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Bioorthogonal non-canonical amino acid tagging
reveals translationally active subpopulations of the
cystic fibrosis lung microbiota
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Jordan M. Dunitz3 & Ryan C. Hunter1✉

Culture-independent studies of cystic fibrosis lung microbiota have provided few mechanistic

insights into the polymicrobial basis of disease. Deciphering the specific contributions of

individual taxa to CF pathogenesis requires comprehensive understanding of their ecophy-

siology at the site of infection. We hypothesize that only a subset of CF microbiota are

translationally active and that these activities vary between subjects. Here, we apply bioor-

thogonal non-canonical amino acid tagging (BONCAT) to visualize and quantify bacterial

translational activity in expectorated sputum. We report that the percentage of BONCAT-

labeled (i.e. active) bacterial cells varies substantially between subjects (6-56%). We use

fluorescence-activated cell sorting (FACS) and genomic sequencing to assign taxonomy to

BONCAT-labeled cells. While many abundant taxa are indeed active, most bacterial species

detected by conventional molecular profiling show a mixed population of both BONCAT-

labeled and unlabeled cells, suggesting heterogeneous growth rates in sputum. Differ-

entiating translationally active subpopulations adds to our evolving understanding of CF lung

disease and may help guide antibiotic therapies targeting bacteria most likely to be

susceptible.
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The increased viscosity and impaired clearance of mucus
secretions in cystic fibrosis (CF) airways creates a favorable
environment for chronic microbial colonization, the pri-

mary cause of morbidity and mortality1. Pseudomonas aeruginosa
and Staphylococcus aureus have long been recognized as primary
CF pathogens and are the targets of common therapeutic regi-
mens2, though recent culture-independent studies have revealed a
more complex polymicrobial community harboring facultative
and obligately anaerobic bacteria that are relatively under-
studied3–5. While the specific contributions of individual com-
munity members to disease progression remain poorly
understood and at times controversial6, cross-sectional studies of
both pediatric and adult cohorts have revealed compelling rela-
tionships between bacterial community composition and disease
stage, antibiotic use, age, and other phenotypes7–12. These data
have challenged the field to reconsider therapeutic strategies in a
polymicrobial community context13,14.

Relatively fewer studies have identified within-subject pertur-
bations in bacterial community structures that coincide with
acute and complex disease flares known as pulmonary exacer-
bations (PEx). Though no standardized definition of PEx is
broadly accepted15, these episodes are generally characterized by
increased respiratory symptoms (e.g., shortness of breath, sputum
production) and acute decreases in lung function that can, but
not always, be resolved in response to antibiotic therapy. While
this would suggest a bacterial etiology, sputum cultures generally
demonstrate that airway pathogens are recovered at similar
densities before, during, and after disease flares16–19. Culture-
independent studies show similar trends; with exceptions9,20–22,
longitudinal sequencing analyses of sputum from individual
subjects frequently reveal unique, subject-specific bacterial com-
munities whose diversity and composition remain stable during
PEx onset and upon resolution of disease symptoms16,23,24. This
lack of association between lung microbiota and disease dynamics
may reflect the inability of both culture-based and sequencing
approaches to capture changes in bacterial activity, which likely
have a critical impact on disease progression and therapeutic
effectiveness.

To date, there have been few studies of bacterial growth and
metabolism within the CF airways25–30. RNA-based profiling of
stable CF subjects has shown consistencies between RNA and
DNA signatures suggesting that many bacterial taxa identified by
16 S rRNA gene sequencing are metabolically active, though these
data have also corroborated that bacterial community member-
ship is not necessarily predictive of growth activity25,26. Further,
rRNA/DNA ratio methods are inherently constrained for use on
complex bacterial communities with varying growth strategies
(i.e., human microbiota)31,32. Interactions between respiratory
pathogens and the host and/or co-colonizing microbiota can
influence growth rates, metabolism, virulence factor production,
and antimicrobial susceptibility without an accompanying change
in bacterial abundance33–38. And finally, growth rates of
respiratory pathogens can vary substantially between subjects and
even within a single sputum sample27,28, the heterogeneity of
which is not captured using conventional molecular profiling.
There remains a need for novel methods to characterize bacterial
activity and its role in disease progression.

Bioorthogonal non-canonical amino-acid tagging (BON-
CAT) has been used to characterize the activity of uncultured
microbes in soil and marine samples39–43. BONCAT relies on
the cellular uptake of a non-canonical amino-acid (e.g., L-
azidohomoalanine (AHA), a L-methionine analog) carrying a
chemically-modifiable azide group44. After uptake, AHA
exploits the substrate promiscuity of methionyl-tRNA synthe-
tase and is incorporated into newly synthesized proteins.
Translationally active cells can then be identified through a

bioorthogonal azide-alkyne click reaction in which a
fluorophore-tagged alkyne is covalently ligated to AHA,
resulting in a fluorescently labeled population of translationally
active cells that can be further studied using a variety of
microscopy and analytical methods. BONCAT has been shown
to correlate with other established methods of quantifying
microbial activity40,43 and represents a robust tool for char-
acterization of bacterial communities and a range of other
organisms in their native growth environment.

BONCAT has also recently been used to study bacterial
pathogens in vitro45–48, though it has seen limited use in the
study of host-associated bacterial communities40,49. Samples
derived from the CF airways provide a unique opportunity to do
so, as the site of infection is amenable to longitudinal studies and
the bacterial growth environment is relatively stable upon
removal from the host50. Exploiting these advantages, here we use
BONCAT together with imaging, fluorescence-activated cell
sorting (FACS) and 16 S rRNA gene sequencing to characterize
the translational activity of bacterial communities within sputum
derived from a cohort of seven clinically stable CF subjects. We
reveal that active bacteria represent only a subset of microbiota
captured using conventional 16 S rRNA gene sequencing and
discuss these results in the context of progression and treatment
of chronic airway disease.

Results
BONCAT differentiates translationally active bacteria. To
optimize the BONCAT experimental approach, we first grew P.
aeruginosa, a canonical CF pathogen, to mid-log phase followed
by supplementation with 6 mM L-azidohomoalanine (AHA) for
3 h. Post-AHA treatment, azide-alkyne click chemistry using
Cy5-labeled dibenzocyclooctyne (Cy5–DBCO), permitted fluor-
escent detection of translationally active cells (Fig. 1a). Quanti-
fication of average Cy5 pixel intensity per cell revealed active
protein synthesis in ~98% of the population. By contrast, sup-
plementation of the growth medium with 6 mM L-methionine
(MET) or pretreatment of P. aeruginosa with tobramycin,
chloramphenicol, and tetracycline (to arrest de novo protein
synthesis) prior to AHA resulted in negligible fluorescence
(Fig. 1b, c). These data were also confirmed by SDS-PAGE
(Supplementary Fig. 1). Finally, when two AHA-labeled cultures
(one treated with antibiotics, one without) were combined in a 1:1
ratio prior to Cy5–DBCO labeling, a bimodal distribution of
fluorescence intensities were observed, representing a mix of
active and inactive cells (Fig. 1d). Together, these data demon-
strate the utility of BONCAT for characterizing P. aeruginosa
translational activity in an amino-acid-rich growth environment.

To assess whether BONCAT is broadly suitable for labeling
polymicrobial communities found in the airways, we then
performed mixed activity labeling as described above on
representative isolates of common CF-associated microbiota;51

Achromobacter xylosoxidans, Burkholderia cenocepacia, Escher-
ichia coli, Fusobacterium nucleatum, Prevotella melaninogenica,
Rothia mucilaginosa, Staphylococcus aureus, Stenotrophomonas
maltophilia, Streptococcus parasanguinis, and Veillonella parvula
(Fig. 2). Each mixed culture (+/− antibiotics in a 1:1 ratio)
exhibited a similar labeling pattern to P. aeruginosa, suggesting
that BONCAT can be used to characterize translational activity
among diverse bacterial taxa associated with the CF airways.
Notably, all species tested demonstrated BONCAT labeling. In
addition, AHA did not affect the growth phenotype of any species
under our experimental conditions (Supplementary Fig. 2),
consistent with previous studies showing that BONCAT permits
labeling of microbiota without concomitant changes in growth
rate or protein expression40,52.
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BONCAT identification of active CF microbiota. The BONCAT
protocol optimized for lab-grown cultures was then modified for
analysis of CF bacterial communities in sputum. To do so, spu-
tum was collected from clinically stable subjects and immediately
supplemented with cycloheximide to reduce AHA incorporation
by host cells (Supplementary Fig. 3). Samples were then divided
into three equal-volume aliquots, supplemented with either 6 mM
AHA, 6 mM methionine, or antibiotics (30 µg mL−1 chlor-
amphenicol, 200 µg mL−1 tetracycline, and 10 µg mL−1 tobra-
mycin) plus 6 mM AHA, and incubated at 37 °C under oxic
conditions for 3 h. Incubation time was chosen to maximize
labeling while minimizing changes in bacterial growth conditions
such that they closely reflected the in vivo chemical environment.

AHA concentration (6 mM) was based on average methionine
content in CF sputum (0.6 mM)53 and a 10:1 AHA:MET ratio (or
greater) required for effective labeling (Supplementary Fig. 4).

Representative micrographs (Fig. 3a) reveal BONCAT-labeled
sputum obtained from three individual CF subjects (Supplemen-
tary Table 1, subjects 1–3). Consistent with previous reports of
heterogeneous growth rates27,28,54, notable differences in Cy5
fluorescence are apparent at higher magnification (Fig. 3b);
several individual cells and cell aggregates show moderate to
intense labeling whereas others are unlabeled. Treatment with
methionine instead of AHA did not result in fluorescent signal,
ruling out non-specific labeling and residual dye that could not be
removed by washing (Supplementary Fig. 5). Similarly, treatment

A. xlyosoxidans B. cenocepacia E. coli F. nucleatum P. melaninogenica

R. mucilaginosa S. aureus S. maltophilia S. parasanguis V. parvula

Fig. 2 BONCAT can identify active cells among diverse CF microbiota. Two cultures (one treated with antibiotics, one without) of each species were
grown in the presence of AHA and mixed 1:1 prior to Cy5–DBCO (magenta) labeling and SYTO64 counterstaining (blue). These data demonstrate that
BONCAT can differentiate between active and inactive bacterial cells among diverse CF microbiota. Scale bars; Ax, Bc, Fn, Ec, Pm, Rm= 20 µm; Sa, Sm, Sp=
10 µm; Vp= 5 µm. Images are representative of ten images from each of three biologically independent experiments for each organism.
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Fig. 1 BONCAT labeling of P. aeruginosa differentiates translationally active and inactive cells. P. aeruginosa was incubated in the presence of a AHA,
b methionine (MET), and c antibiotics prior to AHA (ABX). Actively growing cells were identified via strain-promoted click chemistry (Cy5, magenta;
SYTO64, blue). Histograms associated with each image represent average Cy5 pixel intensity (relative fluorescence units, RFU) per cell. d Two AHA-
treated cultures (one with antibiotics, one without) were mixed in a 1:1 ratio prior to Cy5–DBCO labeling. These data demonstrate that BONCAT can
differentiate translationally active and inactive bacterial cells in a complex nutritional milieu. Scale bar= 10 µm. n refers to the number of cells examined
over ten images from each of three independent experiments. Source data are provided as a Source Data file.
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of sputum with antibiotics prior to AHA addition also resulted in
a significant reduction in fluorescence intensity. However, this
reduction was incomplete, which may reflect the development of
antimicrobial tolerance that arises among CF pathogens. Finally,
though cycloheximide treatment results in a significant reduction
in AHA uptake by macrophages (Supplementary Fig. 3), we note
that host-cell contributions to BONCAT fluorescence cannot be
ruled out. Despite this possibility, average pixel intensity per cell
(Fig. 3c) further emphasizes the range of bacterial translational
activity and the likely slower growth rates of CF microbiota in
sputum compared to cultures grown in vitro (compare Fig. 3c and
Fig. 1a). These analyses demonstrate that BONCAT labeling can
be used to characterize bacterial activity within complex sputum
samples. Moreover, these data suggest that translationally active

bacteria represent only a subpopulation of the CF lung
microbiota.

Flow cytometric analysis of BONCAT-labeled CF microbiota.
BONCAT combined with fluorescence-activated cell sorting
(FACS) has previously been used to study microbial activity
within soils and marine sediments39,42. We therefore sought to
use FACS to characterize and isolate BONCAT-labeled (i.e.,
active) cells and bacterial aggregates within sputum samples
derived from clinically stable CF subjects (Supplementary Table 1,
Subjects 4–6). Our experimental workflow is shown in Fig. 4.
Upon sputum collection, a small aliquot (original) was removed
and stored at −80 °C prior to conventional 16 S rRNA gene
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Fig. 3 CF microbiota exhibit heterogeneous translational activity within sputum. a Sputum was incubated in the presence of 6 mM AHA immediately
upon expectoration. BONCAT labeling with Cy5–DBCO (magenta) and counterstaining with SYTO64 (blue) reveals heterogeneous AHA incorporation
(i.e., translational activity). b Higher magnification images further emphasize the range of bacterial activity at the single-cell level. c Average Cy5 pixel
intensity per cell suggests slow and heterogeneous translational activity among bacterial cells in situ. Scale bars; a= 100 µm, b= 5 µm. Source data are
provided as a Source Data file.
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amplicon analysis. Remaining sputum was then treated with
cycloheximide and divided into four aliquots, three of which were
supplemented with AHA (6 mM). As a control, the remaining
aliquot was treated with 6 mM methionine, and all samples were
then incubated under oxic conditions at 37 °C for 3 h. Samples
were subjected to Cy5–DBCO labeling and counterstaining, fol-
lowed by removal of another aliquot (sort input) to determine
community profile changes as a result of chemical fixation and
sputum incubation ex vivo. Remaining samples were homo-
genized and filtered to remove host cells, followed by FACS to
isolate Cy5− (sort-negative) and Cy5+ (sort-positive) cells.

Given the potential heterogeneity of a single sputum plug,
triplicate aliquots from each CF sputum sample were BONCAT-
labeled and analyzed by FACS and 16 S rRNA gene sequencing to
assess the consistency of results (Supplementary Figs. 7 and 8).
Representative FACS plots are shown in Fig. 5a. Cy5− and Cy5+
gates were sample-specific and were established first by using an
AHA− (MET+) aliquot to define the negative gate for each
sample. Positive gates were then conservatively assigned by
comparing the AHA+ aliquots to the AHA− control (see
Supplementary Fig. 9 for gating scheme). AHA+ samples
underwent notable shifts along the Cy5+ axis (Fig. 5a) and cells
that fell within the Cy5+ gate exhibited a higher geometric mean
of fluorescence intensity in the Cy5 channel (Supplementary Fig.
10). These data confirm BONCAT labeling and are reflective of
translational activity (Fig. 5a). Sort specificity was validated by
immunostaining using an anti-Cy5 antibody, which revealed
estimated false-negative and false-positive rates of 6.8% and 12%,
respectively (Supplementary Fig. 6). Based on total events (~6.5
million counts per sample, on average; Supplementary Table 2),
we consistently found that only a subset of the overall bacterial
population was Cy5+. For the three individuals surveyed,
replicate averages of the Cy5-labeled population were 6.2%
(+/− 1.21), 42.6% (+/− 5.62), and 56.1 (+/− 9.57) for subjects 4,
5, and 6, respectively. These data reflect labeling patterns shown
by microscopy (Fig. 3) and suggest that expectorated sputum
harbors bacterial communities with a range of translational
activity.

Taxonomic identities of active sputum microbiota. 16 S rRNA
gene sequencing was applied to original, sort input, sort-negative,
and sort-positive fractions from each sample to determine bac-
terial community composition. Sequence data were analyzed
using the DADA2 pipeline55 to reduce potential loss of biological
sequence variation due to clustering by similarity and to improve
observation of fine-scale variation (including species-level reso-
lution) in bacterial populations. Using this approach, sequence
data derived from AHA-labeled samples (sort input, sort-nega-
tive, and sort-positive) were compared to their paired original
sample to characterize translationally active subpopulations. For
each subject, sample replicates were compared by proportions of
the top-ranking taxa (Supplementary Fig. 8a), and variation
related to sample type was visualized using a double principle co-
ordinates analysis (DPCoA) (Supplementary Fig. 8b). Replicate
samples showed considerable agreement, thus, relative abun-
dances were averaged for further analysis.

Each subject harbored lung microbiota of low to moderate
complexity (Fig. 5b), and community profiles were consistent
with prior 16 S rRNA gene surveys of CF sputum in which
Pseudomonas and Streptococcus were dominant genera3–5,9–12.
We also achieved species-level resolution for less abundant taxa,
including several obligate and facultative anaerobes (e.g.,
Prevotella sp., Rothia sp.). In general, AHA labeling did not
result in substantial changes in bacterial membership; for the
most abundant taxa (>1%), community composition was

comparable before (original) and after (sort input) BONCAT
labeling, demonstrating that AHA treatment and chemical
fixation had minimal effect on relative bacterial abundance.
Interestingly, bacterial populations recovered from
BONCAT–FACS analysis (sort-negative, sort-positive) also
showed similarities among the most abundant community
members relative to the original sample (i.e., those detected by
conventional 16 S rRNA gene sequencing). Notable exceptions
were Staphylococcus aureus and Rothia sp. for subject 4, which
despite efficient labeling in laboratory culture, were of negligible
abundance in the positive fraction, suggesting low translational
activity. Less abundant taxa (Supplementary Fig. 11), showed
greater variation between fractions, but most were also generally
detectable in both sort-negative and sort-positive gates. Together,
these data suggest that a subset of most taxa detected by
conventional 16 S rRNA gene sequencing are translationally
active. Moreover, each taxon appears to exhibit heterogeneous
growth activity, which may have important implications for the
progression and treatment of CF disease.

To better observe changes in the relative abundances of
translationally active bacterial taxa, we calculated fold-change
differences between sort-negative, sort-positive, and sort input
fractions for each subject (Fig. 5c and Supplementary Figs. 12 and
13). Some genera/species present in fold-change plots do not
appear in taxa plots (Fig. 5b) because they were less than 1%
relative abundance, but we note that activity among these less
abundant populations may also be determinants of CF pathogen-
esis. In general, ranks of relative abundance were not appreciably
different between sort-positive and sort-negative fractions
(denoted by heatmaps in Fig. 5c). The most abundant organism
in all subjects, Pseudomonas (ASV1/ASV4), was always in greater
relative abundance in the positive sort (Fig. 5c), reflecting its
active growth in sputum and underscoring its recognized
importance as a CF pathogen. However, this trend of agreement
between relative abundance and fold-change did not always hold.
For example, Leptotrichia (ASV5) in subject 6 was high in rank
abundance (see heatmaps), but its fold difference between
positive and negative fractions was 0.22 (~4.5-fold greater in
the negative sort), indicating lower relative translational activity
than its co-colonizing microbiota. This was also observed for
Streptococcus (ASV2) in subject 4, which was the second most
abundant taxon yet showed low translational activity. Conversely,
some low abundance organisms were in higher relative
abundance in the positive sort. Most notably, Streptococcus
(ASV12) and Rothia dentocariosa (ASV37) in subject 5 had
average relative abundances of 1.3% and 2.3%, respectively, in the
negative sort, but were 4.5- and 5.25-fold more prominent in the
positive fraction. Other low abundance ASVs assigned as
Actinomyces, Enterococcus, Peptostreptococcus, and Capnocyto-
phaga sputigena showed similar trends, which were also
confirmed by additional comparisons between sort input/ sort-
positive and sort input/sort-negative fractions (Supplemental
Figs. 12 and 13).

Taken together, these BONCAT data reveal the extensive
heterogeneity of translational activity among CF microbiota. Each
individual harbors a unique bacterial community, though
community membership and relative abundance are not
necessarily predictive of translational activity. Ultimately, profil-
ing of bacterial communities in this manner may help guide
therapeutic strategies by identifying subpopulations of transla-
tionally active bacteria.

Discussion
16 S rRNA gene sequencing has become the gold standard for
culture-independent characterization of CF airway bacterial
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Fig. 5 BONCAT, FACS, and sequencing of CF sputum reveals the taxonomic identities of translationally active microbiota. a FACS of BONCAT-labeled
sputum reveals Cy5− and Cy5+ subpopulations. Percentages shown reflect % of parent population post-CD45RO gating. b Original, sort input, sort-
negative (Cy5−), and sort-positive (Cy5+) fractions were analyzed by 16 S rRNA gene sequencing. Taxa plots summarize sequencing data by subject and
averaged relative abundances between triplicate-positive and -negative sorted fractions. c Fold-changes between relative abundances of taxa in the sort-
positive compared to the negative fraction. Point color indicates taxa that were increased (pink) and decreased (blue) in relative abundance in the sort-
positive fraction, representing translationally active microbiota. The single gray points indicate ASVs seen only in the negative sample. Heatmap sidebars
represent square root transformed relative abundances.
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communities. Despite the wealth of data that have emerged
regarding the complexity of lung microbiota, we have little
understanding of bacterial activity at the site of infection and the
specific contributions of individual species to pathogenesis.
Expanding on recent studies employing BONCAT as a means of
characterizing the ecophysiology of microbial communities in
their natural growth environment39–43, we use this approach in
combination with FACS and 16 S rRNA gene sequencing to shed
light on bacterial activity in CF sputum. We demonstrate that
only a subset of each taxon is detectable by metabolic labeling.
Identification and characterization of this subpopulation is not
achievable using conventional sequencing approaches and may
provide a more precise representation of relevant microbiota
within the CF lung.

BONCAT-based studies of translationally active bacteria
challenge our thinking on the microbial ecology of the CF air-
ways. Each subject harbored a unique bacterial community con-
sisting primarily of canonical lung pathogens (e.g., Pseudomonas).
Consistent with previous studies using RNA-based methods25,26,
BONCAT–FACS-based sequencing data indicate these most
abundant taxa are also active in situ, reinforcing a probable role
for these genera in CF pathogenesis. However, we also revealed
that low abundance community members not commonly asso-
ciated with CF lung disease comprise many taxa that exhibited
increased abundance in the positive sort, indicating that com-
munity membership is not always predictive of translational
activity. In conventional 16 S rRNA datasets, rare taxa (i.e., <1%)
can be challenging to detect among high abundance organisms
(or they are commonly grouped into an ‘other’ category).
Moreover, longitudinal dynamics among low abundance taxa can
be masked in standard taxa plots and may explain why observed
within-subject differences in bacterial community composition
rarely track with disease symptoms9,16,23. While we cannot rule
out that some AHA-negative cells are a result of impaired AHA
uptake or instrument detection limits, our data suggest that dead
and/or dormant biomass comprise a substantial proportion of
sequence reads generated via 16 S rRNA gene sequencing of CF
sputum. We hypothesize that low abundance organisms represent
keystone members of the lung microbiota, whose activity
dynamics are determinants of acute inflammation, either by
directly impacting the host, or indirectly through modulating the
growth and virulence of higher abundance pathogens.

BONCAT imaging of sputum and fold-change plots between
sort-positive and sort-negative fractions demonstrated both
population-wide and taxon-specific translational heterogeneity.
This spectrum of metabolic states may confer a significant
advantage for bacteria and optimize their fitness in the complex
environment of the CF lung. In vivo, airway microbiota face a
dynamic milieu shaped by microbial competitors, antimicrobials,
the host immune response, nutrient limitation, and other che-
mical stimuli that can be unfavorable to growth. Under these
conditions, adopting a bet-hedging strategy in which only a
subpopulation of cells is active may ensure that a given bacterial
species is prepared to contend with environmental stress56. In
addition, the transition between translationally active and dor-
mant states may help to explain the periodicity of PEx, faced with
a favorable growth environment, more cells of a given taxon (or
taxa) may be induced into active growth and elicit a heightened
host response.

The balance between growth states may also be a critical
determinant of host response to therapy. By adopting a persister-
like strategy in which reduced cellular activity confers a tem-
porary multidrug-resistant phenotype, a dormant subpopulation
could ensure persistence during an antibiotic challenge. Once
antibiotic-selective pressure is relieved, antimicrobial tolerant
populations may emerge. This heterogeneity may also help

explain instances in which a subject’s clinical response is not
predicted by the in vitro drug susceptibility of a given pathogen.
We posit that clinical sensitivity panels are poorly predictive of
antibiotic efficacy because, among other limitations, they do not
account for the heterogeneous translational activity
described here.

While active cells are likely more responsible for pathogenesis,
inactive cells (Cy5−) are also of importance to CF lung disease as
bacteria do not necessarily have to be translationally active to
influence their greater community. For example, it is known that
largely dormant populations can drive geochemical processes in
their growth environment (e.g., mineralizing organic carbon to
CO2)57–59. Translationally inactive cells can also shape their
growth environment through nutrient exchange, secretion of
virulence factors and small metabolites, electrostatic interactions,
and stimulation of the host immune response. Further char-
acterization of activity heterogeneity, the contributions of both
active and dormant populations to disease, the frequency of
transition between states and the factors that stimulate those
transitions will help us to better understand disease dynamics and
nature of these.

Though BONCAT represents a useful tool for the study of CF
microbiota, we note limitations, several of which have been
described previously39,40,60. First, bacterial cell sorting by flow
cytometry is imperfect, as each species has characteristic sort
properties. When defining our gating scheme, Cy5+ and Cy5−
gates were conservatively chosen (requiring a gap in between
gates) such that the selection of inactive cells in the positive gate
was minimized, and vice versa. However, with this gap a subset of
the active population is not collected. Similarly, there is a high
probability of selecting active cells in the negative gate due to flow
migration characteristics (e.g., F. nucleatum shifts differently than
a much smaller V. parvula cell). Finally, bacterial aggregates, in
which only some cells are active (see Fig. 3b) could be pulled into
the negative gate by the inactive population of that aggregate. We
are currently exploring alternative approaches, including opti-
mization of gating strategies, to improve upon the sorting effi-
ciency of BONCAT-labeled cells.

It is also possible that our experimental conditions were
selective against certain taxa. As an example, the 3 h AHA
incubation is performed under oxic conditions, which may induce
an aerobe bloom or inhibit less aero-tolerant bacteria ex vivo.
Electrode analyses have shown that steep oxygen gradients are
retained in expectorated mucus plugs and are stable over time50,
but it is notable that after AHA treatment, Rothia mucilaginosa
(ASV8), Prevotella salivae (ASV30), Veillonella (ASV13), and
other anaerobes were far more prevalent in the negative sort.
However, this was not always the case (e.g., R. dentocariosa and S.
wiggsiae increased in subjects 5 and 6) making it difficult to
determine whether the observed fold-differences reflect growth
constraints during BONCAT labeling or a true slow growth (or
dormant) phenotype. Though each bacterium tested in vitro
demonstrated the ability to uptake AHA (Fig. 2), it is also
expected that each species will incorporate AHA into new pro-
teins at different rates. Similarly, it is possible that catabolism of
AHA may skew bacterial composition or induce metabolic
changes61. Future work will be aimed at optimizing reaction
conditions and incubation times to minimize the effect of the
experimental approach biasing FACS and sequencing data.

Despite these limitations, BONCAT can be used to extend our
understanding of the role of specific microbiota in chronic lung
disease. Here we focused on a cross-sectional cohort of stable CF
subjects, but the approach can be used to address important
questions about microbial community dynamics over time. For
example, (i) how do active populations vary with disease
state? Future studies will focus on longitudinal analyses of
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within-subject microbial dynamics and how active species cor-
relate with disease symptoms. By identifying bacterial sub-
populations most active either preceding or during an acute
disease flare (i.e., PEx), more effective therapeutic strategies are
likely to be identified. (ii) Why are only some subjects responsive
to antimicrobial therapy? As mentioned above, in vivo drug
efficacy is often inconsistent with clinical sensitivity panels. By
obtaining sputum and amending small aliquots with different
classes of antibiotics, BONCAT analysis of the ensuing changes in
bacterial activity can be used to predict how CF subjects might
respond to treatment. (iii) How do specific taxa respond to
environmental stimuli? It is known that bacteria are dynamically
responsive to their growth environment, yet how CF microbiota
adapt to perturbations in the sputum milieu is poorly understood.
BONCAT characterization of sputum samples amended with
specific nutrients or incubation under varying environmental
conditions (e.g., low pH) will help to shed light on parameters
that constrain or potentiate bacterial growth in vivo. (iv) How is
translational activity spatially arranged? With the exception of
small bacterial aggregates (Fig. 3), the approach described here
offers limited insight on the spatial distribution of bacterial
activity. As an alternative to FACS-based sequencing, BONCAT
could be combined with species-specific fluorescence in situ
hybridization (FISH) probes and histological analysis of sputum
(or lung tissue) to visualize spatial relationships between trans-
lationally active bacteria39,40,62.

In summary, we demonstrate that BONCAT is a powerful tool
for the visualization and identification of translationally active
bacteria and provides a measure of microbial activity not cap-
tured by conventional molecular profiling. Our use of BONCAT
lays the foundation for a more detailed understanding of the
ecophysiology of CF microbiota and has important implications
for the development of new therapeutic strategies and improved
clinical outcomes. In addition, the approach is broadly applicable
to other airway diseases (e.g., COPD, ventilator associated
pneumonias, and sinusitis) where the activity of complex bacterial
communities is central to disease states. We are currently using
this approach to study microbial community dynamics in a
variety of infectious disease contexts.

Methods
Bacterial strains and culture conditions. Bacterial strains are listed in Table 1.
Fusobacterium nucleatum, Prevotella melaninogenica, Veillonella parvula, and
Streptococcus parasanguinis were derived from the American Tissue Type Collec-
tion and obtained from Microbiologics (St. Cloud, MN). Rothia mucilaginosa was
obtained from the Japan Collection of Microorganisms (Riken, Tokyo). Staphylo-
coccus aureus, Escherichia coli and Pseudomonas aeruginosa were obtained from D.
K. Newman (California Institution of Technology), and Burkholderia cenocepacia
was obtained from C.H. Mohr (University of Minnesota). Achromobacter xylo-
soxidans and Stenotrophomonas maltophilia were isolated from individuals
undergoing treatment at the UMN Adult CF Center. Aerobes were maintained on
Luria-Bertani (LB) agar, while anaerobes were maintained on Brain-Heart Infusion

(BHI) agar supplemented with a 5% vitamin K-hemin solution (Hardy Diagnostics
#Z237) in an anaerobic chamber (Coy) under a 90% N2/5% CO2/5% H2 atmo-
sphere. Bacterial growth curves were performed in triplicate in BHI broth con-
taining either 6 mM L-azidohomoalanine (AHA) or 6 mM L-methionine (MET).

Clinical sample collection. Spontaneously expectorated sputum was collected
from stable subjects with cystic fibrosis during routine outpatient visits to the Adult
CF Center at the University of Minnesota. All subjects provided written informed
consent prior to sample collection as approved by the UMN Institutional Review
Board (Study #1403M49021). Upon consent, each subject provided a single sample
that was collected in a sterile 50 mL conical tube. Cohort data are shown in Sup-
plementary Table 1.

Bioorthogonal non-canonical amino-acid tagging (BONCAT). BONCAT label-
ing was performed as described by Hatzenpichler40 with modifications. Briefly, for
imaging of lab-grown cultures (see below), P. aeruginosa, B. cenocepacia, A.
xylosoxidans, S. maltophilia, R. mucilaginosa, E. coli, and S. aureus were grown
aerobically in LB, while S. parasanguinis, V. parvula, P. melaninogenica, and F.
nucleatum were cultured under anaerobic conditions in BHI broth supplemented
with hemin and vitamin K. Cultures were grown overnight and diluted 1/100 in 10
mL of fresh medium. Upon reaching mid-log phase, cultures were supplemented
with either 6 mM AHA or 6 mM methionine (MET) and incubated for 3 h at 37 °C.
When indicated, an antibiotic cocktail consisting of chloramphenicol (30 µg mL−1),
tetracycline (200 µg mL−1), and tobramycin (10 µg mL−1) was added 30 min prior
to AHA addition to arrest protein synthesis. After incubation, cultures were pel-
leted via centrifugation (5 min at 10,000 × g), fixed in 4% paraformaldehyde (PFA)
for 2 h at 4 °C, resuspended in phosphate buffered saline (PBS, pH 7.4) and stored
at 4 °C. All growth curves were performed in triplicate (n= 3).

Sputum samples used for imaging were treated with cycloheximide (100 µgmL−1)
upon expectoration and divided into three equal volumes. Aliquots were supple-
mented with either AHA (6mM), methionine (6mM), or AHA (6mM) with
chloramphenicol/tetracycline/tobramycin as described above, incubated at 37 °C for
3 h, followed by fixation in 4% PFA overnight at 4 °C. Samples collected for flow
cytometry were divided into five 300−500 µL aliquots. One control aliquot was
immediately frozen at −80 °C and later used for conventional 16 S rRNA gene
sequencing. Cycloheximide (100 µgmL−1) was added to the remaining four
aliquots, three of which were supplemented with AHA (6mM). One was also
supplemented with MET (6mM), followed by incubation of all samples at 37 °C for 3
h. Labeled samples (and unlabeled controls) were then fixed in 4% PFA for 2 h,
pelleted via centrifugation (5min at 10,000 × g), resuspended in PBS, and stored
at 4 °C.

Click chemistry. For each bacterial culture and sputum sample, strain-promoted
azide-alkyne cycloaddition (click chemistry)63 was also performed as described
previously40. Briefly, fixed biomass was pelleted, resuspended in freshly prepared 2-
chloroacetamide (100 mM) and incubated for 1 h at 46 °C, shaking at 450 r.p.m. in
the dark. Cy5-dibenzocyclooctyne (Cy5–DBCO) (Click Chemistry Tools) was then
added to a final concentration of 10 µM followed by incubation for 30 min at 46 °C.
Samples were washed three times in PBS and further processed for imaging and
flow cytometry (see below).

SDS-PAGE. P. aeruginosa was grown to late-exponential phase as described above
and supplemented with varying concentrations of AHA (100 µM–1 mM) for 1 h
prior to fixation. Similarly, P. aeruginosa was grown in the presence of varying
ratios of MET:AHA. Bacterial pellets were resuspended in extraction buffer (1%
sodium dodecyl sulfate, 50 mM NaCl, 100 mM EDTA, 1 mM MgCl2 at pH 8.4) and
boiled for 30 min. After boiling, samples underwent click chemistry as described
above. A mixture of methanol:chloroform:water (12:3:8) was then added to each
sample followed immediately by centrifugation for 5 min at 16,000 × g. The water/
methanol phase was then carefully removed, and protein recovered from the
interface was washed three times in 100% methanol. After the final wash, super-
natant was removed and pellets were air dried. Protein was resuspended in 100 μl
1X LDS (lithium dodecyl sulfate) sample buffer and denatured at 70 °C for 10 min.
Ten microliter of protein was run on an 8% Bis-Tris gel with MOPS (3-(N-mor-
pholino)propanesulfonic acid)-sodium dodecyl sulfate (SDS) running buffer to
which sodium bisulfite had been freshly added. Gels were run at 150 V, fixed for 30
min in a 1:2:7 acetate:methanol:water mix, and imaged with a Typhoon FLA
9500 scanner (GE Healthcare) using an excitation wavelength of 635 nm.

Fluorescence microscopy. BONCAT-labeled bacterial cultures and sputum were
spotted on Superfrost Plus microscope slides and counterstained using 1.6 µM
STYO64 in PBS. Slides were then washed twice in PBS, mounted using Prolong
Diamond Antifade and imaged using an Olympus IX83 microscope with a
transmitted Koehler illuminator and a ×60 oil objective lens (NA 1.42). Images
were captured on a Hamamatsu ORCA-Flash4.0 V2 digital CMOS camera, and
post-acquisition image analysis was performed using cellSens software (v.1.14,
Olympus). SYTO64 and Cy5 were visualized using excitation/emission wavelengths
of 562 nm/583 nm and 628/640 nm, respectively.

Table 1 Bacterial strains used in this study.

Bacterial Species Comment Source

Achromobacter xylosoxidans CF clinical isolate MN001 75
Burkholderia cenocepacia CF clinical isolate K56-2 76
Escherichia coli UQ950 77
Fusobacterium nucleatum ATCC 25586 ATCC
Prevotella melaninogenica ATCC 25845 ATCC
Pseudomonas aeruginosa Clinical isolate UCBPP-PA14 78
Rothia mucilaginosa JCM 10910 79
Staphylococcus aureus Clinical isolate MN8 80
Stenotrophomonas maltophilia CF clinical isolate CHB83-1 This study
Streptococcus parasanguinis ATCC 15912 ATCC
Veillonella parvula ATCC 10790 ATCC
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Image analysis was performed using FIJI64. Briefly, images were subjected to
background subtraction using a rolling ball radius of 150 pixels. Individual cells
were identified by adjusting thresholds of SYTO64 images using Huang’s fuzzy
thresholding method65. Images were also segmented using a watershedding
algorithm that assumes each maximum belongs to a discrete particle. The Analyze
Particles operation was used to detect and record locations of individual bacterial
cells in a given image. For clinical samples, particles were constrained between 100
and 1000 pixels to minimize detection of host cells and sputum debris. Mean pixel
intensity at 647 nm (Cy5) was then quantified for each assigned particle. Imaging
experiments were performed in triplicate for each bacterial species, and ten images
for each sample were captured (n > 1000 particles per sample).

Flow Cytometry. Prior to sorting, Cy5–DBCO-labeled sputum was collected by
centrifugation and counterstained with 1.6 µM SYTO9 (Invitrogen) in PBS for 30
min. Sputum samples were also stained with 1 µg ml−1 of phycoerythrin (PE) anti-
human CD45RO in PBS (BioLegend) for 30 min to stain activated and memory
T cells, some B-cell subsets, activated monocytes/macrophages, and granulocytes.
All samples were washed in PBS containing 1% BSA and 1 mM EDTA, homo-
genized using 16- and 22-gauge needles and filtered through a 40 μm cell strainer.
To separate AHA+ and AHA- bacterial populations, clinical samples were ana-
lyzed and sorted on a FACSAriaIIu Cell Sorter (Beckton Dickinson) with a 70μm
nozzle at 70 psi. Contaminating human leukocytes staining positive for PE anti-
human CD45RO were excluded from bacterial populations of interest in the initial
sorting gate (Supplementary Fig. 9). An AHA- control was then matched to each
sample to determine the level of non-specific Cy5–DBCO binding and was used to
establish Cy5+ (i.e., active) and Cy5− (i.e., inactive) sorting gates. Forward scatter
and side scatter gates were then applied to remove large particulates and debris,
and liberal doublet discrimination was used to minimize loss of bacterial aggre-
gates. Collected samples were stored at 4 °C and processed within 24 h. FlowJo
software (v.10.5.0) was used for data analysis and presentation.

Cy5+ and Cy5− sorted populations were assessed for post-sort purity by flow
cytometry, while collected fractions were visualized by anti-Cy5 immunostaining.
To do so, BONCAT-labeled sputum samples were spread across Superfrost Plus
microscope slides using a sterile pipette tip and allowed to air dry for 30 min. Slides
were washed 3X in PBS and blocked using 1% goat serum in PBS for 1 h, followed
by treatment with an anti-Cy5 monoclonal antibody (C1117, Sigma–Aldrich)
(1:100 dilution) in incubation buffer (1% goat serum, 0.3% Triton X100 and 10 mg
mL−1 bovine serum albumin) overnight at 4 °C. Slides were washed 3×, and
incubated with Cy3 goat anti-mouse secondary antibody (1:250) in incubation
buffer for 45 min. Slides were washed 2×, counterstained using 0.1% Hoescht in
PBS and mounted using Prolong Diamond Antifade. Slides were imaged as
described above.

DNA extraction. Genomic DNA (gDNA) was extracted using a modified phenol-
chloroform method previously described66. Briefly, FACS-sorted samples were
collected onto 0.22 µm polycarbonate membranes (EMD Millipore), which were
then transferred to 1 mL of TENS buffer (50 mM Tris-HCl [pH 8.0], 20 mM
EDTA, 100 mM NaCl, 1% SDS) containing lysozyme (0.2 mg mL−1) and lysosta-
phin (0.02 µg mL−1) and incubated at 37 °C for 30 min. Sodium dodecyl sulfate
(SDS) and proteinase K were added to final concentrations of 1% and 1.2 mgmL−1,
respectively, and samples were incubated overnight at 55 °C. Enzymes were
deactivated by incubating samples at 90 °C for 30 min, and sample liquid
(including membrane) was transferred to a 5 mL conical tube containing an equal
volume of phenol:chloroform:isoamyl alcohol (P:C:I, 25:24:1, pH 7.9), which dis-
solved the membrane. The resulting sample was then split into two Lysing Matrix E
tubes (MP Biomedicals) and processed twice by bead beating for 30 seconds.
Contents of both tubes were recombined and centrifuged at 3200 × g for 20 min.
The aqueous layer was transferred to a new tube and P:C:I extraction was repeated,
followed by a chloroform:isoamyl alcohol (24:1) extraction. A 1/10th volume of
sodium acetate (3M, pH 5.2) was then added and nucleic acid was precipitated
using one volume of isopropanol followed by centrifugation at 21,130 × g for 20
min. Supernatant was removed, the pellet was washed with 80% ethanol, and
centrifuged at 21,130 × g for 10 min. Finally, the gDNA pellet was air dried,
resuspended in 10 mM Tris buffer (pH 8.0), and stored at −80 °C until sequencing.

DNA sequencing and analysis. gDNA derived from sputum samples was sub-
mitted to the University of Minnesota Genomics Center (UMGC) for 16 S rRNA
gene library preparation using a two-step PCR protocol67. The V4 variable region
was amplified using V4_515F and V4_806R primers with common adapter
sequences (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAG
CMGCCGCGGTAA-3’, 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA
GGGACTACHVGGGTWTCTAAT-3’), followed by the addition of dual indices
and Illumina flow cell adaptors in a secondary amplification using primers 5’-AAT
GATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC-3’
and 5’-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCT
CGG-3’. Amplicons were sequenced on an Illumina MiSeq using TruSeq (v.3) 2 ×
300 paired-end technology. FACS sheath fluid and DNA extraction reagent control
samples were also submitted for sequencing. These control samples did not pass
quality control steps due to DNA content below detection thresholds but were

incorporated into downstream analyses. An average of 67,793 sequences per
sample were obtained. Sequence data are available at NCBI sequence read archive
under Bioproject ID PRJNA604587.

Sequence quality was assessed using the DADA2 R package (v.1.2.1)55.
Cutadapt68 was used to remove primer and Illumina adapter sequences, with size
filtering set to a minimum and maximum of 215 bp and 285 bp, respectively.
DADA2 functions were used to trim and filter sequences, model and correct
Illumina sequence errors, align paired-end sequences, and filter chimeric reads.
Specifically, forward and reverse sequences were trimmed to 250 bp and 200 bp,
respectively, and a post-trimming minimum length filter of 175 bp was applied. All
other DADA2 pipeline parameters were run using default options. Resulting
amplicon sequence variants (ASVs) were assigned taxonomy using RDP classifier69

and the SILVA SSU database (Release 132, December 2017)70,71. Species-level
taxonomy was assigned using the DADA2 addSpecies function only if an ASV
unambiguously matched a sequence in the SILVA-132 database. A phylogenetic
tree was approximated using the phangorn R package72 and sequences were
aligned using DECIPHER. The phangorn package was then used to construct a
neighbor-joining tree, which was then used to fit a GTR+G+ I maximum
likelihood tree.

The Decontam package (v.1.2.0)73 was used to reproducibly filter out
contaminant sequences. The function isContaminant was used with method=
“either” and a probability threshold set to 0.5. Frequency was determined from
16 S qPCR data obtained from UMGC. A total of 28 taxa were removed from the
dataset based on frequency and prevalence in the sample when compared with
DNA extraction control. An average of 40,773 sequences were recovered from
DADA2/Decontam analysis corresponding to 357 ASVs. 79.55% of ASVs
were assigned to the genus level, and 22.97% had an unambiguous species
assignment.

ASV count data, taxonomic assignment, and the phylogenetic tree were used
within the analysis framework of the Phyloseq R package (v.1.26.0)74–80. ASVs
were filtered when they did not belong to the domain Bacteria, or when not
assigned taxonomy at the phylum level. Phyla that had low prevalence and
abundance (including Acidobacteria, Chloroflexi, Dependentiae, Planctomycetes,
and Synergistetes) were removed from the dataset, as were singleton ASVs or those
that did not belong to the original or input samples. Finally, ASVs at a relative
abundance below 0.001 (0.1%) were removed. After filtering there remained 45
unique taxonomic assignments with 22 assigned at the species level. Fold-change in
relative abundance for each ASV were calculated between sort input and sort-
positive fractions for each study subject. For all figures, a specific epithet was used
when assigned exactly from the SILVA database

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw 16 S rRNA gene sequence data (Fig. 5 and Supplementary Figs. 8, 11-13) that
support the findings of this study were deposited and are available as fastq files in the
NCBI sequence read archive under Bioproject ID PRJNA604587. Source data and full gel
scans underlying Figs. 1, 3, 5, and Supplementary Figs. 1, 2, 4, 6, 12, and 13 are provided
in the Source Data file.

Code availability
Previously published software packages and versions used to analyze 16 S rRNA sequence
data are cited in the methods above. The custom R function used in sequence analysis is
available on Github.
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