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Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electro-
encephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated.
However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a
challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is
based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers,
such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin
nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision
efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of
driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state
prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI).

1. Introduction

Fatigue driving is an important cause of traffic accidents.
According to data from U. S. National Transportation Safety
Board, the annual economic losses caused by driving acci-
dents in the United States are more than $12.5 billion [1].
Fatigue has no obvious symptoms but usually manifests as
lethargy, fatigue, or weakness [2]. ,erefore, developing
technologies to monitor and predict driver’ mental state or
the ability to safely drive the vehicle will have significant
social and economic benefits [3].

At present, for fatigue driving detection, the academic
community has carried out a lot of research work. To sum
up, it mainly lies in the following aspects: (1) mental activity
testing using response time and accuracy by passive BCIs
[4, 5], which mainly perform an assessment of a subject’s
cognitive states [6, 7], (2) detection of eye movement pa-
rameters, such as eye squint movement, percentage closure
of eyes (PERCLOS) [8], and so on, (3) active detection by

means of questionnaires, (4) sensor-based methods to find
some fatigue indicators by steering force (steering grip
pressure), skin conductance, blood volume pulse (BVP), and
so on [9, 10], and (5) performing fatigue state detection by
bioelectrical signals, such as EEG, EOG (electrooculogram),
EMG (electromyogram), and ECG (electrocardiogram)
[11–16].

For physiological-electric-based detection, researches
have shown that these signals have a strong correlation with
the driver’s mental state, so these signals can be more ac-
curate to detect driving fatigue. Among the above various
researches of fatigue detection, EEG analysis methods are
considered to be most convenient and effective for its good
time resolution and sufficient spatial resolution. It is known
that EEG represents the brain activity by the electrical
voltage fluctuations along the scalp [17]. As an effective tool
for the indirect measurement of neural activity, EEG is
widely used in neuroscience, cognitive science, cognitive
psychology, and psychophysiology research, etc. On the
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other hand, driving behavior involves a variety of behaviors,
such as motions, reasoning, audiovisual processing, decision
making, perception, and recognition, which is also affected
by emotions, attention [18], and many other psychological
factors. ,ese physical and mental activities related to
driving are reflected in EEG signals.

In recent years, a number of methods for fatigue de-
tection using EEG have been proposed; for example, Kar et al.
[2] investigated a number of fatigue-indicating parameters
based on higher-order entropy measures of EEG signals in
the wavelet domain. In particular, they present a method
based on a kind of entropy measures on the EEG signals of
the subjects for the relative quantification of fatigue during
driving. Charbonnier et al. [19] proposed an online in-
novative EEG index and proved that the proposed index can
be used based on the alpha activity to effectively assess the
operator’s mental fatigue status. Roy et al. [20] applied a
Fisher’s linear discriminant analysis (FLDA) to detect and
classify EEG-based mental fatigue. In [21], the authors used a
KPCA-SVM classifier to distinguish between normal and
fatiguemental state, with an accuracy rate of 98.7%.Maglione
et al. [22] used high-resolution EEG and neurophysiological
variables to analyze the increase in cerebral workload and the
insurgence of drowsiness during car driving and acquired a
workload index. In 2014, Zhang et al. [23]presented a real-
time method with various entropy and complexity measures
for the detection and identification of driving fatigue from
EEG, EMG, and EOG signals, and the accuracy of estimation
is about 96.5%–99.5%. Appriou et al. [24] presented a
comparison of 4 modern machine learning algorithms in
order to compare EEG-based workload level classification
performances and found that CNN can obtain better per-
formance (mean� 72.7%± 9.1) than a LDA classifier with
CSP spatial filters in classifying two workload levels (low vs.
high) for both user-specific and user-independent studies. In
[25], the authors developed an adaptive stacked denoising
auto encoder (SDAE) to tackle cross-session mental work-
load (MW) classification task, and the adaptive SDAE is also
demonstrated to be acceptable for online implementation.
All together, these articles support the knowledge that mental
fatigue can be efficiently detected by EEG with classification
performances varying between 75% and 98%.

Other feature extraction and analysis methods are also
used in mental state detection, such as EEG and fNIRS joint
analysis [26], discrete wavelet transform [27], wavelet-
packets transform (WPT) [28], integrating feature selection,
and fusion on high-level EEG features from different models
[29]. In recent years, deep learning-based models have also
been used in mental state classification, for instance, deep
convolutional neural networks [29], long short-term
memory network (LSTM) [30], and switching deep belief
networks with adaptive weights (SDBN) [31].

Although these methods have achieved excellent per-
formance, how to design appropriate models to obtain
robust, real-time, and high-accuracy classification perfor-
mance of driving mental states by EEG still remains a
challenge for a series of reasons. First, EEG shows the
characteristics of instability and randomness, EEG signals
collected by the single subject (intrasubject) or between two

different subjects (intersubject) tend to have large differences
over time [32]. Second, the low signal-to-noise (SNR) ratio
of EEG often affects the accuracy of detection. ,ird, with
the continuous improvement in EEG acquisition equipment,
EEG signals gradually show multidimensional and complex
features with a large time and space consumption during
processing.

LightGBM [33] is a gradient boosting framework that
uses a decision tree-based learning algorithms. It is dis-
tributed, efficient with faster training efficiency, and can
handle a large amount of applications, but there also exists
deficiencies when dealing with high-dimensional features
for EEG signals, like lower accuracy, as well as time con-
sumption.,erefore, in this article, we improve and design a
LightGBM-based model, LightFD, which adopts the histo-
gram-based decision tree algorithm and the leafwise leaf
growth strategy with depth limitation to solve the problem of
excessive xgboost memory consumption, which is more
suitable for practical EEG clinical applications. Now,
LightGBM has been applied to EEG signal classification and
has achieved certain results in practical problems, such as
emotion recognition [34, 35], epilepsy prediction [36], and
so on.

Transfer learning methods have been widely used for
EEG signal classification in recent years [37–40], which
could transfer the previous extracting features in one kind of
trained samples to another sample for some specific decision
tasks. Due to its great advantages of lower time consump-
tion, transfer learning can bring more practical application
possibilities for EEG analysis.

Motivated by the advantages of LightGBM and following
our previous work [41], where only a CNN-based model was
investigated to realize the EEG-based binary classification of
mental states, and the model is time consuming, moreover,
the transfer learning capability of the model is not analyzed.
,us, in this article, we aim to design a LightGBM-based
classifier, LightFD, to implement the light-weighted analysis
of triclassification identification of EEG mental states, and
furthermore, we will also test and validate the efficiency and
robustness of LightFD in the aspect of transfer learning and
compare them with those of manifold embedded distribu-
tion alignment (MEDA) [42] and metric transfer learning
(MTLF) [43].

2. Materials

2.1. Subjects. We recruited 10 healthy subjects for EEG data
collection. All of them were within 23 and 25 years old and
possess Chinese manual driver C1 license. ,ey were in-
formed in advance of the entire experimental process and
instructions and also required to keep calm without drinking
irritating beverage, like coffee, alcohol, and so on before the
experiment. All participants provided their written consents,
and the research was approved by the ethics committee of
our university.

2.2. Experimental Setup. To collect EEG data during driving,
we constructed a simulation platform, as shown in Figure 1,
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which consisted of a racing seat cushion, steering wheel,
liquid crystal display (LCD), speaker, video camera, and
projector. A 16-channel gUSBamp amplifier (g.Tec Medical
Engineering GmbH) was used to record EEG signal. Besides,
two more computers were employed for (1) simulating the
track with the special “Speed-Shift 2 Unleashed (NFS-S2U)”
software, recording all the parameters during driving with
“WorldRecord” software, and (2) collecting the video and
sound stimuli, dealing with EEG signals, respectively
[12, 41].

2.3.ExperimentalProtocol. ,ewhole experiments lasted for
two days and were conducted between 18 : 00 and 21 : 00 in a
quiet and isolated environment.,e first day was considered
the practice stage for familiarizing with the track and
stimulating software and experimental operations, and the
second day was the formal experimental stage for collecting
EEG data. ,e heart rate and blink were simultaneously
collected with EEG by corresponding sensors, such as ECG
electrode attached on the subject’s wrist and video camera
placed in front of the subjects, which were used to aid
judgment in the level of mental states. According to previous
studies [44, 45], the numbers of blink and heart rate in the
situation of awake would be higher than those in the situ-
ation of drowsiness. Moreover, we counted the average
number of blink and heart rate of all the subjects throughout
the whole experiments. We found that at the beginning
stages, when the subjects were only asked to drive a car at a
predefined speed without any video or sound stimuli, the
average number of blinks is above 20 times/min, up to
24 times/min, and the average heart rate was close to
90 times/min. As the stimuli were introduced into the ex-
periments, the average number of blinks changed to 12–
20 times/min, and the heart rate was 78–85 time/min. At the
last stage, the subjects were not given any stimuli, the average
number of blinks increased to 22 times/min, and the average
heart rate was 73 times/min. ,erefore, we divided the
mental states into 8 stages: WUP, PERFO, TAV3, TAV1,
TAV5, TAV2, TAV4, and DROWS [12, 41]; the detailed
introduction of these eight stages is shown in Table 1.

,e flowchart of the experiments is shown in Figure 2.
,ere were two kinds of driving tasks during the experi-
ments: one was a simple driving task, which only required
the subject to drive like the practice stage and did not exert
any sound and video stimuli. ,is kind of driving tasks
included three stages: WUP, PERFO, and DROWS. WUP

was the beginning of the experiment with a baseline driving
speed, and PERFO was similar to WUP but required the
subjects to drive at a speed of 2% faster than WUP. DROWS
was the last stage of the experiments with a fixed driving
speed of 60 km/h. ,e other stages introduced additional
video (“alert”) and sound stimuli (“vigilance”) to simulate
situations such as red lights and traffic jams that might occur
in real driving, which include five TAV stages: TAV1–5. All
TAV stages were exerted with different stimulus frequencies
of sound (“vigilance”) and video (“alert”) stimuli that
appeared on the LCD screen 1m ahead of the subjects, and
the corresponding buttons were pressed by the subjects:
LEFT button for “vigilance,” and RIGHT button for “alert.”
Five TAV stages: TAV3, TAV5, TAV1, TAV2, and TAV4
were executed in sequence.

Because TAV3 is the first stage with video and sound
stimuli, the subjects were bound to drive very carefully and
complete the corresponding operations as quickly and ac-
curately as possible, so they were in the most awake state.
DROWS was the last stage without any stimuli. It just re-
quired the subjects drive with a fixed speed of 60 km/h. It
seemedmonotonous and boring, especially after about 2 h of
driving; therefore, the subjects were extremely prone to
fatigue in this stage. In addition, the obvious differences in
blink and heart rate between TAV3 and DROWS further

Figure 1: Driving simulation experiment platform.

Table 1: Eight experimental stages.

Stages Durations
(min) Description

WUP 8–10
Also called “warm-up,” collecting

baseline of EEG, ECG, and EOG when
driving a car at a predetermined speed.

PERFO 7–9
Also called “performance,” similar to
WUP, just has a higher driving speed

than that of WUP.
TAV3 7–9 ,ese 5 stages are concurrently exerted

task of attention (sound) and video
stimuli with different frequency levels.
,e stages from low to high stimulus
frequency are TAV1, TAV2, TAV3,

TAV4, TAV5.

TAV1 7–9
TAV5 6–9
TAV2 7–9

TAV4 7–8

DROWS 12–18 At the stage, the subject falls into
drowsiness and feels tired and fatigue.

WUP

PERFO

TAV1TAV3 TAV5 TAV2 TAV4

DROWS

A
bo

ut
 2

ho
ur

s

At a speed of 60km/h

Include stimulus tasks

TAVX

Select by the number of rushing tracks

Figure 2: ,e schematic diagram of experiment procedure.

Computational Intelligence and Neuroscience 3



confirmed the correctness of the design of this experiment.
Moreover, we defined a “neutral” stage as TAVX, which was
neither fatigue nor awake. However, the time required for
each subject to enter the fatigue state may be different, and
TAVX is one of those 4 stages: TAV1, TAV2, TAV4, and
TAV5, at which the number of rushing out of the track is
closest to the average of rushing out of the track during the
experiment. Accordingly, the collected data at TAVX were
then used for analysis.

2.4. EEG Recording. EEG was recorded by a gUSBamp
amplifier with a sampling frequency of 256Hz and im-
pedance of below 5 kΩ. Of 16 channel electrodes, 15 were
used to sample EEG, except for ECG sampling heart rate. All
the electrodes were referenced to the left earlobe. After
removing the artifacts, EEG signals of 15 channels were
divided as Fz, Pz, Oz, Fp1, Fp2, F7, F3, F4, F8, C3, C4, P7, P3,
P4, and P8, with a time window of 0.5 s, and then a certain
number of epochs of each stage were obtained. According to
Kar et al. [2], the EEG recording was filtered between 1 and
40Hz with a band-pass filter, and independent component
analysis (ICA) [46] was then adopted for eye movement
artifacts rejection. With ICA, the source signal can be
separated or approximately separated without knowing the
source signalS, noise, and mixing mechanism. After that,
according to themethod we proposed in [41], EEG recording
was converted into SP∗CH∗TR format, where SP is the
sampling frequency, CH is the corresponding channel, and
TR is the event. For the segmentation of EEG data, we
adopted 0.5 s-interval time window to split EEG data of 15
channels into different number of epochs. Due to the
sampling frequency of 256Hz, we then expressed every
epoch as a 15∗128matrix. At the same time, we used the flag
“0” for DROWS, “1” for TAV3, and “2” for TAVX, re-
spectively. ,us, we obtained a total of 37,168 epochs, in-
cluding 18,672 DOWNS epochs, 9,504 TAV3 epochs, and
8,992 TAVX epochs, as shown in Figure 3. In this way,
LightFD can be trained by these epochs, and the classifi-
cation performance of LightFD for mental states prediction
could be tested simultaneously as well.

3. Method

3.1. EEG Feature Extraction by Improved CSP. ,e core of
CSP is to find the optimal spatial projection to maximize the
power of the two types of signals, so it can estimate two
spatial filters to extract the task-related signal components
and remove the task-independent components and noise.
,e method used by CSP is based on the simultaneous
diagonalization of two covariance matrices.

For EEG data we extracted, each trail can be represented
as a matrix W of X × S, where X is the number of channels
and S is the number of sampling points for each channel.,e
regularized spatial covariance is shown in the following
equation:

C �
WWT

trace WWT( )
, (1)

where trace(·) represents the sum of the diagonal elements of
the matrix. In order to separate the two types of variances,
we averaged the sum of the covariances of the two types of
samples in the training data to achieve the respective average
covariances Cd and Ct and then obtained the mixed spatial
covariance as Cc � Cd + Ct. Cc, which was decomposed into
the form Cc � EcλcEc, where Ec is the eigenvector of the
matrix and λc is the diagonal matrix formed by the eigen-
values. ,e eigenvalues were arranged in descending order,
and the whitening transformation was performed according
to the following equation:

P �

���

λ− 1
c



E
T
c . (2)

,e eigenvalue corresponding to PCcP
T is 1, so Cd and

Ct were transformed as follows: Sd � PCdPT, St � PCtP
T.

,en, Sd and St share common feature vectors; when
Sd � BλdBT, there are St � BλtB

T and λd + λt � I, where I is
the unit vector matrix. Because the sum of the corresponding
two eigenvalues is always 1, when eigenvector B has the
largest eigenvalue for Sd, it has the smallest eigenvalue for St.
,us, the projection matrix obtained was

PN � B
T
P 

T
. (3)

Because three states were used in the experiment, we
designed a feature extraction method for the three categories
by CSP. For the awake state that was easier to distinguish; we
projected the fatigue state data and the neutral state data
separately and obtained the projection matrices PA and PB.
Our final projection matrix was

PN � PA + PB. (4)

All experimental samples (including training and test-
ing) were decomposed according to equation (4) to obtain
the required EEG characteristics:

F � PNW. (5)

,e process of EEG feature extraction is shown in
Figure 4. In addition, the high dimensionality of EEG data
increased the time and space consumption in deep learning
models. But through our experimental tests, we found that
LightGBM did not rely on high-dimensional data features as
deep learning models. After feature reduction, the training
speed was faster, memory consumption was reduced, and
the final accuracy did not change much.

Traditional CSP usually uses log variance for feature
normalization in the binary-classification problem. While in
our proposed improved CSP for EEG-based triclassification
problem, after obtaining the feature matrix through the
projection matrix W, instead of using the conventional
method, we used the channel variance of the feature matrix
to achieve the purpose of dimensionality reduction. At last,
the variance function: var, for each sample, was used to
calculate the variance of the data in each channel and re-
duced the dimensionality of EEG data. Based on this im-
proved CSP, we designed and implemented a LightGBM-
based model, LightFD, for the triclassification of driver
mental states.
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3.2. Training of LightFD Classifier. LightGBM is an algo-
rithm for classification that relies on the gradient hoist, and
it is known for its light computational burden [33]. In

particular, in the tree-based boosting family of algorithms,
many of them (such as xgboost) use the presorting algorithm
to select and split features. However, this presorting
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algorithm can accurately find the splitting point, but it has a
large overhead in time and memory consumption. ,e
proposed LightFD model adopts histogram algorithm and
leaf growth strategy of leafwise with depth limitation, as
shown in Figure 5, which can increase computing efficiency,
decrease memory occupancy, improve classification accu-
racy, and prevent overfitting efficiently (please refer to
[33, 47] for more detail). ,e detailed procedure of LightFD
is listed as follows.

3.2.1. Histogram Algorithm. ,e basic idea of the histogram
algorithm is to discretize successive floating-point eigen-
values into k integers and construct a histogram of width k.
When traversing the data, the statistic is accumulated in the
histogram according to the discretized value as an index.
After traversing the data once, the histogram accumulates
the required statistic and then traverses to find the optimal
segmentation point according to the discrete value of the
histogram.

3.2.2. Leafwise Leaf Growth Strategy with Depth Limitation.
Levelwise data can split the leaves of the same layer at the
same time, easy to multithread optimization, control model
complexity. But levelwise is actually an inefficient algorithm
because it treats the leaves of the same layer indiscriminately,
which brings a lot of unnecessary overhead, and is difficult to
prevent overfitting, due to the lower split gain of many
leaves, which does not need to be searched and split.

Leafwise strategy is more efficient. It is just to find the
leaf that has the highest split gain from the current layer to
split. ,erefore, compared with levelwise method, leafwise
strategy can obtain better performance at the situation with
the same number of split. But leafwise strategy may cause
deeper decision tree and then be overfitting. So to avoid the
situation of overfitting and ensure higher efficiency, we then
make a maximum depth limitation in LightFD model.

3.3. Parameters of LightFD. ,e parameters in lightFD in-
clude num_leaves, num_trees, and learning_rate, where
num_trees represents the total number of spanning trees and
num_leaves represents the number of leaves on per spanning
tree. Smaller learning_rate and larger num_trees can im-
prove the final accuracy to a certain extent, but it increases
the time and space overhead.

4. Results and Discussion

As traditional machine learning methods, SVM [48] and
LMNN [49] are classical methods for the classification of
samples. Deep learning (DL) [50] has been successfully
applied in many fields such as computer vision, speech
recognition, and natural language processing. LSTM is
proposed to overcome the fact that the recurrent neural
network (RNN) does not handle long-range dependencies
well, although GRU is a variant of LSTM. GRU maintains
the effects of LSTM with a simpler structure and plays its
own advantages in more and more fields. CNN is a neural

network designed to process data similar to grid structures,
such as time series data and image data, which has become
one of the most important representatives of DL because of
its excellent classification performance in many challenging
applications [51–53].

In this section, we compare LightFD with SVM, LMNN,
GRU, and CNN from both aspects of intrasubject and
intersubject. Particularly, because GRU and CNN rely on
high-dimensional features, we do not perform di-
mensionality reduction after CSP but directly use those
high-dimensional features as input to GRU and CNN
models for training and testing.

For SVM, the kernel type is used with a Gaussian kernel
function, the penalty parameter is set to 1.5, and probability
estimation is set as “not enabled.” For LMNN, we chose the
Euclidean distance as the distance metric, and the nearest
neighbor is set to 3. For GRU, we used a single-layer
structure with a time step of 128, a learning rate of 0.001, and
the RMSprop model as the gradient descent method. For
CNN, the model structure contains a 5 × 5 convolutional
layer (output number is 32) and a 3 × 3 convolutional layer
(output number is 32 as well), followed by a maximum
pooling layer with a step size of 2, and a learning rate of 0.01.

4.1. Intrasubject Classification Performance. For each sub-
ject, we randomly extracted 80% of EEG signals as a training
set, denoted as Train_i, and the remaining 20% as a test set,
denoted as Test_i, where i� 1, 2, . . . , 10, indicating the i-th
subject, the ratio of the training set to the test set is strictly 4 :
1; both Train_i and Test_i were the data sets after di-
mensional reduction by our improved CSP.

When comparing LightFD with SVM and LMNN, we
adopted Train_i and Test_i as the training set and test set,
respectively, for the analysis of classification performance.
Although comparing LightFD with GRU and CNN, due to
the high-dimensional feature correlation of GRU and CNN,
we did not adopt those features processed by the improved
CSP as input but the original data after preprocessing.

Levelwise tree growth

Leafwise tree growth

......

......

Figure 5: Learning process of LightGBM.
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,e test results are shown in Figure 6. For the mental
state detection of the same subject (intrasubject), SVM and
LMNN models have similar classification performance, and
their average classification accuracy are 90.10% and 88.10%,
respectively; however, LightFD reaches the average accuracy
of 95.31%, which is much higher than others. GRU and CNN
only surpass LightFD in the classification performance of
subject s4, whereas the classification accuracy of the other 9
subjects is inferior to that of LightFD.

In addition, we also counted the average classification
accuracy of those 5 models for intrasubject, as shown in
Table 2. We found that LightFD has the best classification
performance among these models.

To evaluate the stability performance of LightFD, we
then calculated the variance of the accuracy of LightFD,
SVM, LMNN, GRU, and CNN, respectively, as shown in
Table 3.

From Table 3, it is clear that SVM and LMNN have some
extent of similar stability and better than GRU and CNN, but
the variance of LightFD is significantly lower than those of
all others, which shows that LightFD has better robustness in
EEG signal processing and further lays the foundation for its
real application.

Moreover, to validate the applicability of LightFD, we
randomly divided the existing data sets for 5 times and
obtained 5 groups of data containing different test sets and
training sets, then tested the performance of LightFD by the
5 groups of training and test sets. ,e acquired results are
shown in Figure 7. From Figure 7, it is clear that the different
data set has a certain impact on the classification result, for
example, the average accuracy of subject s4 decreases to
about 88%, but in a whole, LightFD keeps a much higher
classification accuracy under different test data sets.

4.2. Intersubject Classification Performance. EEG signals
vary widely among subjects, and these differences can affect
the final classification results. To further test the perfor-
mance of LightFD, in this section, we made a classification
performance analysis of intersubject.

Similarly, we mixed all the EEG data of 10 subjects and
randomly selected 80% of them as training sets, the
remaining 20% as test sets. We also conducted the classi-
fication performance analysis and comparison for inter-
subject analysis between SVM, LMNN, GRU, CNN, and
LightFD. To satisfy the input need of GRU and CNN, we do
not yet carry out the operation of dimensionality reduction
for the two models.

As shown in Figure 8, LightFD has a classification ac-
curacy of 91.67%, which is significantly higher than SVM
with 74.54%, LMNN with 57.59%, GRU with 73.19%, and
CNNwith 77.89%.,e comprehensive performance of CNN
for intersubject analysis is slightly better than SVM but
much lower than LightFD. Also from the intersubject
classification results, it was found that, compared with
intrasubject test, LightFD could maintain more stable per-
formance for intrasubject analysis, although the individual
differences of EEG have a greater impact on the classification
of the other four models. ,erefore, we conclude that

LightFD can learn more features and can be better extended
to the mental state detection of intersubject.

In addition, similar operation with intrasubject analysis,
we could get 5 groups of data with different training sets and
test sets, then we also calculated and acquired the average
accuracy of each of the three states using these 5 groups of
data sets, which are TAV3 95.58%, DROWS 93.97%, and
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Figure 6: Accuracy comparison of SVM, LMNN, CNN, GRU, and
lightFD for intrasubject classification.

Table 2: Average classification accuracy of SVM, LMNN, GRU,
CNN, and LightFD for intrasubject.

Model SVM LMNN LightFD GRU CNN
Average accuracy (%) 90.10 88.10 95.31 77.01 84.37

Table 3: Variance analysis of SVM, LMNN, GRU, CNN, and
LightFD for intrasubject.

Model SVM LMNN LightFD GRU CNN
Variance 0.0065 0.0053 0.00084 0.0135 0.0126
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Figure 7: Classification accuracy statistics of 10 subjects under the
condition of different testing sets.
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TAVX 83.71%. We found that the classification accuracy of
TAVX is low.,e reason may be that, according to statistics,
the TAVX state is more likely to be misclassified into the
state of DROWS.

4.3. Transfer Learning Capabilities Analysis of LightFD.
Mathematically, transfer learning is defined as below [54].

Given a source domain Ds � XS, fS(x)  and learning
task TS, a target domain DT � XT, fT(X)  and learning
task TT, transfer learning aims to help improve the learning
of the target predictive function fT(·) in DT using the
knowledge in DS and TS, where DS ≠DT, or TS ≠TT.

Transfer learning emphasizes on the ability of a system to
recognize and apply knowledge and skills learned in pre-
vious source tasks transferring to a target prediction tasks.

In this section, we try to evaluate the capabilities of transfer
learning of LightFD. In particular, we wanted to measure the
performance of LightFD as a general model for real time and
efficient driver fatigue detection, which could be directly used
for mental states identification without any additional training
process. Such last feature could be very important for pro-
moting clinical application of such EEG analysis.

As we know, there exists significant differences of EEG
signals between different subjects. ,erefore, it is difficult to
evaluate the situation of mental states of the other subjects
just from EEG characteristics of some known subjects, which
means it needs to enhance the transfer learning capabilities
in EEG analysis.

First, we selected EEG data from subject s1 to s9 as the
training set and that of subject s10 as the test set, then we
used CSP to find the projection matrix, and the rest of the
operations were consistent with those mentioned in 3.1.
Based on the above experimental results, we compared and
analyzed the transfer learning performance of LightFD,
SVM, and LMNN models, respectively.

For the identification of three mental states, namely,
TAV3, TAVX, and DROWS, SVM and LMNN have the
classification accuracy of 54.95% and 53.04%, respectively,
whereas LightFD could reach the promising classification
accuracy of 70.28%, which proves the potential of LightFD in
the field of EEG analysis for transfer learning.

Furthermore, to verify the transfer learning robustness
of LightFD, we conducted 10 cross-validations. Of all the ten

subjects, we randomly selected two as the test set each time,
and the rest as the training set. MEDA and MTLF were used
for comparison with LightFD.,e randomly selected testing
sets for 10 cross-validations are (s5, s7), (s1, s3), (s3, s5), (s3,
s7), (s6, s7), (s4, s9), (s7, s9), (s4, s8), (s5, s6), and (s6, s10),
respectively, and the results are shown in Figure 9.

In the future, combining with transfer learning will be a
major development trend in EEG signal processing. We
believe that LightFD, a LightGBM-based model with good
performance of EEG transfer learning capabilities, will bring
new opportunities and progress for EEG classification and
identification analysis.

4.4. Time Complexity Analysis of LightFD. In this section, to
explore the feasibility of lightFD in practical applications, we
analyzed and compared the time complexity of LightFDwith
the abovementioned 4 typical models: SVM, LMNN, CNN,
and GRU.

,e obvious benefit of using histogram in lightFD is that
the time consumption of calculating the split gain drops
from O(N) to O(bins). LightGBM usually adopts feature
parallelism by vertical segmentation of samples, whereas
lightFD adopts sample parallelism, namely, horizontal
segmentation, to build local histogram that is then merged
into full-range histogram to find the best segmentation. ,e
communication transmission cost is further optimized from
O(2∗#feature∗#bin) to O(0.5∗#feature∗#bin).

,e time complexity of SVM is betweenO(Nsv3 + LNsv2 +

dLNsv) and O(dL2), where Nsv is the number of support
vectors, L is the number of training set samples, and d is the
dimension of each sample (the original dimension without
mapping to the high-dimensional space). In short, its time
consumption depends on the matrix inversion, and the time
complexity is about O(N3), whereN is the number of samples.
In the case of small samples, SVM can achieve the similar
performance as lightFD. But as the number of samples in-
creases, the time consumption of SVM ismuch higher than that
of lightFD.

As a kind of distance metric learning, LMNN needs to
calculate the distance between each sample and all other
samples during the training process. As the number of
samples increases and that of individual sample dimensions
grows, it will greatly augment the time consumption of
LMNN.

Deep learning models, CNN and GRU, are a kind of
high-level abstraction of data by multiple processing layers
composed of multiple nonlinear transformations. ,e
complex structure determines that the time complexity is
much higher than that of SVM and LMNN, although CNN
and GRU tend to perform better when the sample size gets
larger and the sample feature dimension becomes higher.

In CNN, the time complexity of single convolutional
layer is O(M2 ∗K2 ∗Cin∗Cout), where M is the size of
the output feature map, which is determined by four
parameters such as input size X, convolution kernel size
K, padding, and stride. Expressed as follows:
M � ((X − K + 2∗Padding)/Stride) + 1. K is the size of
the convolution kernel, Cin is the number of input
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Figure 8: Classification accuracy of SVM, LMNN, and lightFD for
intersubject.
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channels, and Cout is the number of output channels. It is
shown that CNN runs slower and depends heavily on the
configuration of the computer under the situation of
larger samples.

For GRU, the computational complexity for each update is
O(KH + KCS + HI + CSI) � O(W), where K is the number
of output units, C is the number of memory element blocks, S
represents the size of the memory element block, H is the
number of hidden units, I is the number of units that are
forward connected to the memory element, the gate unit, and
the hidden unit, and W � KH + KCS + CSI + 2CI + HI �

O(KKH + KCS + CSI + HI) is the number of weights. GRU
is much simpler than CNN and performs better than CNN in
case of time consumption. Furthermore, it is faster than SVM
and LMNN under the situation of large samples but is still
inferior in time consumption than lightFD.

In summary, LightFD has a faster running speed than
other traditional models on average up to 30%, which shows
more outstanding performance, especially in the case of
large samples, and lays the foundation for its application in
real-time EEG analysis systems.

5. Conclusion

As one kind of light-weighted machine learning methods,
LightFD has excellent performance in the aspects of mul-
ticlassification of EEG analysis, as well as lower time con-
sumption, which show profound significance for practical
applications. In addition, LightFD could also achieve better
classification effect in the intersubject EEG classification,
which suggests its potential transfer learning capability in
the classification of mental states during driving by using
cerebral measurements.
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