNA), the template for the transcription of viral RNAs, 

is a key factor in the HBV replication cycle4,5. In the HBV life 

cycle, HBV enters hepatocytes by interacting with NTCP; this 

is followed by uncoating and transport of the relaxed circu-

lar DNA (rcDNA) into the nucleus. As an intermediate, the 

cccDNA minichromosome is formed in the host cell nucleus 

from the rcDNA genome, which is associated with histone 

and non-histone proteins. The viral proteins hepatitis B core 

antigen (HBcAg), hepatitis B e antigen (HBeAg), HBV poly-

merase (pol), hepatitis B surface antigen (HBsAg), and HBV 

X protein (HBx) are produced from the cccDNA. The pgRNA 

transcribed from the cccDNA is selectively packaged inside 

core particles. These mature core particles can be enveloped 

for release as virions or transported to the nucleus to generate 

more cccDNA. Thus, cccDNA provides the molecular basis for 

establishing and maintaining viral infection6-8.

The development of HCC is affected by interactions among 

genetic predisposition, environmental factors, and viruses. 

Chronic inflammation, epigenetic modifications, DNA dam-

age, senescence, chromosomal instability, and early neoangi-

ogenesis drive the development and progression of HCC9,10. 

The risk of HCC is also correlated with HBV’s replication, 

genotype, and genomic mutations11-14. The HBV-integrated 

host genome directly results in the development of HCC15-17. 

In addition, many other viral and host factors, such as mTOR, 

contribute to the development of HCC18-20. The key molecu-

lar basis of HBV persistence involves cccDNA, which plays a 

crucial role in the development of HCC3. The HBV cccDNA 

minichromosome is maintained throughout the clinical 

phases of chronic hepatitis. Because of cccDNA’s key role 

and function in the viral replication cycle, clinical reports 
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have indicated that measuring and eliminating cccDNA are 

important6,21.

Given the significance of cccDNA, this review discusses 

research progress including the composition, formation, 

maintenance, regulation, and epigenetic modulation of the 

cccDNA minichromosome; the relationships between HBx-

mediated cccDNA minichromosome and HCC; detection of 

HBV cccDNA; anti-HBV drugs targeting cccDNA; and pos-

sible curative strategies aimed at eliminating or hindering the 

viral cccDNA.

Mapping the HBV cccDNA 
minichromosome

In the nucleus, HBV cccDNA is formed from rcDNA; bound 

to both histones (H2A, H2B, H3, H4, and H1) and non-his-

tone proteins (HBc, HBx, and host factors); and organized 

into a chromatin-like structure termed the HBV cccDNA 

minichromosome, which shows a typical “beads-on-a-string” 

arrangement under electron microscopy22,23. Histone proteins 

H2A, H2B, H3, H4, and H1 are detectable by immunoblotting 

on purified nucleoprotein complexes24. The HBV core protein 

(HBc) is a component of the HBV minichromosome. HBc 

binds the cccDNA minichromosome in vivo and in vitro, thus 

decreasing the nucleosomal spacing of the HBV cccDNA24.

Moreover, HBx in association with the cccDNA mini-

chromosome, initiates and maintains HBV replication. HBx 

has been shown to activate HBV transcription through its 

recruitment to cccDNA and to consequently increase the 

recruitment of co-activators such as CBP/p300 and PCAF, 

which in turn target the promoters and activate gene expres-

sion, partly through histone acetylation25-28. Furthermore, 

HBx binds the parvulin 14 (Par14) and parvulin 17 (Par17) 

proteins, and recruits Par14/Par17 to the cccDNA minichro-

mosome, thereby promoting the transcriptional activation 

of cccDNA29. Pre-mRNA processing factor 31 (PRPF31) is 

recruited to cccDNA through interacting with HBx in the 

nucleus, as discovered through chromatin immunoprecipita-

tion assays30. Interferon-inducible protein 16 (IFI16), struc-

tural maintenance of chromosomes (SMC) complex 5/6, HP1, 

SMCHD1, and PML bind HBV cccDNA in hepatic nuclei, and 

are associated with suppression of cccDNA transcription31-34. 

APOBEC3A binds cccDNA through interacting with the 

HBc protein1. Furthermore, cellular transcription factors 

such as CREB, ATF, YY1, STAT1, and STAT2, and chromatin 

modification enzymes such as GCN5, HDAC1, SIRT1, PRMT1, 

PRMT5, EZH2, and SETDB1 have been shown to be associ-

ated with cccDNA through chromatin immunoprecipitation 

assays25,35-37. The lncRNA DLEU2 and HBx are co-recruited 

to cccDNA and subsequently play a role in the regulation of 

HBV37. Our group has reported that HAT1 confers the assem-

bly of the cccDNA minichromosome38. PCNA participates 

in the structural organization of the cccDNA minichromo-

some39. HAT1 silencing decreases the deposition of HBx and 

p300 onto the cccDNA minichromosome in HBV-infected 

dHepaRG and HepG2-NTCP cells. HAT1 anchors to the 

cccDNA minichromosome through interaction with HBc, 

while HULC serves as a scaffold in the complex of HAT1/

HULC/HBc, thereby modulating the acetylation of histones 

on the cccDNA minichromosome25,38,40.

The mechanisms permitting the conversion from rcDNA 

to cccDNA remain largely unknown. Assembly of a variety 

of viral and host factors, including HBc, HBx, histones, and 

non-histone proteins, on cccDNA is key in the formation 

and maintenance of the cccDNA minichromosome. The 

HBc carboxyl-terminal domain contains the nuclear local-

ization signal, which plays an important role in cccDNA 

minichromosome formation via delivering the rcDNA into 

the nucleus from mature nucleocapsids41. Mutations in the 

HBc N-terminal domain increase cccDNA minichromosome 

formation through controlling the release of rcDNA from 

mature capsids and the nuclear import of rcDNA42,43. The 

host ATR-CHK1 pathway is involved in cccDNA minichro-

mosome formation through processing HBV rcDNA conver-

sion to cccDNA44. In addition, SAMHD1, a component of 

the innate immune system that regulates the deoxyribonu-

cleoside triphosphate levels required for host and viral DNA 

synthesis, has a role in regulating cccDNA minichromosome 

formation45. PRPF31 may enhance cccDNA minichromo-

some formation or maintenance by interacting with HBx in 

the nucleus30. Cellular DNA topoisomerase I (TOP1) and 

II (TOP2) are involved in catalyzing both de novo synthesis 

and in intracellular amplification of the cccDNA minichro-

mosome46. Furthermore, several host cellular DNA repair 

proteins, such as tyrosyl-DNA phosphodiesterase 2 (TDP2), 

DNA polymerase (Pol), flap endonuclease 1 (FEN1), and 

DNA ligases, are required for cccDNA synthesis in de novo 

infection and intracellular amplification2,47-49. Five core com-

ponents of lagging-strand synthesis have been identified and 

defined as the minimal set of factors essential for cccDNA 

minichromosome formation: proliferating cell nuclear 
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antigen, the replication factor C complex, DNA polymerase 

δ, flap endonuclease 1, and DNA ligase 150,51.

With respect to the roles of factors in cccDNA minichromo-

some maintenance, current evidence suggests that APOBEC3A 

and APOBEC3B anchor on the cccDNA minichromosome 

by interacting with HBc, thus resulting in the degradation 

of HBV cccDNA1,3. The baseline levels of APOBEC3A and 

APOBEC3B significantly limit the formation and accumula-

tion of the cccDNA minichromosome52. High levels of ubiq-

uitin conjugating enzyme E2 L3 (UBE2L3) maintain cccDNA 

stability by inducing the degradation of APOBEC3A53. Our 

group has reported that MSL2 and HULC maintain HBV 

cccDNA minichromosome stability through the degradation 

of APOBEC3B in hepatoma cells54-56. Furthermore, myxovirus 

resistance 2 (MX2) protein, an interferon-α (IFN-α) induc-

ible effector, inhibits HBV infection by decreasing the levels 

of cccDNA, probably through indirectly impairing the conver-

sion of rcDNA to cccDNA rather than destabilizing existing 

cccDNA57. The above findings are summarized in Figure 1 and 

Table 1.

Regulation and epigenetic 
modulation of the HBV cccDNA 
minichromosome

Viral factors on the cccDNA minichromosome

Regulation of the HBV cccDNA minichromosome is mediated 

by viral and host factors as well as inflammatory cytokines, 

through epigenetic modifications of cccDNA-bound his-

tones5,37,58. As a viral protein, HBx, particularly HBx amino 

acid residues 55–60 and 121–12628, play key roles in stimulat-

ing the transcription of HBV cccDNA31. On the one hand, HBx 

enables cccDNA transcription by hijacking the cellular DDB1-

containing E3 ubiquitin ligase, which degrades SMC5/6, a 

complex that binds the cccDNA minichromosome and inhib-

its its transcription31. This important mechanism provides the 

foundation through which HBx regulates cccDNA transcrip-

tion. On the other hand, HBx prevents transcriptional repres-

sor recruitment to the cccDNA minichromosome or recruits 

the transcription factors that activate the transcription of 

HBV genes via epigenetic regulation25. HBx regulates chro-

matin-mediated transcriptional repression of the cccDNA 

minichromosome through SETDB1 histone acetylation and 

methyl transfer, and the recruitment of heterochromatin 

protein 1 factor (HP1), which is correlated with condensed 

chromatin32. Similarly, HBx relieves SIRT3-mediated cccDNA 

transcriptional repression by inhibiting both SIRT3 expres-

sion and its recruitment to the cccDNA minichromosome59. 

In addition, HBx stimulates viral replication via DNA meth-

ylation of C-1619 in the cccDNA minichromosome27. Beyond 

viral chromatin, HBx recruits a variety of coding genes and 

non-coding RNA promoters associated with cccDNA, thus 

further regulating the cccDNA minichromosome26,60,61.

HBc may regulate cccDNA transcription through epige-

netic modification. HBc preferentially binds CpG island 2 of 

the cccDNA minichromosome and alters the cccDNA mini-

chromosome methylation profile, thus regulating the active 

transcription of cccDNA62-64. Furthermore, HBc carboxyl-

terminal domain arginine residues in clusters III and IV may 

play an important role in the regulation of HBV transcription 

through decreasing the interaction of HBc with the cccDNA 

minichromosome and the acetylation of cccDNA-bound his-

tones65. In addition, virion-delivered HBc stably associates 

with the integrated viral DNA and participates in early stages 

of cccDNA formation and/or transcription66. In contrast, a 

decreased amount of HBc protein on the cccDNA minichro-

mosome does not account for the strong default of HBV RNAs 

in dHepaRG cells32.

Host factors on the cccDNA minichromosome

Beyond viral proteins, host factors also play key roles in the 

regulation of cccDNA transcription. IFI16 is negatively cor-

related with HBV and serves as a unique innate sensor that 

recognizes and binds the HBV cccDNA minichromosome in 

hepatic nuclei, thereby inhibiting cccDNA transcription and 

HBV replication through enhancing the recruitment of tran-

scriptional suppressors (HDAC1, SIRT1, or EZH2) and the 

inhibition of transcriptional activators (p300 or CBP) anchor-

ing to the cccDNA minichromosome34. However, whether 

HBx mediates the expression of IFI16 remains unclear. Par 

14 and Par 17, isoforms of the PPIase encoding PIN4 gene, 

bind HBx and the cccDNA minichromosome and up-regu-

late HBV transcription from cccDNA in an HBx-dependent 

manner29. Notch signaling facilitates cccDNA transcription 

via a cAMP response element-binding protein with E3 ubiqui-

tin ligase modulation67. The LXR pathway with synthetic LXR 

agonists elicits potent anti-HBV activity in PHHs, possibly 

via sustained suppression of cccDNA transcription68. Histone 

deacetylase 11 (HDAC11) inhibits HBV transcription and 
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Figure 1  Composition of the HBV cccDNA minichromosome. In the nucleus, HBV cccDNA is converted from rcDNA, and both histones and 
non-histone proteins are attached. (A) Various factors directly or indirectly binding cccDNA, such as HBx, HAT1, and p300, promote the repli-
cation of HBV. (B) Some restriction factors, such as SIRT1, HDAC1, PRMT1/5, and IFI16, are loaded on cccDNA, thus inhibiting HBV replication. 
A3A: APOBEC3A. TF: transcription factors, such as CREB, ATF, YY1, STAT1, and STAT2.
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replication in HBV-transfected Huh7 cells69. Both PRMT1 and 

PRMT5 also effectively restrict HBV transcription and repli-

cation, which mediate epigenetic suppression of the cccDNA 

minichromosome36,70. Neuronal precursor cell-expressed 

developmentally down-regulated protein 8 (NEDD8), a 

ubiquitin-like protein activating the ubiquitin-dependent 

Table 1  Summary of factors on HBV cccDNA and their functions

Name   Function   Reference

HBx   Prevents the recruitment of transcriptional repressors or recruits transcription factors to cccDNA, thus activating 
transcription of HBV genes via epigenetic regulation; degrades SMC5/6, which binds cccDNA and inhibits its 
transcription

  31

HBc   Enhances the formation of cccDNA via delivering the rcDNA to the nucleus from mature nucleocapsids   41

CBP/p300   Enhances the acetylation of cccDNA-bound histones   25

PCAF/GCN5   Enhances the acetylation of cccDNA-bound histones   25

ATF   Enhances cccDNA transcription   25

CREB   Enhances cccDNA transcription   25

YY1   Enhances cccDNA transcription   25,35

STAT1/2   Enhances cccDNA transcription   25,35

Par14/17   Enhances cccDNA transcription activation by binding HBx   29

PRPF31   Enhances cccDNA minichromosome formation or maintenance by interacting with HBx   30

HDAC1   Inhibits cccDNA transcription as a transcriptional suppressor   34

SIRT1   Inhibits cccDNA transcription as a chromatin modification enzyme   34

IFI16   Inhibits cccDNA transcription through enhancing recruitment of transcriptional suppressors and depressing 
transcriptional activators

  34

SMCHD1   Suppresses cccDNA transcription   34

PML   Inhibits cccDNA transcription   34

SMC5/6   Inhibits cccDNA transcription   31

SETDB1   Inhibits transcription of cccDNA by SETDB1 histone methyltransferase   32

HP1   Inhibits cccDNA transcription   32

PRMT1/5   Mediates epigenetic suppression of the cccDNA minichromosome   36

EZH2   Inhibits cccDNA transcription   34,37

DLEU2   After co-recruitment to cccDNA with HBx, displaces EZH2 from the viral chromatin and boosts cccDNA transcription  37

HAT1   Modulates acetylation of histones on the cccDNA minichromosome   38

HULC   Serves as a scaffold in the complex of HAT1/HULC/HBc; modulates acetylation of histones on the cccDNA 
minichromosome

  38

PCNA   Enhances cccDNA formation from rcDNA   39

HBx, hepatitis B X protein; HBc, hepatitis B core protein; CBP, CREB binding protein; PCAF, P300/CBP associated factors; GCN5, general 
control non-derepressible 5; ATF, artificial transcription factor; CREB, cAMP-response element binding protein; YY1, Yin Yang 1; STAT1/2, 
signal transducer and activator of transcription 1/2; Par14/17, parvulin 14/17; PRPF31, pre-messenger RNA processing factor 31; HDAC1, 
histone deacetylase 1; SIRT1, sirtuin 1; IFI16, interferon-inducible protein 16; SMCHD1, structural maintenance of chromosomes flexible 
hinge domain containing 1; PML, promyelocytic leukemia protein; SMC5/6, structural maintenance of chromosomes complex5/6; SETDB1, 
SET domain bifurcated histone lysine methyltransferase 1; HP1, heterochromatin-associated protein 1; PRMT1/5, protein arginine 
methyltransferase 1; EZH2, enhancer of zeste homolog 2; DLEU2, deleted in lymphocytic leukemia 2; HAT1, histone acetyltransferase 1; 
HULC, highly upregulated in liver cancer; PCNA, proliferating cell nuclear antigen.
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proteasome pathway, is associated with the transcription of 

cccDNA. NEDD8-activating enzyme inhibitor is an efficient 

antiviral agent, which significantly restores SMC5/6 protein 

levels, and suppresses viral transcription and protein produc-

tion in the HBV mini-circle system of HBV replication in both 

in vitro models and primary human hepatocytes infected nat-

urally with HBV71. Factors such as HDM2 and ERK are asso-

ciated with the activities of NEDD8 and may serve as potential 

targets for HBV therapy72,73. Host HAT1 is involved in modu-

lating the acetylation of histones on the cccDNA minichromo-

some through interacting with HBc38.

In addition, miRNAs and lncRNAs contribute to the reg-

ulation of cccDNA transcription. The lncRNA DLEU2 and 

HBx are co-recruited to the cccDNA minichromosome, 

where they displace EZH2 from the viral chromatin, and 

boost transcription and viral replication37. Another lncRNA, 

Hox transcript antisense intergenic RNA (HOTAIR), is asso-

ciated with the transcription of cccDNA. In HBV infection, 

HBx induces the down-regulation of DEAD box protein 5 

(DDX5), thus resulting in the transcriptional reactivation 

of polycomb repressive complex 2 (PRC2)/HOTAIR target 

genes, including HBV cccDNA-encoded genes74. MiR‑20a 

may be loaded onto AGO2 before its translocation into the 

nucleus, thus inducing methylation of the cccDNA mini-

chromosome in human hepatoma cells, and leading to the 

suppression of HBV replication75. MiR-548ah promotes the 

replication and expression of HBV through regulating its 

target gene HDAC4. Inhibition of HDAC4 by miRNA-548ah 

may influence the deacetylation state of histones binding to 

the cccDNA minichromosome, thus leading to the replica-

tion of cccDNA76,77. HBV-infected HepG2-hNTCP-C4 cells 

and HBV transgenic mice treated with miR-302c-3p display 

decreased pgRNA and HBsAg mRNA concentrations as well 

as amounts of cccDNA78,79.

HBx links the cccDNA minichro­
mosome to hepatocarcinogenesis

Many factors that regulate the HBV cccDNA minichromo-

some are involved in the development of HCC, such as HBx. 

In virus-host interactions, several host factors determine 

the composition of the cccDNA minichromosome; host 

factors such as MSL2, DLEU2, HULC, and Notch signal-

ing are regulated by HBx, thus forming a positive feedback 

loop37,55,56,67,80. Therefore, we presumed that HBx might 

enable HBV cccDNA transcription and the development 

of hepatocarcinogenesis through modulating host epige-

netic regulatory factors, thereby linking cccDNA to hepato-

carcinogenesis (Figure 2). HBV cccDNA and pgRNA levels 

represent HBV replication in the liver and might contribute 

to the progression of HCC in HBsAg carriers and patients 

with occult HBV infection3,81,82. Many factors may modu-

late cccDNA minichromosome behavior and drive hepato-

carcinogenesis. The HBx-mediated biological control of the 

HBV cccDNA minichromosome is closely associated with 

the development of HBV-related HCC via host-virus inter-

action. HBx-activated Notch signaling may play an impor-

tant role not only in HBV-related HCC but also in facilitating 

HBV cccDNA transcription via CREB and subsequent trig-

gering of the downstream PKA-phospho-CREB cascade67,83. 

Our group has reported that HBx-elevated MSL2 regulates 

the HBV cccDNA minichromosome in hepatoma cells, thus 

promoting the development of HCC and forming a positive 

feedback loop of HBx/MSL2/cccDNA/HBV55. Interestingly, 

antiviral therapy modulates hepatocarcinogenesis by 

decreasing the levels of HBx and inhibiting the tumorigenic 

effects of MSL2 and the cccDNA minichromosome84.

LncRNAs are regulators involved in biological processes, 

and their functional disruption has been implicated in 

the etiology of HCC85. Our group has reported that the 

lncRNA PCNAP1 enhances HBV replication through mod-

ulating miR-154/PCNA/HBV cccDNA signaling, in which 

PCNAP1/PCNA signaling drives hepatocarcinogenesis39. In 

addition, the lncRNA HULC activates HBV by modulating 

HBx/STAT3/miR-539/APOBEC3B signaling in HBV-related 

HCC. In brief, HULC enhances HBV cccDNA minichromo-

some stability by down-regulating APOBEC3B in hepatoma 

cells, thus leading to the growth of hepatoma cells by acti-

vation of HBV in vitro and in vivo56. Furthermore, compu-

tational modeling and biochemical evidence suggest that 

co-recruitment of the lncRNA DLEU2 and HBx to cccDNA 

displaces EZH2 from viral chromatin, thus boosting tran-

scription and viral replication in HBV-infected cells and 

HBV-related HCCs37. The above findings are summarized 

in Figure 3. In this model, HBx up-regulates and recruits 

host factors to cccDNA, thereby enhancing the transcrip-

tion of cccDNA by epigenetic regulation and leading to 

the replication of HBV through a positive feedback loop. 

Meanwhile, HBx up-regulates host factors that enhance the 

growth of liver cancer or directly result in the development 

of hepatocarcinogenesis.
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Detection of HBV cccDNA

Drug development targeting cccDNA has been hindered by 

a lack of reliable cccDNA detection methods. Southern blot 

analysis is regarded as the “gold standard” for quantitative 

cccDNA detection and remains a widely accepted method86. 

qPCR technology is another method for cccDNA detection in 

laboratory settings. To date, several methods associated with 

qPCR have been established, such as semi-nested and nested 

qPCR, rolling circle amplification qPCR, and magnetic cap-

ture hybridization qPCR87-92. In addition, the droplet digital 

PCR-based cccDNA detection system is a sensitive and accu-

rate method for quantifying cccDNA in HBV-transfected 

HepG2.2.15 cellular and anti-HBc-positive liver donor 

samples93,94. HBV cccDNA-selective droplet digital PCR is also 

sensitive in detecting cccDNA and may be a promising strat-

egy for HBV-induced HCC surveillance and antiviral therapy 

evaluation95. Recently, a novel cccDNA quantification assay, 

cccDNA inversion quantitative PCR (cinqPCR), has been 

established, in which restriction enzymes are used to invert a 

DNA sequence close to the gap region of genotype D HBV 

strains96. In addition, Zhang et  al. have established a highly 

sensitive and specific in situ hybridization assay for the detec-

tion of cccDNA in liver biopsies from patients with chronic 

hepatitis B (CHB), which can be used to specifically visualize 

the localization of cccDNA6,97.

However, in clinical settings, given the need for liver biopsy, 

detecting cccDNA in the liver of HBV-infected patients and 

quantifying cccDNA fluctuation during antiviral therapy 

through technologies such as Southern blot analysis are 

HBV replication Hepatocarcinogenesis

Host chromosomeHBV cccDNA minichromosome

Host factors

HBx

Figure 2  Hypothesis schematic of the roles of HBx-mediated epigenetic regulatory factors in the HBV cccDNA minichromosome and host 
chromosome. On the one hand, HBx up-regulates and recruits host epigenetic regulatory factors to cccDNA, thus enhancing the tran-
scription of cccDNA through epigenetic regulation and leading to the replication of HBV in a positive feedback loop. On the other hand, 
HBx up-regulates host epigenetic regulatory factors, thus enhancing the growth of liver cancer, or directly results in the development of 
hepatocarcinogenesis.
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difficult. Currently, serum HBV DNA and HBsAg are the most 

widely used cccDNA markers to diagnose HBV infection and 

monitor antiviral therapy98,99. Nucleos(t)ide analogue (NA) 

therapy can decrease serum HBV DNA to undetectable lev-

els, but not the levels of HBsAg and hepatitis B core-related 

antigen (HBcrAg), or serum HBV RNA from cccDNA. Thus, 

serum HBV RNA, HBsAg, and HBcrAg appear to be better 

surrogate markers for cccDNA than serum HBV DNA100. 

Accordingly, serum HBV RNA can serve as a biomarker to 

predict the natural history of disease in patients with CHB 

when liver biopsies are unavailable101. The measurement of 

HBV RNA before PEG-IFN based therapy has positive pre-

dictive value for maintained virological responses102,103. HBV 

RNA is a sensitive biomarker of continued transcription of 

cccDNA in HBeAg-negative patients, despite marked HBV 

DNA suppression by NAs104. However, no significant cor-

relation exists between serum HBV RNA and cccDNA copy 

numbers98. Moreover, serum HBV RNA derived from pgRNA 

in virus-like particles is superior in reflecting the activity of 

intrahepatic cccDNA in patients with CHB who are receiving 

NA therapy105 or in treatment-naive HBV-infected individu-

als106-108. Recent studies have reported that serum HBV RNA 

comprises heterogeneous lengths and products of incom-

plete reverse transcription during viral replication. Thus, 

the composition of HBV RNA might serve as a biomarker of 

cccDNA109,110.

Recently, a growing body of research has indicated that 

HBcrAg may serve as a new serum biomarker for HBV infec-

tion, treatment, and prognosis. HBcrAg contains 3 viral 

proteins: HBcAg, HBeAg, and a 22 kDa precore protein 
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Figure 3  HBV cccDNA and HCC. (A, B) PCNAP1 enhances HBV replication through modulating miR-154/PCNA/HBV cccDNA signaling. 
PCNAP1/PCNA signaling drives hepatocarcinogenesis. (C) HBx-elevated MSL2 modulates HBV cccDNA in hepatoma cells, thus promoting 
the development of HCC, forming a positive feedback loop of HBx/MSL2/cccDNA/HBV. (D) HULC enhances HBV cccDNA minichromosome 
stability by down-regulating APOBEC3B in hepatoma cells, thus mediating the growth of hepatoma cells. (E, F) HBx activating Notch signa-
ling has an important role in HBV-related HCC and facilitates cccDNA transcription via CREB. (G) Co-recruitment of the lncRNA DLEU2 and 
HBx to cccDNA displaces EZH2 from the viral chromatin, and boosts cccDNA transcription and HBV replication, which is associated with the 
development of HCC.
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(p22cr)111-113. A correlation between HBcrAg levels and the 

size of the intrahepatic cccDNA pool has been demonstrated 

in cohorts of Asian genotype B/C CHB patients114,115. Thus, 

HBcrAg is useful as an HBV re-infection marker after liver 

transplantation and a marker in HBeAg negative CHB sup-

pressed by NA therapy104,116. HBcrAg may serve as a highly 

sensitive marker reflecting the cccDNA content and persis-

tence of disease even with cccDNA levels below assay detec-

tion limits117. Furthermore, serum HBcrAg is correlated with 

cccDNA transcriptional activity in CHB118. Nevertheless, 

whether HBcrAg is better than other factors as a surrogate 

marker for cccDNA is unclear. Serum HBcrAg is better cor-

related with cccDNA levels relative to HBV RNA and HBsAg 

in both HBeAg-positive and HBeAg-negative patients119. 

However, HBcrAg is not superior to HBV DNA and HBsAg in 

predicting the response during PEG-IFN treatment in white 

patients with HBeAg-negative CHB120.

IFN and cccDNA

According to cccDNA methods, the development of drug 

targeting cccDNA is necessary. The current standard therapy 

for HBV infection includes PEG-IFN-α and NAs. IFN-α may 

inhibit HBV viral replication through decreasing cccDNA 

transcription and inducing the degradation of cccDNA. 

Our group has reported that IFN-α epigenetically regulates 

the HBV cccDNA minichromosome by modulating GCN5-

mediated succinylation of histone H3 lysine 79 (H3K79), 

thereby suppressing cccDNA transcription117. IFN-α inhibits 

HBV replication by decreasing the transcription of pgRNA 

and subgenomic RNA through epigenetic regulation of 

the nuclear cccDNA minichromosome35. IFN-α decreases 

the acetylation levels of histone H3 lysine 9 (H3K9) and 27 

(H3K27) in the cccDNA minichromosome, thus inducing 

long-lasting suppression of cccDNA transcription, and medi-

ates a delayed response that appears to accelerate the decay of 

cccDNA121. Subsequently, the up-regulation of APOBEC3A 

and APOBEC3B deaminases by IFN-α and lymphotoxin-β 

receptor agonist have been found to cause partial degradation 

of cccDNA without hepatotoxicity in HBV-infected cells, pri-

mary human hepatocytes, and human liver needle biopsies1. 

An important IFN-α inducible effector, MX2, inhibits HBV 

infection by decreasing cccDNA minichromosome formation 

through conversion from rcDNA, rather than destabilizing 

the existing cccDNA minichromosome57. Moreover, UBE2L3, 

which is correlated with the degradation of APOBEC3A, may 

be involved in IFN-mediated viral suppression. IFN-α mark-

edly inhibits the expression of UBE2L3 and consequently 

HBV cccDNA53. Three IFN-α-induced cellular proteins, 

STAT1, SMCHD1, and PML, may be the IFN-α response 

factors suppressing cccDNA transcription in the silencing of 

HBV replication33. CDM-3008, an interferon-like small chem-

ical compound, suppresses HBV replication and decreases 

cccDNA levels via the activation of the JAK/STAT pathway 

and induction of interferon-stimulated gene (ISG) expression; 

the overexpression of ISG15 stimulates HBV production in an 

ISGylation-dependent manner122,123.

IFN-β, IFN- λ1, and IFN-λ2 induce the deamination and 

degradation of cccDNA, and are similar to IFN-α124. IFN-γ 

and TNF-α inhibit the levels of HBV cccDNA in hepato-

cytes through up-regulation of APOBEC3A and APOBEC3B 

deaminases125. In addition, TGF-β induces nuclear viral 

cccDNA degradation and hypermutation via activation-

induced cytidine deaminase activity in hepatocytes126. 

Functional restoration of CD56bright NK cells in enteca-

vir-treated patients who are switched to PEG-IFN-α contrib-

utes to cccDNA clearance through TRAIL-induced cytolysis 

and TNF-α/IFNγ-mediated noncytolytic pathways127. IL-21-

based gene and cellular therapies, as valid candidates for the 

treatment of chronic HBV infections, have potential in remov-

ing cccDNA-bearing hepatocytes via activated CD8+ T cells 

together with long-term protective memory128. IL-6 inhibits 

HBV transcription by decreasing the binding of essential tran-

scription factors such as HNF1α, HNF4α, and STAT3 to the 

cccDNA minichromosome, thus leading to the hypo-acetyl-

ation of cccDNA cccDNA-bound histone silencing129. The 

above findings are summarized in Figure 4.

Therapeutic strategies against cccDNA

The cccDNA minichromosome plays pivotal role in the  

persistence of HBV replication and therefore is a crucial tar-

get for the treatment and prognosis of HBV-related diseases, 

offering a possibility for HBV cure with finite therapy through 

affecting the assembly/formation of the cccDNA minichromo-

some and the transcription/stability of cccDNA.

Inhibition of assembly/formation of the 
cccDNA minichromosome

We presumed that blocking the assembly of the cccDNA min-

ichromosome might be crucial for cleaning cccDNA in clinical 



424� Zhang et al. Research progress in HBV cccDNA

settings. However, inhibitors of assembly of the cccDNA min-

ichromosome have not been identified to date. HAT1 is a 

potential target for controlling the assembly of the cccDNA 

minichromosome. CCC-0975 and CCC-0346 are specific 

inhibitors of HBV cccDNA minichromosome formation from 

rcDNA130. HBV core protein allosteric modulators (CpAMs) 

inhibit the formation of nucleocapsids by disrupting the bind-

ing of pgRNA-bound polymerase and a hexamer consisting of 

3 core dimers. CpAMs bind the capsid and inhibit the release 

of rcDNA into the nucleus131,132. Interestingly, CpAMs also 

inhibit cccDNA minichromosome formation during de  novo 

HBV infection133. Moreover, hydrolyzable tannins significantly 

restrict cccDNA minichromosome formation and facilitate 

the degradation of preexisting cccDNA134. Therefore, agents 

controlling the assembly/formation of the cccDNA minichro-

mosome provide a novel strategy for eradicating HBV cccDNA.

Inhibition of cccDNA degradation

Inhibition of cccDNA formation

Inhibition of cccDNA transcription

Epigenetic modification
enzymes: HAT1, P300, GCN5 ......

CpAMs
Hydrolysable tannins
MX2 ......

HBV cccDNA minichromosome
H3K9ac H3K27ac

smc5/6

HBx DDB1

SART1

JAK/STAT pathway

GLP-26, Am80 ......

CDM-3008

HBV RNAs

Nitazoxanide

Gene editing technologies:
ZFNs, TALENs, CRISPR/Cas

IFN-α

IFN-α

HNF4α

IFN-ß, IFN-λ1 and IFN-λ2, TGF-β

HBV rcDNA

Figure 4  Therapeutic strategies against the cccDNA minichromosome. cccDNA formation: Inhibitors, such as CpAMs, hydrolyzable tan-
nins, and MX2, inhibit cccDNA minichromosome formation through conversion from rcDNA. cccDNA degradation: IFN-α decreases the 
expression of UBE2L3, which is correlated with the degradation of APOBEC3A, thus decreasing HBV cccDNA. IFN-γ and TNF-α inhibit the 
levels of HBV cccDNA through up-regulation of APOBEC3A and APOBEC3B deaminases. TGF-β induces cccDNA degradation via activa-
tion-induced cytidine deaminase (AID) activity. IFN-β, IFN- λ1, IFN-λ2, and gene editing technologies induce the deamination and degrada-
tion of cccDNA. cccDNA transcription: epigenetic modification enzyme inhibitors such as HAT1 and p300 inhibitors inhibit the transcription 
of cccDNA. IFN-α restricts the acetylation levels of histone H3 lysine 9 (H3K9)/27 (H3K27) and the succinylation levels of histone H3 lysine 
79 (H3K79) on the cccDNA minichromosome, thereby suppressing cccDNA transcription. Nitazoxanide (NTZ) inhibits HBx-DDB1 protein 
interaction, thereby accounting for the significant restoration of the SMC5/6 protein level, and suppresses cccDNA transcription and viral 
protein production. Dicoumarol, an NQO1 inhibitor, blocks cccDNA transcription by promoting the degradation of HBx. CDM-3008, Am80, 
and IL-6 prevent cccDNA transcription.
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Decreased cccDNA transcription

Importantly, we presumed that HBx might serve as a crucial 

target to control cccDNA. As expected, nitazoxanide (NTZ) 

efficiently inhibits the HBx–DDB1 protein interaction, thus 

accounting for the significant restoration of SMC5/6 protein 

level, and suppresses viral transcription and viral protein pro-

duction in the HBV minicircle system and in PHH cells nat-

urally infected with HBV135. Recently, dicoumarol, an NQO1 

inhibitor, has been demonstrated to have potent anti-HBV 

activity by promoting the degradation of HBx and blocking 

cccDNA transcription136. Spliceosome associated factor 1 

(SART1) restricts the transcription of HBV cccDNA by sup-

pressing the key HBV transcription factor HNF4α in various 

HBV models137. In addition, curcumin inhibits HBV replica-

tion through decreasing the acetylation of cccDNA-bound 

histones, and it may serve as a cccDNA-targeting anti-HBV 

agent138. Am80 correlates with decreased intracellular viral 

RNA levels, but not cccDNA copy numbers, thus indicating a 

persistent inhibition of HBV transcription in HepG2-NTCP 

cells139.

Disrupting cccDNA minichromosome stability

Strikingly, gene therapy targeting cccDNA is a promising 

technology for curing chronic HBV. Several methods, includ-

ing zinc finger nucleases, transcription activator-like effector 

nucleases (TALENs), and the clustered regularly interspaced 

short palindromic repeat/CRISPR associated (CRISPR/Cas) 

system, have been engineered to disrupt HBV cccDNA140-145. 

The three gene editing technologies work similarly through 

targeting cccDNA sequences by using DNA cleaving enzymes, 

thus silencing cccDNA expression. However, the potential 

off-target effects and delivery efficiency to HBV infected 

hepatocytes should be addressed in the approach to eliminate 

cccDNA. Preclinical experiments have shown that CRISPR-

Cas9-based strategies may lead to mutations and deletions 

that functionally inactivate cccDNA. Approximately 7% of 

edited DNA has been found to contain in-frame deletions, 

thus indicating that a single CRISPR target on the HBV 

genome may not inactivate cccDNA. Therefore, multiple sin-

gle guide RNAs targeting different loci on the HBV genome 

might be required to inactivate cccDNA131,146. Lutgehetmann 

et  al.145 have evaluated the anti-HBV activity of 4 ortholo-

gous CRISPR/Cas9 systems: Streptococcus pyogenes (SpCas9), 

Streptococcus thermophilus (StCas9), Cas9 orthologues from 

Neisseria meningitidis (NmCas9), and Francisella novicida 

(FnCas9). Interestingly, SpCas9 and StCas9 effectively tar-

get HBV cccDNA for degradation, thereby suppressing HBV 

replication. StCas9 has been found to be the safest and most 

effective orthologous CRISPR/Cas9 for targeting HBV. The 

death of infected cells is a major route for the elimination of 

cccDNA147.

Indirect therapeutic strategies against cccDNA

RNA interference-based anti-HBV therapy affects cccDNA 

minichromosome formation via destabilizing the pgRNA 

and inhibiting the translation of viral proteins, such as 

HBx, that are important for cccDNA minichromosome 

formation131,148. The gRNA-miRNA-gRNA ternary cassette 

combining CRISPR/Cas9 with an RNA interference approach 

has shown potent activity in destroying HBV cccDNA and 

blocking HBV replication144. Furthermore, hepadnavi-

rus-infected hepatocytes proliferation induce cccDNA dilu-

tion among daughter cells and intrahepatic cccDNA loss145. 

Moreover, NAs, as entry inhibitors, may also play roles in 

the regulation of cccDNA through affecting the replication 

of HBV131. HBV-specific T cells inhibit HBV replication and 

decrease cccDNA in infected cells; moreover, direct contact is 

not required for cytolysis, owing to the secretion of IFN-γ and 

TNF-α, thus potentially supporting HBV cure approaches121. 

In addition, animal models are crucial in the development 

of anti-HBV drugs. A human chimeric liver mouse model 

is available to evaluate the efficacy of antiviral agents target-

ing the HBV replication cycle148 and particularly to study the 

cccDNA in the liver. The above findings are summarized in 

Figure 4.

Perspectives

On the basis of mapping the cccDNA minichromosome, we 

provide new insights into the mechanisms through which 

host factors modulate the cccDNA minichromosome as well 

as potential treatment strategies targeting cccDNA. With the 

perspectives on this topic, we present suggestions for future 

studies on cccDNA (Figure 4), such as the many epigenetic 

modifying enzymes that suppress cccDNA function. Inhibitors 

targeting those enzymes are available to eliminate cccDNA. 

Combined therapy with anti-HBV drugs, such as IFN-α with 

inhibitors of epigenetic modification enzymes, might poten-

tially have enhanced effectiveness in silencing or eliminating 
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cccDNA, as well as in curing HBV-related diseases. Notably, 

the development of novel drugs targeting HBx will benefit the 

therapy of cccDNA and HBV-related cancer.
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