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Abstract: Although ignored in the past, with the recent deepening of research, significant progress
has been made in the field of non-coding RNAs (ncRNAs). Accumulating evidence has revealed that
microRNA (miRNA) response elements regulate RNA. Long ncRNAs, circular RNAs, pseudogenes,
miRNAs, and messenger RNAs (mRNAs) form a competitive endogenous RNA (ceRNA) network
that plays an essential role in cancer and cardiovascular, neurodegenerative, and autoimmune
diseases. Gastric cancer (GC) is one of the most common cancers, with a high degree of malignancy.
Considerable progress has been made in understanding the molecular mechanism and treatment of
GC, but GC’s mortality rate is still high. Studies have shown a complex ceRNA crosstalk mechanism
in GC. lncRNAs, circRNAs, and pseudogenes can interact with miRNAs to affect mRNA transcription.
The study of the involvement of ceRNA in GC could improve our understanding of GC and lead
to the identification of potential effective therapeutic targets. The research strategy for ceRNA is
mainly to screen the different miRNAs, lncRNAs, circRNAs, pseudogenes, and mRNAs in each
sample through microarray or sequencing technology, predict the ceRNA regulatory network, and,
finally, conduct functional research on ceRNA. In this review, we briefly discuss the proposal and
development of the ceRNA hypothesis and the biological function and principle of ceRNAs in GC,
and briefly introduce the role of ncRNAs in the GC’s ceRNA network.

Keywords: non-coding RNAs; competitive endogenous RNA; gastric cancer

1. Introduction

A non-coding RNA (ncRNA) is a type of RNA that does not have the function of a cod-
ing protein [1]. NcRNAs, which account for 98% of the human genome, include ribosomal
RNAs (rRNAs), short ncRNAs, circRNAs, pseudogenes, and many lncRNAs [2]. For a long
time, lncRNAs, circRNAs, and pseudogenes were regarded as useless components in the
genome. In 1976, scholars discovered the existence of circRNA (pathogenic single-stranded
circular virus) in higher plants [3]. In 1977, the first pseudogene was discovered in the
Xenopus genome [4]. In the 1990s, researchers discovered an imprinted gene, lncRNA H19,
which forms the H19/IGF-2 imprinted gene group with the similarly-located insulin-like
growth factor 2 [5]. At the same time, other studies showed that the lncRNA XIST can par-
ticipate in the transcriptional regulation of genes on sex chromosomes [6,7]. Thus, ncRNA
began receiving attention. HOTAIR, another lncRNA, was discovered in 2007. Studies have
shown that it can enhance the PRC2 activity of the HOXD locus and participate in PRC2-
mediated chromatin silencing [8]. In 2013, a study revealed, for the first time, that circRNA
could be used as a miRNA sponge to adsorb miRNA, thereby affecting gene expression [9].
With the deepening of research, it was found that lncRNAs, circRNAs, and pseudogenes
can play biological functions in immune response [10], nerve conduction [11], growth
and development [11], and stress response [12]. With the help of microarray and RNA
sequencing technology, people have ascertained that lncRNAs, circRNAs, and pseudogenes
are involved in regulating various tumor cell biological activities [13].
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It was discovered that ncRNAs contain miRNA response elements (MREs) and act as
a miRNA sponge, and an increasing number of studies have shown that they participate
in the formation of a complex regulatory network. The ceRNA hypothesis proposes that
certain transcripts, such as lncRNAs, circRNAs, pseudogenes, and mRNAs, have MREs in
common, regulating the transcription of gene expression through competitive binding of
miRNAs [14]. Thus, they are each other’s ceRNA. It has been 10 years since the ceRNA
hypothesis was put forward, and research on ceRNA has been steadily increasing yearly.
Researchers found that the ceRNA network plays an important role in cardiovascular
diseases such as myocardial hypertrophy [15,16], myocardial infarction [17,18], atheroscle-
rosis [19–22], neurodegenerative diseases such as Alzheimer’s disease [23,24], Parkinson’s
disease [25,26], Huntington’s disease [27,28], and neuroimmune diseases such as progres-
sive muscular dystrophy and cocaine syndrome [29–31]. Therefore, studying the ceRNA
regulatory network is of great significance in understanding the diseases’ occurrence and
development, and improving clinical diagnosis, treatment methods, and prognosis.

Cancer became the main cause of death and the single most important obstacle to
increasing people’s life expectancy in the 21st century. Cancer is mainly related to genetic
factors [32], immune factors [33], endocrine factors and other endogenous factors, as well
as living habits [34,35], environmental pollution [36], biological factors [37], and other
exogenous factors. ceRNAs play an important role in cancer progression, including gastric
cancer (GC), colon cancer, liver cancer, breast cancer, and lung cancer [38,39]. GC is a com-
mon cancer worldwide. Studies have found that lncRNAs, circRNAs, and pseudogenes
such as ceRNAs can participate in biological behaviors such as GC proliferation, differ-
entiation, and cell resistance. Therefore, an increasing number of studies on the ceRNA
network in GC are expected to provide new ideas for understanding the mechanism of GC
occurrence and development and simultaneously provide direction for finding new targets
for treating GC.

2. Gastric Cancer

As the fifth-most-common cancer and the third-leading cause of cancer death world-
wide, GC is a deadly digestive system disease afflicting many people. GC was responsible
for over 1,000,000 new cases in 2018 and an estimated 783,000 deaths (equating to one in
every 12 deaths globally) [38,40].

Global cancer statistics 2018 show that GC incidence and mortality in Asia rank first
by world region. Factors that cause this disease include Helicobacter pylori infection, age,
high salt intake, and low fruit and vegetable diets. Alcohol consumption and active tobacco
smoking are also established risk factors [38].

However, the gold standard for GC diagnosis is endoscopic biopsy plus enhanced
computed tomography. Many patients resist examination due to the insidious onset,
unobtrusive symptoms, and invasive examination methods. Furthermore, since early GC
has nonspecific symptoms, most GC patients are diagnosed at advanced stages, and the
5-year survival rates range between 20% and 30% [41,42].

Surgical treatment plus chemotherapy remains the first-line approach to provide a
cure for GC. Despite advances in surgical techniques, radiotherapy, chemotherapy, and
neoadjuvant therapy, chemotherapy resistance or drug resistance is still an important issue
that needs to be faced because cancer cells will form a mechanism to counteract the effects
of chemotherapy drugs, leading to more clones and aggressiveness, and eventually a poor
prognosis. Chemoresistance can be inherent and acquired, and it is a multi-factor event,
including dysregulation of key signaling pathways, acquired mutations, and DNA damage
responses [43].

Therefore, exploring the pathogenesis and looking for key factors to guide diagnosis
and treatment has always been a research focus.

The occurrence and development of GC is a multi-stage and multi-factor process, and
its pathogenesis is complex. The current research shows that its occurrence is often related
to abnormal transcription. This abnormality is not limited to abnormal protein-coding
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RNA (mRNA) levels and includes abnormalities in the regulatory ability of ncRNA in the
genome. Studies have shown that the cancer stem cell (CSC) is one of the main reasons for
the failure of cancer treatment. The expression of miRNAs plays an important role in the
maintenance of stem/progenitor cells. The dysregulation of miRNAs in gastric cancer stem
cells (GCSCs) is closely related to the occurrence and development of gastric cancer [44].

3. ceRNAs

In 2007, Ebert et al. artificially synthesized miRNA inhibitors called miRNA sponges.
With an increasing number of experimental verifications and the discovery of endogenous
miRNA sponges, in 2011, Salmena et al. proposed the ceRNA hypothesis for the first time.
It was expounded that in addition to the traditional miRNA→RNA mode of action, there
is also an RNA–miRNA–mRNA regulation mode [14,45–47].

Here, “ceRNA” does not refer to a specific RNA but to a brand-new mode of gene
expression regulation, describing a mode of action of RNA. The mechanism of ceRNA is
that when the ceRNA expression is silenced, mRNAs are transcribed and exported to the
cytoplasm, where they are targeted by the miRNA-mediated silencing complex (miRNA–
RISC), resulting in accelerated degradation, blocking of translation, and reduction of gene
expression; Second, when the ceRNA expression is activated, there will be competition
for miRNA targeting and binding to the RISC complex, reducing miRNA inhibition; the
miRNA–RISC complex is isolated from the gene, resulting in increased gene expression.

ceRNAs use similar MREs to bind miRNAs, thereby indirectly regulating genes’
expression competitively. This competitive miRNA binding effect is also called miRNA
sponge action. According to this theory, any RNA that contains MREs may be a ceRNA, its
core is miRNAs, and its members include lncRNAs, cirRNAs, mRNAs, and pseudogenes.
Among the RNAs that can be used as ceRNAs, those that regulate tumor progression play
an important role [48,49].

Besides, there are multiple MREs on each mRNA so that each mRNA can have multiple
miRNA pathways. Each miRNA has multiple ceRNAs, thus forming the last “many-to-
many” ceRNA networks (ceRNETs). Compared with the miRNA regulation network,
ceRNETs are more sophisticated and complex, involving more RNA molecules. When
ceRNAs are abnormally expressed, they affect the expression of multiple target genes in
the body and further influence cancer progression.

Research shows that ceRNAs play critical roles in the development and progression
of cancers. Considering the complexity of the network of ceRNAs, this research is still in
its infancy. At present, the most effective way to reveal the ceRNA function in cancer is
to build ceRNETs first. A common research method is to obtain samples from different
tissues, screen different miRNAs, lncRNAs, and mRNAs through microarray or sequencing
technologies or the use of databases to collect information, screen differentially expressed
RNAs, construct ceRNETs, extract key networks, and finally perform functional enrich-
ment analysis and survival analysis to discover genes related to cancer development and
prognosis [50–52].

The most commonly used databases are the Cancer Genome Atlas (TCGA) database
and Gene Expression Omnibus (GEO) microarray datasets. Furthermore, researchers have
also established some dedicated tools to facilitate the identification of ceRNA networks,
including ceRDB, Linc2GO, starBase v2.0, lnCeDB, and Cupid. Details and resources are
summarized in chronological order in Table 1. The functions of these tools are different.
Researchers should choose according to their needs.
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Table 1. Databases and resources for ceRNAs.

Tool Name Functions Website Reference

ceRDB

Predict ceRNAs for specific mRNAs targeted
by miRNAs by examining the co-occurrence
of miRNA response elements in the mRNAs

on a genome-wide basis.

http://www.oncomir.umn.edu/
cefinder/ (accessed on 20 May

2021)
[53]

Linc2GO

MicroRNA–mRNA and microRNA–lincRNA
interaction data were integrated to generate
lincRNA functional annotations based on the
‘competing endogenous RNA hypothesis’.

http:
//www.bioinfo.tsinghua.edu.cn/
~liuke/Linc2GO/index.html (not

available on 20 May 2021)

[54]

StarBase v2.0

Provide the CLIP-Seq experimentally
supported miRNA-mRNA and

miRNA-lncRNA interaction networks
to date.

http://starbase.sysu.edu.cn/
(accessed on 20 May 2021) [55]

lnCeDB
A database of human lncRNAs (from

GENCODE 19 version) that can potentially
act as ceRNAs.

http://gyanxet-beta.com/lncedb
(not available on 20 May 2021) [56]

HumanViCe Provide the potential ceRNA networks in
virus-infected human cells.

http:
//gyanxet-beta.com/humanvice

(not available on 20 May 2021)
[57]

Cupid

A method for simultaneous prediction of
microRNA-target interactions and their
mediated competitive endogenous RNA

(ceRNA) interactions.

http:
//cupidtool.sourceforge.net/.

(accessed on 20 May 2021)
[58]

miRSponge
Provide an experimentally supported

resource for miRNA–sponge interactions and
ceRNA relationships.

http://www.bio-bigdata.net/
miRSponge. (not available on 20

May 2021)
[59]

SomamiR 2.0

A database of cancer somatic mutations in
miRNA and their target sites that potentially
alter the interactions between miRNAs and

ceRNA including mRNAs, circRNA,
and lncRNA.

http:
//compbio.uthsc.edu/SomamiR

(accessed on 20 May 2021)
[60]

dreamBase

Provide insights into the transcriptional
regulation, expression, functions, and

mechanisms of pseudogenes as well as their
roles in biological processes and diseases.

http:
//rna.sysu.edu.cn/dreamBase

(accessed on 20 May 2021)
[61]

LncCeRBase Encompasse 432
lncRNA–miRNA–mRNA interactions.

http://www.insect-genome.
com/LncCeRBase (accessed on 20

May 2021)
[62]

LncACTdb 2.0
Provide comprehensive information of

competing endogenous RNAs (ceRNAs) in
different species and diseases.

http://www.bio-bigdata.net/
LncACTdb/ (not available on 20

May 2021)
[63]

DIANA-LncBase v3.0
Provide correlations of miRNA–lncRNA

pairs, as well as lncRNA expression profiles
in a wide range of cell types and tissues.

www.microrna.gr/LncBase
(accessed on 20 May 2021) [64]

LnCeVar

Provide genomic variations that disturb
lncRNA-associated ceRNA network

regulation curated from the published
literature and high-throughput data sets.

http://www.bio-bigdata.net/
LnCeVar/ (not available on 20

May 2021)
[65]

ExoceRNA atlas A repository of ceRNAs in blood exosomes.
https://www.exocerna-atlas.

com/exoceRNA#/ (accessed on
20 May 2021)

[66]

Cerina Predict biological functions of circRNAs
based on the ceRNA model.

https://www.bswhealth.med/
research/Pages/biostat-software.
aspx. (accessed on 20 May 2021)

[67]

LnCeCell

Document cellular-specific
lncRNA-associated ceRNA networks for
personalised characterisation of diseases

based on the ‘One Cell, One World’ theory.

http://www.bio-bigdata.hrbmu.
edu.cn/LnCeCell/ (accessed on

20 May 2021)
[68]

http://www.oncomir.umn.edu/cefinder/
http://www.oncomir.umn.edu/cefinder/
http://www.bioinfo.tsinghua.edu.cn/~liuke/Linc2GO/index.html
http://www.bioinfo.tsinghua.edu.cn/~liuke/Linc2GO/index.html
http://www.bioinfo.tsinghua.edu.cn/~liuke/Linc2GO/index.html
http://starbase.sysu.edu.cn/
http://gyanxet-beta.com/lncedb
http://gyanxet-beta.com/humanvice
http://gyanxet-beta.com/humanvice
http://cupidtool.sourceforge.net/
http://cupidtool.sourceforge.net/
http://www.bio-bigdata.net/miRSponge
http://www.bio-bigdata.net/miRSponge
http://compbio.uthsc.edu/SomamiR
http://compbio.uthsc.edu/SomamiR
http://rna.sysu.edu.cn/dreamBase
http://rna.sysu.edu.cn/dreamBase
http://www.insect-genome.com/LncCeRBase
http://www.insect-genome.com/LncCeRBase
http://www.bio-bigdata.net/LncACTdb/
http://www.bio-bigdata.net/LncACTdb/
www.microrna.gr/LncBase
http://www.bio-bigdata.net/LnCeVar/
http://www.bio-bigdata.net/LnCeVar/
https://www.exocerna-atlas.com/exoceRNA#/
https://www.exocerna-atlas.com/exoceRNA#/
https://www.bswhealth.med/research/Pages/biostat-software.aspx
https://www.bswhealth.med/research/Pages/biostat-software.aspx
https://www.bswhealth.med/research/Pages/biostat-software.aspx
http://www.bio-bigdata.hrbmu.edu.cn/LnCeCell/
http://www.bio-bigdata.hrbmu.edu.cn/LnCeCell/
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4. lncRNAs as ceRNAs in GC

lncRNAs are greater than 200 nucleotides in length molecules lacking obvious open
reading frames, not translated into proteins, and widely transcribed in the genome of
eukaryotic cells [69].

Recently, lncRNAs have become a research focus in the field of oncology. There are
diverse mechanisms for lncRNAs to regulate miRNA. This article focuses on their actions
as ceRNAs, where lncRNAs can play the role of endogenous "miRNA sponges" competing
with mRNAs to bind the MREs of miRNAs, thereby inhibiting miRNA expression and its
negative regulation of target genes, and participating in the occurrence and development
of tumors, providing a new perspective for the study of tumor formation mechanisms and
tumor detection methods [70–74].

4.1. HOTAIR

Using high-resolution chip analysis technology, scholars discovered a lncRNA tran-
scribed from the HOXC locus in the study of 11 human fibroblasts and named it HOTAIR
in 2007. HOTAIR was the first antisense transcription lncRNA to be discovered. It con-
tains 2158 nucleotides, and its expression level in cancer tissues is higher than in normal
tissues [8]. Studies have found that it functions as a ceRNA in the occurrence and develop-
ment of GC, breast cancer [75], lung cancer [76], liver cancer [77], and other tumors [78–80],
and it is also related to drug resistance [81].

In 2016, a study showed that, in GC, HOTAIR directly binds to miR-126 and inhibits
its expression, thus enhancing the expression of VEGFA and PIK3R2 and activating the
PI3K/AKT/MRP1 pathway. HOTAIR acts as a ceRNA to promote cisplatin resistance [82].
In 2017, scholars found that the expression of HOTAIR was negatively correlated with the
expression of miR-34a. The up-regulation of miR-34a caused by the down-regulation of
HOTAIR can reduce cisplatin resistance in GC. The effect of the HOTAIR/miR−34a axis on
GC cells may be related to PI3K/Akt and Wnt/β-catenin signaling pathway [83]. In 2018, it
was found that the expression of HOTAIR was negatively correlated with the expression of
miR-217. HOTAIR inhibits the expression of miR-217 and promotes the expression of GPC5
and PTPN14 as a ceRNA. Overexpression of HOTAIR inhibited the expression of miR-217
and enhanced the resistance of GC cells to paclitaxel and adriamycin [84]. In the same year,
scholars discovered that HOTAIR directly targets miR-17-5p, and PTEN is modified by
HOTAIR and miR-17-5p, which affects the proliferation and apoptosis of GC cells [85]. That
year a study also found that the expression of HOTAIR was negatively correlated with the
expression of miR-454-3p. By inhibiting the activity of STAT3/cyclin D1, down-regulating
HOTAIR to stimulate the expression of miR-454-3p could inhibit the cell growth of GC [86].
Researchers then found that HOTAIR and miR-126 negatively regulate each other, which
can increase or decrease the expression of CXCR4. Highly expressed HOTAIR promotes
the proliferation and metastasis of GC through the miR-126/CXCR4 axis and downstream
signaling pathways [87]. In addition, miR-618 is also a direct target of HOTAIR. The silence
of HOTAIR makes miR-618 spongy, thereby blocking the development of GC and inhibiting
the growth of xenograft tumors in vivo [88]. In 2020, researchers discovered a negative
regulatory relationship between HOTAIR and miR-1277-5p. HOTAIR regulates the growth
of GC by stimulating miR-1277-5p and up-regulating COL5A1 [89]. In the same year, a
study found that HOTAIR can promote the carcinogenesis of GC by regulating the levels
of miRNA in cells and exosomes. Over-expressed HOTAIR induced the degradation of
miR-30a or -b, thus acting as a ceRNA [90]. The latest research shows that HOTAIR and
miR-148b can induce the methylation of the tumor suppressor gene PCKG10 and promote
GC [91]. These data indicate that HOTAIR can promote the occurrence and development of
GC in various ways and enhance the drug resistance of GC cells as a ceRNA.

4.2. XIST

XIST is located in the X chromosome’s inactive central region, affecting the activa-
tion of X-chromosome-related genes [6,7]. Studies have found that XIST is abnormally
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expressed in various tumors and acts as a ceRNA to mediate tumor cell proliferation,
migration, invasion, and drug resistance [92,93].

lncRNA XIST is significantly up-regulated in GC tissues and cell lines, and there is a
negative correlation between its expression level and that of miR-101. Down-regulating
the expression of XIST can inhibit the occurrence, development, and metastasis of GC
by regulating the expression of EZH2 through miR-101 [94]. Studies have found that
XIST promotes cell development from the G1 phase to the S phase and protects cells from
apoptosis. XIST participates in the miR-497/MACC1 axis to regulate the proliferation and
invasion of GC cells [95]. In addition, the researchers found that the expression of XIST
and miR-185 are negatively correlated. miR-185 can negatively regulate the expression of
TGF-β1 in vitro, and XIST can be used as a ceRNA to participate in the development of GC
through the miR-185/TGF-β1 axis [96]. In 2020, studies found that XIST acts as a ceRNA
in GC to regulate JAK2 by competing with miR-337. Up-regulation of miR-337 can reduce
the expression of JAK2, thereby inhibiting the proliferation and migration of GC cells [97].
In addition to competing with miR-337, XIST can up-regulate the expression of PXN by
competitively binding miR-132, which can enhance the ability to form GC cell proliferation,
and migration. In studying the relationship between XIST and cisplatin resistance in
GC, researchers found that XIST and miR-let-7b levels are negatively correlated, and the
interaction between the two promotes cisplatin resistance [98].

4.3. H19

As the first imprinted gene to be discovered, lncRNA H19 is located on the H19/IGF2
gene cluster of human chromosome 11p15 [5]. With the deepening of research, it was found
that lncRNA H19 plays an important role in the occurrence and development of cancer. It
acts as an oncogene in some tumors to mediate the tumor process, while in others it plays
a role as a tumor suppressor gene [99–101].

Studies have found that the expression of H19 is positively correlated with the ex-
pression of miR-675. The up-regulated expression of H19 and miR-675 can promote cell
proliferation and inhibit cell apoptosis. The H19/miR-675 axis promotes GC’s occurrence
and development through the FADD/caspase 8/caspase 3 signaling pathway [102]. In 2018,
researchers found that the expression of H19 was negatively correlated with the expression
of miR-let-7c. miR-let-7c belongs to the let-7 family and functions as a tumor suppressor
gene. Silencing H19 resulted in a significant increase in let-7c expression, while HER2
protein expression decreased, indicating that H19 competes with miR-let-7c as a ceRNA
in GC and regulates HER2 expression [103]. In the analysis of the GC ceRNA network,
scholars found that the differentially regulated miR-21 and miR-148a play an important
role in coordinating the sponge activity of H19, and the overexpression of H19 may be a
landmark event in gastric tumorigenesis [104]. In 2019, studies showed that H19 expression
is inversely proportional to miR-22-3p expression in GC tissues, and the inhibition of Snail1
can partially reverse the cell growth and metastasis induced by miR-22-3p down-regulation.
H19 promotes tumor growth and metastasis through the miR-22-3p/Snail1 signaling path-
way [105]. In 2020, when analyzing the lncRNA–miRNA–mRNA network of GC, scholars
found that H19, miR-29a-3p, COL3A1, COL5A2, COL1A2, and COL4A1 can form a ceRNA
network. H19 stimulates miR-29a-3p to promote GC [106]. The latest research shows that
knocking down the expression of H19 can promote the up-regulation of miR-138, and E2F2
can be negatively regulated by miR-138, thereby inhibiting the proliferation and invasion
of GC, increasing the rate of apoptosis [107].

4.4. MALAT1

In 2003, researchers discovered a differentially expressed gene in tumor cells of pa-
tients with early-stage non-small-cell lung cancer [108]. After screening and compari-
son, they found that it was an alpha transcript that had been described in 1997 and is
known as MALAT1 [109]. Studies have shown that MALAT1 is involved in tumor prolif-
eration, metastasis, apoptosis, epigenetic regulation, cell signal transduction, and other
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processes [110–112]. Recently, MALAT1 has attracted more researchers’ attention due to its
role as a ceRNA in GC [113].

In 2016, scholars found that MALAT1 is up-regulated in GC tissues. Knockdown
of MALAT1 can negatively regulate miR-202 and significantly reduce the expression of
Gli2, thereby inhibiting the proliferation of GC cells and inducing apoptosis [114]. The
expression of MALAT1 is relatively high in the cancer tissues of patients with short survival
and poor prognosis. MALAT1 can sponge miR-1297, and they are negatively correlated.
The up-regulation of MALAT1 leads to miR-1297, thus reducing the ability to inhibit the
expression of HMGB2 [115]. A 2017 study showed that the expression of MALAT1 is
related to the chemoresistance of GC cells. As a ceRNA of miR-23b-3p, MALAT1 can
weaken the inhibitory effect of miR-23b-3p on ATG12, leading to the chemical induction
of GC cell autophagy and chemical resistance [116]. The ceRNA network shows that
the differentially regulated miR-21 and miR-148a play an important role in coordinating
the sponging activity of MALAT1 in GC [104]. In 2019, scholars found that MALAT1
inhibits miR-30b expression as a ceRNA in the study of chemical resistance to GC. MALAT1
enhanced autophagy-related chemical resistance of GC by inhibiting the miR-30b/ATG5
axis [117]. Research in the same year showed that MALAT1 acts as a sponge of miR-125a,
and the dysregulation of the MALAT1/miR-125a axis causes IL-21R to play a carcinogenic
role in GC [118]. MALAT1 can also competitively bind to miR-181a-5p, which prevents
miR-181a-5p from binding to AKT3 mRNA, thereby up-regulating the level of AKT3
protein and ultimately promoting tumor growth in GC [119]. In 2020, when investigating
the autophagy activity of GC tissues, researchers found that MALAT1 can inhibit the
expression of miR-204 in GC cells and prevent miR-204 from down-regulating LC3B and
transient receptor potential melastatin 3 (transient receptor potential melastatin 3), which
activates autophagy and promotes cell proliferation [120]. MALAT1 is also negatively
correlated with the expression of miR-22-3p. MiR-22-3p can negatively regulate ErbB3. The
high expression of MALAT1 promotes proliferation and prevents apoptosis of GC cells
by down-regulating miR-22-3p and up-regulating ErbB3. In the study of MALAT1 and
miR-22-3p, it was also found that MALAT1 regulates ZFP91 through sponge miR-22-3p
to enhance GC cells’ resistance to oxaliplatin (OXA) [121]. The latest research shows that
hydrogen gas can inhibit the proliferation of GC cells and the expression of MALAT1
and EZH2, up-regulating the expression of miR-124-3p at the same time. It shows that
the expression of MALAT1 and miR-124-3p is negatively correlated. Overexpression of
MALAT1 can eliminate the effect of hydrogen [122].

In summary, some regulatory axes have been identified in the representative lncRNA-
mediated ceRNETs that affect multiple hallmarks of GC progression, including prolifera-
tion, invasion, apoptosis, and migration (Figure 1 and Table 2). Studies have found that
during the epithelial to mesenchymal transition (EMT) of gastric cancer, LncRNAs can act
as ceRNAs to directly regulate the expression of E-cadherin and also to participate in the
regulation of the expression of EMT-inducing transcription factors (EMT-TF) [123]. Further,
many other lncRNAs also play the role of ceRNAs in GC. We have summarized studies on
the role of lncRNAs as ceRNAs in GC during the past five years in Table 2.
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Figure 1. Representative lncRNA-mediated ceRNETs in GC.

Table 2. The mechanism of lncRNAs as ceRNAs in GC.

LncRNA The Mechanism of ceRNA Biological Functions Reference

BC032469 miR-1207-5p/hTERT Proliferation [124]
COL1A1-014 miR-1273h-5p/CXCL12/CXCR4 Proliferation [125]

CRAL miR-505/CYLD/AKT Resistance [126]
CTC-497E21.4 miR-22/NET1 Proliferation, invasion [127]

DLX6-AS1 miR-204-5p/OCT1 Proliferation, migration, invasion [128]
FLVCR1-AS1 miR-155/c-Myc Proliferation, invasion [129]

GAS5 miR-23a/MT2A Apoptosis [130]
H19 miR-675/FADD/caspase 8/caspase 3 Proliferation [102]
H19 miR-let-7c/HER2 Proliferation [103]
H19 miR-22-3p/Snail1 Proliferation, migration [105]
H19 miR-138/E2F2 Proliferation, invasion [107]

HNF1A-AS1 miR-661/CDC34 Proliferation [131]
HOTAIR miR-126/VEGFA/PIK3R2 Resistance [82]
HOTAIR miR-34a/PI3K/Akt Resistance [83]
HOTAIR miR-34a/Wnt/β-catenin Resistance [83]
HOTAIR miR-217/GPC5 and PTPN14 Resistance [84]
HOTAIR miR-17-5p/PTEN Proliferation [85]
HOTAIR miR-454-3p/STAT3/cyclin D1 Proliferation [86]
HOTAIR miR-126/CXCR4 Proliferation, migration [87]



Genes 2021, 12, 1036 9 of 22

Table 2. Cont.

LncRNA The Mechanism of ceRNA Biological Functions Reference

HOTAIR miR-618/KLF12 Proliferation [88]
HOTAIR miR-1277-5p/COL5A1 Proliferation [89]
HOTAIR miR-148b/PCDH10 Proliferation [91]
IGF2-AS miR-503/SHOX2 Migration [132]

IGFL2-AS1 miR-802/ARPP19 Proliferation, migration [133]
KCNQ1OT1 microRNA-9-LMX1A Proliferation, migration, invasion [134]
KCNQ1OT1 miR-4319/DRAM2 Proliferation [135]
LINC00565 miR-665/AKT3 Proliferation [136]
LINC01234 miR-204-5p/CBFB Proliferation [137]
LINC01606 miR-423-5p/Wnt/β-catenin Migration, invasion [138]
LINC01939 miR-17-5p/EGR2 Migration [139]
LINC02163 miR-593-3p/FOXK1 Proliferation [140]
LINC02532 miR-129-5p and miR-490-5p Proliferation, migration, invasion [141]

Lnc-ATB MiR-141-3p/TGFβ2 Proliferation [142]
lncR-D63785 miR-422a/MEF2D Chemotherapy sensitivity [143]
LOXL1-AS1 miR-708-5p/USF1 Proliferation, migration [144]
LOXL1-AS1 miR-142-5p/PIK3CA Proliferation, migration [145]

MALAT1 miR-202/Gli2 Proliferation [114]
MALAT1 miR-1297/HMGB2 Proliferation, invasion [115]
MALAT1 miR-23b-3/ATG12 Resistance [116]
MALAT1 miR-30b/ATG5 Resistance [117]
MALAT1 miR-125a/IL-21R Proliferation, invasion [118]
MALAT1 miR-181a-5p/AKT3 Proliferation [119]
MALAT1 miR-204/LC3B Proliferation [120]

MALAT1 miR-204/transient receptor potential
melastatin 3 Proliferation [120]

MALAT1 miR-22-3p/ErbB3 Proliferation [121]
MALAT1 miR-22-3p/ZFP91 Resistance [121]
MALAT1 miR-124-3p/EZH2 Proliferation [122]

MYOSLID miR-29c-3p/MCL-1 Proliferation, inhibits apoptosis [146]
NORAD miR-608/FOXO6 Proliferation [147]
NORAD miR-214/Akt/mTOR Proliferation, inhibits apoptosis [148]
NORAD miR-433-3p/ATG5,ATG12 Resistance [149]
PWRN1 miR-425-5p/PTEN Proliferation [150]

SLC25A5-AS1 miR-19a-3p/PTEN/PI3K/AKT Proliferation [151]
SNHG5 miR-32/KLF4 Migration [152]

SPRY4-IT1 miR-101-3p/AMPK Proliferation, migration [153]
TINCR miR-375/PDK1 Proliferation [154]

TP73-AS1 miR-194-5p/SDAD1 Proliferation, migration, [155]
TUBA4B miR-214 and miR-216a/b/PTEN Proliferation, invasion [156]

UCA1 miR-590-3p/CREB1 Proliferation, invasion [157]
UCA1 miR-7-5p/EGFR Migration [158]
UCA1 miR-495-3p/SATB1 proliferation and invasion [159]
UCA1 miR-203/ZEB2 Metastasis [160]

UCA1 miR-26a/b, miR-193a, miR-214/PDL1 Proliferation, migration, immune
escape and inhibits apoptosis [161]

UCA1 miR-495/PRL-3 Proliferation, migration, invasion [162]
UCA1 miR-513-3p/CYP1B1 Resistance [163]
XIST miR-101/EZH2 Proliferation, migration [94]
XIST miR-497/MACC1 Proliferation, invasion [95]
XIST miR-185/TGF-β1 Growth, migration and invasion [96]
XIST miR-337/JAK2 Proliferation, migration [97]
XIST miR-132/PXN Proliferation, migration [164]
XIST XIST/miR-let-7b Resistance [98]
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5. circRNAs as ceRNAs in GC

circRNAs are closed loops in the cytoplasm, with neither a 5′cap structure nor a
3′polyadenylic acid tail structure. They were found in viroids for the first time [3]. With
the development of RNA sequencing technology and in-depth research, it was found that
circRNAs are widely transcribed in eukaryotes [165–168]. Compared with other linear ncR-
NAs, they have a high degree of conservation and stability. According to its components,
they can be divided into three categories: exon circular RNAs (ecircRNAs) [169], intron
circular RNAs (ciRNAs) [170], and exon–intron circular RNAs (EIciRNAs) [171], each of
which has different molecular structures but have similar binding sites and regulatory
functions, and provides a template for biosynthesis.

In recent years, there have been more studies on the function of circular RNAs as
ceRNAs in GC. In 2017, researchers found that the expression of circNRIP1 can up-regulate
the AKT1 levels in GC cells and promote cell proliferation, migration, and invasion. Up-
regulation of miR-149-5p can prevent the malignant behavior caused by circNRIP1. The cir-
cNRIP1/miR-149-5p/AKT1/mTOR axis is responsible for changes in GC cells’ metabolism
and promotes the development of GC [172]. In 2019, researchers discovered a new type
of circRNA, has_circ_0001368. The low expression of has_circ_0001368 can promote tumor
growth, and it plays a tumor suppressor effect in GC through the miR-6506-5p/FOXO3
axis [173]. In the same year, it was found that the expression of circCOL6A3 and miR-
3064-5p are inversely proportional. Overexpression of circCOL6A3 promotes GC cell
proliferation, migration, and apoptosis by eliminating the inhibitory effect on COL6A3
induced by miR-3064-5p [174]. Studies have found that circRNA0047905 can bind miR4516
and miR1227-5p, thereby reducing the inhibition of SERPINB5 and MMP11, activating the
Akt/CREB signaling pathway, and promoting the progression of GC. Circular RNA 0047905
may act as a tumor promoter in the pathogenesis of GC [175]. TGFBR1 is the receptor
of the TGF-β ligand. Studies have found that circCACTIN promotes the progression of
GC by sponging miRNA-331-3p and regulating the expression of TGFBR1 mRNA [176].
In studies to confirm the function of circGRAMD1B, it was found that circGRAMD1B
inhibited the proliferation, migration, and invasion of GC cells by regulating miR-130a-
3p-PTEN/p21 [177]. Through bioinformatics methods, it was found that miRNA-145-5p
is the target gene of circ-ZNF609. Down-regulating the expression of miRNA-145-5p can
partially reverse the effect of circ-ZNF609 on the growth and migration of GC cells [178].
In 2020, researchers found that the expression of circRHOBTB3 is low in GC tissues and
cell lines. circRHOBTB3 acts as a ceRNA for miR-654-3p and activates the p21 signaling
pathway to inhibit GC’s growth. circRHOBTB3 is promising as a new diagnostic marker,
and therapeutic target for GC [179]. circ_0006282 is a newly identified human circular
RNA. Studies have found that its high expression can down-regulate miR-155, thereby
activating the expression of FBXO22 and promoting the proliferation and migration of GC
cells [180]. Similar to the expression of circRHOBTB3, circCCDC9 was significantly down-
regulated in GC tissues and cell lines. circCCDC9 can inhibit tumor progression through
the miR-6792-3p/CAV1 axis [181]. circ-MAT2B is mainly located in the cytoplasm and can
act as a ceRNA to compete with miR-515-5p and increase the expression of HIF-1α [182].
circCYFIP2 is significantly up-regulated in GC tissues. Research suggests that circCYFIP2
may act as a carcinogenic circRNA to promote GC progression through the miR-1205/E2F1
axis [183]. circ_0081143 modulates the abundance of miR-497-5p by making the miR-497-
5p sponge. miR-497-5p directly targets EGFR and down-regulates circ_0081143 to affect
hypoxia-induced migration, invasion, and EMT of GC cells [184]. circHIPK3 is derived
from the homology domain-interacting protein kinase 3 (HIPK3) gene. In GC tissues and
cell lines, circHIPK3 is up-regulated. It regulates the miR-876-5p/PIK3R1 axis through
the mechanism of ceRNA and mediates the proliferation, migration, and invasion of GC
cells [185]. circRNA_100782 is lowly expressed in GC. Studies have found that it can be
used as a molecular sponge. It can bind to miR-574-3p to regulate the expression of the
tumor suppressor gene Rb. This mechanism is closely related to the proliferation and
invasion of GC [186]. In the study of hsa_circ_0005556, it was found that down-regulating
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the expression of hsa_circ_0005556 can inhibit the growth of GC. The hsa_circ_0005556/miR-
4270/MMP19 axis participates in the proliferation, migration, and invasion of GC cells
through the ceRNA mechanism [187]. When circPDZD8 is highly expressed, the survival
rate of GC patients is poor. circPDZD8 can up-regulate the expression of CHD9 by stimulat-
ing miR-197-5p to promote the proliferation and metastasis of GC [188]. The latest research
shows that the expression level of circ-ITCH and miR-199-5p are negatively correlated in
GC tissues. circ-ITCH can inhibit GC metastasis by acting as a sponge of miR-199a-5p and
increasing Klotho expression [189]. So far, there are 18 miRNAs that have been identified
as ceRNAs in the circRNA-mediated ceRNETs that affect multiple hallmarks of gastric
progression, including proliferation, migration, invasion, and apoptosis (Figure 2 and
Table 3).

Figure 2. CircRNA-mediated ceRNETs in GC.

Table 3. The mechanism of circRNAs as ceRNAs in GC.

CircRNA The Mechanism of ceRNA Biological Functions Reference

circNRIP1 miR-149-5p/AKT1/mTOR Proliferation, migration, invasion [172]
circRNA has_circ_0001368 miR-6506-5p/FOXO3 Proliferation [173]

circCOL6A3 miR-3064-5p/COL6A3 Proliferation, migration, apoptosis [174]

circRNA0047905 miR-4516/miR-1227-
5p/SERPINB5/MMP11 Proliferation [175]

circCACTIN miRNA-331-3p/TGFBR1 Proliferation [176]
circGRAMD1B miR-130a-3p/PTEN/p21 Proliferation, migration, invasion [177]

circ-ZNF609 miRNA-145-5p Proliferation, migration [178]
circRHOBTB3 miR-654-3p/p21 Proliferation [179]
circ_0006282 miR-155/FBXO22 Proliferation, migration [180]
circCCDC9 miR-6792-3p/CAV1 Proliferation [181]
circ-MAT2B miR-515-5p/HIF-1α Proliferation [182]
circCYFIP2 miR-1205/E2F1 Proliferation, invasion [183]

circ_0081143 miR-497-5p/EGFR migration, invasion, EMT [184]
CircHIPK3 miR-876-5p/PIK3R1 Proliferation, migration, invasion [185]

circRNA_100782 miR-574-3p/Rb Proliferation, invasion [186]
hsa_circ_0005556 miR-4270/MMP19 Proliferation, migration, invasion [187]

circPDZD8 miR-197-5p/CHD9 Proliferation, migration [188]
circ-ITCH miR-199a-5p/Klotho Migration [189]
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6. Pseudogenes as ceRNAs in GC

Pseudogenes were once considered to be genomic fossils without bodily functions
resulting from the accumulation of natural mutations of genes during biological evolution.
Later, it was discovered that pseudogenes play a crucial role in gene transcription [190].
They can be used as ceRNAs to regulate gene transcription. In addition, pseudogenes can
also regulate gene expression by interacting with RNA-binding proteins [191–193].

There are few studies on pseudogenes as ceRNAs in GC. In 2015, researchers reported
for the first time that the pseudogene FER1L4 acts as a ceRNA in the proliferation of GC.
Down-regulation of FER1L4 increased the abundance of miR-106a-5p, decreased PTEN
mRNA and protein quantity, and promoted GC proliferation [194]. In 2017, a study found
that the pseudogene PTENP1 of PTEN can be used as a ceRNA to regulate the expression
of PTEN together with miR-106b/miR-93 [195]. The up-regulated expression of PTENP1
can inhibit the proliferation, metastasis, and invasion of GC cells. In the latest study, it was
found that GBAP1 can competitively bind to miR-212-3p, promote GBA expression, and
participate in GC development [196].

7. Conclusions

In summary, GC is a common gastrointestinal cancer with an insidious onset, and
patients are often in the middle or late stage when they are diagnosed. It is important
to understand the molecular mechanism of GC and to explore effective detection and
treatment strategies.

The role of ncRNAs in tumors has been a hot spot in oncology research recently.
The miRNA mechanism in tumors is now relatively clear, and lncRNAs, circRNAs, and
pseudogenes have entered people’s fields of vision. Evidence shows that ceRNAs play an
important regulatory role in GC. So far, researchers have established some RNA–miRNA–
mRNA regulatory axes [197–200]. With the effective use of advanced bioinformatics tools,
researchers can systematically construct more regulatory networks, and the identification
of GC-related ceRNA networks should become more efficient and accurate. Some lncRNAs,
circRNAs, and pseudogenes are found to act as ceRNAs. Studies showed that lncRNAs,
circRNAs, and pseudogenes could promote the occurrence and development of tumors,
inhibit tumor progression and metastasis, and regulate the sensitivity of tumor cells to
chemotherapeutic drugs. However, the database of lncRNAs, circRNAs, and pseudogenes
is not yet perfect.

Because studies usually use transfected oligonucleotides or expression vectors, there is
a risk that the transfected oligonucleotide inhibitors (antagomir and miRNA sponge) may
be collected by lysosomes and cannot cause miRNA activity. It is difficult to directly mea-
sure the potential activity of the introduced miRNAs. The current verification experiments
are usually untested at the physiological level, artificially providing high quantification
after the whole cell is lysed. Thus, the technologies to verify the effect of ceRNAs on
target genes at the protein and RNA levels require a rigorous evaluation and should be
complemented by studies in animal models to discover additional genes involved in cancer.

Moreover, the map of the complex lncRNA, circRNA, and pseudogene regulatory
networks needs to be further improved and supplemented. However, researchers have
mainly focused on a single axis or a single binding partner, and there is no uniform
naming principle for lncRNAs, circRNAs, and pseudogenes. The secondary and indirect
interactions may also affect the occurrence and development of GC and drug resistance.
Therefore, further research should also pay attention to the complex lncRNA, circRNA,
pseudogene, miRNA, and mRNA networks. Analyzing the lncRNA-specific molecular
mechanisms underlying their biological function and transforming basic research into
clinical application is still an enormous challenge.
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Abbreviations

AKT AKT serine/threotine kinase 1
AKT3 AKT serine/threonine kinase 3
AMPK Protein kinase AMP-activated catalytic subunit alpha 1
ARPP19 CAMP-regulated phosphoprotein 19
ATG5 Autophagy-related 5
ATG12 Autophagy-related 12
CAV1 Caveolin 1
CBFB Core-binding factor subunit beta
CDC34 Cell division cycle 34, ubiqiutin-conjugating enzyme
ceRNAs Competitive endogenous RNAs
ceRNETs ceRNA networks
CHD9 Chromodomain helicase DNA-binding protein 9
ciRNAs Intron circular RNAs
COL1A2 Collagen type I alpha 2 chain
COL3A1 Collagen type III alpha 1 chain
COL4A1 Collagen type IV alpha 1 chain
COL5A1 Collagen type V alpha 1 chain
COL5A2 Collagen type V alpha 2 chain
CREB1 CAMP-responsive element-binding protein 1
CXCL12 C-X-C motif chemokine ligand 12
CXCR4 C-X-C motif chemokine receptor 4
CYLD CYLD lysine 63 deubiquitinase
CYP1B1 Cytochrome P450 family 1 subfamily B member 1
DRAM2 DNA-damage-regulated autophagy modulator 2
E2F1 E2F transcription factor 1
E2F2 E2F transcription factor 2
ecircRNAs Exon circular RNAs
EGFR epidermal growth factor receptor
EGR2 Early growth response 2
EIciRNAs Exon–intron circular RNAs
EMT Epithelial to mesenchymal transition
EMT-TF EMT-inducing transcription factor
ErbB3 Erb-B2-receptor tyrosine kinase 3
EZH2 Enhancer of zeste 2 polycomb-repressive complex 2 subunit
FADD Fas-associated via death domain
FBXO22 F-box protein 22
FOXK1 Forkhead box K1
FOXO3 Forkhead box O3
FOXO6 Forkhead box O6
GBA Glucosylceramidase beta
GC Gastric cancer
GEO Gene Expression Omnibus microarray datasets
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Gli2 GLI family zinc finger 2
GPC5 Glypican-5
H19 H19-imprinted maternally-expressed transcript
HER2 Erb-B2-receptor tyrosine kinase 2
HIF-1α Hypoxia-inducible factor 1 subunit alpha
HIPK3 Homeodomain-interacting protein kinase 3
HMGB2 High-mobility group box 2
HOTAIR HOX transcript antisense RNA
hTERT Human telomerase reverse transcriptase
IGF2 Insulin-like growth factor 2
IL-21R Interleukin 21 Receptor
JAK2 Janus kinase 2
KLF4 Kruppel-like Factor 4
LC3B Microtubule-associated protein 1 light chain 3 beta
LMX1A LIM homeobox transcription factor 1 alpha
lncRNAs Long non-coding RNAs
MACC1 MET transcriptional regulator MACC1
MALAT1 Metastasis-associated lung adenocarcinoma transcript 1
MCL-1 MCL1 apoptosis regulator, BCL2 family member
MEF2D Myocyte enhancer factor 2D
miRNA–RISC miRNA-mediated silencing complex
miRNAs MicroRNAs
MMP11 Matrix metallopeptidase 11
MMP19 Matrix metallopeptidase 19
MRE miRNA response element
mRNAs Messenger RNAs
MT2A Metallothionein 2A
mTOR Mechanistic target of rapamycin kinase
NET1 Neuroepithelial cell transforming 1
OCT1 POU class 2 homeobox 1
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1
PIK3R2 Phosphoinositide-3-kinase regulatory subunit 2
PCDH Protocadherin 10
PDK1 Pyruvate dehydrogenase kinase 1
PDL1 CD274 molecule
PRC2 Polycomb repressive complex 2
PRL-3 Protein tyrosine phosphatase 4A3
PTEN Phosphatase and tensin homolog
PTPN14 Protein tyrosine phosphatase non-receptor type 14
PXN Paxillin
SATB1 SATB homeobox 1
SDAD1 SDA1 domain-containing 1
SERPINB5 Serpin family B member 5
SHOX2 Short stature homeobox 2
Snail1 Snail family transcriptional repressor 1
STAT3 Signal transducer and activator of transcription 3
TCGA Cancer Genome Atlas database
TGF-β1 Transforming growth factor beta 1
TGF-β2 Transforming growth factor beta 2
TGFBR1 Transforming growth factor beta receptor 1
USF1 Upstream transcription factor 1
VEGFA Vascular endothelial growth factor A
XIST X inactive specific transcript
ZEB2 Zinc finger E-box-binding homeobox 2
ZFP91 ZFP91 zinc finger protein, atypical E3 ubiquitin ligase
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