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Abstract

The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem
cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell
types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from
patients’ own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease
of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior.
Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells.
Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have
small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of
human beta cells, thereby generating “beta cell-like cells” as opposed to mature beta cells. Diabetic therapy
becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells.
In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis
on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented
from the references within this review would suggest that although mesenchymal stem cells are an attractive cell
type for cell therapy they are not readily converted into functional mature beta cells.
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Introduction
Beta cells are the major cells (70% of the total cells) in
the islet of Langerhans of the pancreas, critical to store
and release the hormone insulin to maintain glucose
homeostasis [1]. Irregularities with the normal function-
ing of beta cells can lead to either type 1 diabetes melli-
tus (T1DM), where the islets are completely destroyed
by the patient’s own immune system (autoimmune re-
sponse), or type 2 diabetes mellitus (T2DM), where pa-
tients are unable to respond to insulin due to insulin
resistance and inadequate production [2]. The American
Diabetes Association reports that the confirmed cases of

diabetes have exceeded 30.3 million in the USA, with a
relatively larger population of 84 million classified as
prediabetic [3]. Diabetes is one of the major chronic dis-
eases which requires constant care throughout, as un-
controlled diabetes can affect the function of other
organs and tissues leading to more severe conditions like
diabetic ulcers, retinopathy, nephropathy, and neur-
opathy [4]. While islet transplantation has proven to be
successful, the availability of donors, the quantity of
functional cells recovered, requirement of immunosup-
pressive drugs, and cell loss after transplantation are lim-
iting factors [5]. In order to overcome some of these
obstacles, stem cell-derived beta cell therapy has been
proposed as a feasible solution.
Current beta cell therapies are based on cells derived

from embryonic stem cells (ESC), induced pluripotent
stem cells (iPSC), or adult stem cells [6]. In order to
generate ESC, a human embryo has to be destroyed in
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its early stages of development, thus involving ethical is-
sues. iPSC require the cells to be reprogrammed to a
pluripotent stage, followed by the germ layer-specific dif-
ferentiation for the target cell [7]. In addition, pluripo-
tent conversion can result in teratoma formation and
most protocols incorporate transcription factors and in-
tegrating viral transgenes to induce pluripotency, which
is not safe for clinical application [8]. Beta cell therapy is
more feasible when patient-specific functional cells can
be generated in larger quantities using clinically safe
methods. Compared to ESC and iPSC, adult stem cell-
like, mesenchymal stem cells (MSC) offer a good choice
for generating differentiated cells for therapy.
MSC are immune privileged and highly plastic stem

cells that can be isolated and cultured from the bone
marrow, blood, skin, urine, fat, oral cavity, and even
from the umbilical cord, placenta, and amniotic fluid [9].
In terms of the differentiation capability to generate
germ layer cells, compared to other popular stem cells,
MSC are similar to pluripotent stem cells [10]. More-
over, a single donor isolation can generate MSC in
ample quantities (> 80 population doublings) for in vitro
culture and differentiation [11]. The angiogenic and im-
munomodulatory properties of MSC are well reported,
making them ideal candidates to generate functional
beta cells for personalized medicine [12, 13]. Generating
disease-specific cells from patients’ MSC using non-inte-
grative methods not only avoids immunogenicity but
also provides better engraftment and compatibility in
vivo [14].
Non-integrative methods allow differentiation without

incorporating foreign sequences into the host genome.
Integrative methods like lentiviruses and retroviruses
pose potential risk for tumor formation due to the gen-
omic changes from transgenes [15]. Compared to inte-
grative methods, a non-integrative method is safe and it
poses less risk for tumor formation and genomic alter-
ation [16]. For instance, adenoviral, sendai viral, epi-
somal, mRNA, protein and chemical based deliveries are
all safe and secure [17]. However, sendai viral and epi-
somal methods have been reported mostly on iPSC-
based differentiation and not on MSC [18]. Besides, they
are laborious and methods utilizing adenoviruses do not
work well on replicating cells like MSC as the viral gen-
ome is lost through subsequent passaging, resulting in
low efficiency of differentiation. Protein-based methods
are reliable but again, for mass production of cells, pro-
teins and mRNA are required in large quantities making
them laborious and expensive. However, small molecules
or chemical-based differentiation is effective and safe as
they can be introduced and manipulated effectively with-
out genomic changes [19].
The safety and precision of small molecules in terms

of their modification of signal pathways compared to the

genomic alteration and integration by transcription fac-
tors has inspired researchers to think about the idea of
incorporating small molecules to generate beta cells. Ex-
tensive investigations have been carried out to screen
small molecules for generating beta cells as they can fa-
cilitate the generation of efficient functional cells for hu-
man therapy. A cocktail of nine small molecules and
four recombinant proteins that specifically target the sig-
nal pathways related to pancreatic differentiation has
been reported to generate functional beta cells from
iPSC [20, 21]. Furthermore, most of the MSC-derived
beta cell protocols also incorporate small molecules in
their cocktail. In this review, we explore different small
molecule-aided protocols reported on human MSC to
generate insulin-secreting cells and the possibility of
generating functional beta cells using small molecules
alone. Focus is given on the small molecule-based proto-
cols on human mesenchymal cells alone; however, the
immunogenic properties of MSC are not discussed in
this review.

Plasticity of MSC
MSC are spindle-shaped cells identified to be originated
from the perivascular linings of internal organs, demon-
strating profound expandability and differentiation cap-
ability [22, 23]. As MSC are a subpopulation of cells that
can be isolated from a variety of adult and perinatal tis-
sues, the Mesenchymal and Tissue Stem Cell Committee
of the International Society for Cellular Therapy guide-
lines has some strict criteria for their classification. The
primary key genes and surface molecules that need to be
expressed by these cells include CD73, CD90, and
CD105, with minimal or no expression of CD11b, CD19,
CD34, CD45, and HLA-DR [24]. In addition to surface
molecule expression, the ability of MSC to differentiate
into osteocytes, chondrocytes, and adipocytes is required
for further confirmation [25]. Interestingly, according to
the source of isolation, MSC express additional genes
and surface molecules that increase their flexibility for
differentiation.
MSC has been isolated from different adult sources

like the peripheral blood, bone marrow, skin, foreskin,
fat, heart, dental, skeletal muscle, lung, and pancreas.
Irrespective of the different adult sources of MSC, beta
cell differentiation has been only reported from few
sources (Table 1). Furthermore, most in vivo research
has been carried out using undifferentiated tissue-de-
rived MSC. Even though the method of sample isolation is
laborious, bone marrow-derived MSC are superior and
well-studied in terms of generating differentiated cells for
diabetic therapy [52]. Undifferentiated bone marrow-de-
rived MSC have already shown promising preliminary re-
sults in clinical trials [53]. The anti-inflammatory and
protective nature of the transplanted MSC improved the
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beta cell function and increased glycated hemoglobin in
the subjects [53]. A similar trial has recently revealed that
the transplanted mesenchymal cells not only differen-
tiated into insulin-secreting cells but also did not
incur immune reaction in the subjects, and therefore
reveals promising future for MSC in diabetes therapy
[54]. The transplanted autologous cells were able to
integrate and differentiate into functional cells that
demonstrated increased glucagon-stimulated C-peptide
secretion, thereby decreasing the requirement of
external insulin supply in 6 months [54]. Though

pancreatic tissue-derived MSC is theoretically compli-
ant to generate the robust cells, research suggests that
the beta cell differentiation has not been efficient.
After reprogramming gained popularity, embryonic stem

cells and induced pluripotent stem cells also evolved as an
interesting source for MSC. Furthermore, the MSC isolated
from pluripotent stem cells have high expandability of >
120 population doublings without cellular senescence [55,
56]. However, the tumorigenicity and the embryonic nature
of the pluripotent stem cell-derived MSC cannot be over-
looked and beta cell differentiation has not been reported.

Table 1 Differential expression of markers on mesenchymal cells isolated from different sources

Type Source of
MSC

Positive expression Negative expression Beta cell
differentiation
reported

Reference

Adult tissues
derived

Peripheral
blood

CD105, CD90, CD73, CD73, CD44, CD90.1, CD29,
CD105, CD106, CD140α

CD34, CD19, CD11b No [26]

Bone marrow CD105, CD13, CD140b, CD147, CD151, CD276,
CD29, CD44, CD47, CD59, CD73, CD81, CD90, CD98

CD14, CD31, CD34, CD45 Yes [27]

Skin/foreskin CD29, CD44, CD73, CD90, CD105, vimentin CD34, CD45, HLADR No [28]

Adipose CD9, CD29, CD44, CD54, CD73, CD90, CD105,
CD106, CD146, CD166

CD14, CD31, CD34, CD45,
CD133, CD144, HLA-DR, STRO-1

Yes [29]

Urine CD29, CD44, CD54, CD73, CD90, CD105, CD166,
STRO-1, Oct-4, Klf-4, Sox-17, vimentin

CD41, HLA-DR Yes [30, 31]

Heart CD44, CD105, CD29, CD90 CD14, CD45, CD34, CD31 No [32]

Dental CD13, CD29, CD44, CD49, CD73, CD90, CD146,
STRO-1, Oct-3/4, NANOG, SSEA-3

CD14, CD31, CD34, CD45,
HLADR

Yes [33, 34]

Skeletal
muscle

CD29, CD44, CD49E, CD56, CD73, CD90, CD105,
HLA-I

CD34, CD45 No [35]

Pancreas CD105, CD90, CD73, CD44, CD29, CD13, nestin,
vimentin, CD146, NG2, α-SMA, PDGF-R β

CD31, CD34, and CD45, CK19,
CA19.9

Yes [36]

Lung CD73, CD90, and CD105, vimentin, prolyl-4-
hydroxylase

CD14, CD34, CD45 No [37]

Pluripotent
stem cell
derived

ESC CD29, CD44, CD73, CD105, SSEA-4, CD34, CD45, HLADR No [38]

iPSC CD29, CD44, CD166, CD73, CD105, KDR, MSX2 CD34, CD45, HLADR No [39]

Birth related
tissue derived

Wharton jelly CD44, CD73, CD90, CD105, CD166 CD14, CD34, CD45 Yes [40]

Placenta CD105, CD73, CD90c-kit, Thy-1, Oct-4, SOX2, hTERT,
SSEA-1,3,4, TRA-1

CD34, CD45, CD14 or CD11b,
CD19, HLA-DR

Yes [41, 42]

Umbilical
cord

CD73, CD90, CD105, Oct-4, Nanog, ABCG2, Sox-2,
Nestin

CD34, CD45, CD19, HLA-DR Yes [43, 44]

Chorionic villi CD44, CD117, CD105, α-SMA, CD49, CD146, CD106,
CD166, Stro-1, vWF

CD34, CD45, CD19, HLA-DR No [45]

Chorionic
membrane

CD44, CD49, CD56, CD73, CD90, CD105 CD45, CD34, CD14, CD31,
EPCAM, HLA-DR

No [45]

Cord blood CD29, CD 73, CD105, CD44, Oct-4, Sox-1, Sox2,
NANOG, ABCG2, Nestin

CD34, CD45 Yes [44]

Limb bud CD13, CD29, CD44, CD90, CD105, CD106, SCA1,
Runx2, SOX 9

CD3, CD5, CD11b, CD14, CD15,
CD34, CD45, CD45RA, HLA-DR

No [46, 47]

Endometrium CD73, CD90, CD105, CD166, HLA-ABC, Oct-4, CD14, CD34, CD45, HLA-DR No [48]

Amniotic
membrane

CD73, CD90, CD105, Oct-4, SSEA-4, Tra-1 CD11b, CD14, CD19, CD79α,
CD34, CD45, HLA-DR

No [49, 50]

Amniotic
fluid

CD73, CD90, CD105, CD166, MHC class I, Oct-4, EA-
1

CD 45, CD40, CD34, CD14, HLA-
DR

Yes [51]
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Mesenchymal cells from birth-related tissues have the
great advantage in terms of the immunomodulation and
plasticity for beta cell differentiation. Though allogenic,
the immunosuppressive nature of the cells coupled with
non-invasive method of isolation makes the perinatal-de-
rived MSC an ideal candidate for diabetic therapy.
Besides, the readiness in terms of the availability with
minimal ethical issues makes them even more attractive.
The main sources of MSC from perinatal tissues are the
Wharton jelly, placenta, umbilical cord, chorionic villi,
chorionic membrane, cord blood, limb bud, endomet-
rium, amniotic fluid, and amniotic membrane [9]. MSC
isolated from the umbilical cord and placenta have vari-
able expression of pluripotent markers like Oct 3/4,
SSEA1, and NANOG (differential gene expression given
in Table 1), which undoubtedly contribute to their broad
range of differentiation and proliferative capacity [57]. A
human clinical trial involving the transplantation of
amniotic fluid-derived MSC transplanted in diabetic
subjects has shown protective effect on the damaged
pancreatic cells of the patients, by interfering with insu-
lin receptor/PI3K signaling pathway [58]. One-step
differentiation of CD117+ cells of amniotic-derived MSC
has shown the expression of PDX1 and other pancre-
atic-related genes [59]. Research also suggests that um-
bilical cord- and placenta-derived MSC have basal
expression of pancreatic progenitors; however, this is
again donor and protocol dependent [60]. Serum-free
culture of chorionic villus-derived MSC has demon-
strated the formation of islet-like clusters of GSIS quality
[61]. Unlike the adult tissue-derived mesenchymal cells,
most of the perinatal tissue-derived MSC have demon-
strated robust trilineage differentiation exhibiting the
plasticity similar to embryonic stem cells and pluripotent
stem cells [62, 63].
Alternatively, functional glucose-responsive, insulin-se-

creting cells, derived from patients’ own MSC and gen-
erated in large numbers by small molecule-aided non-
integrative methods, can be a better solution for curing
diabetes [14]. Extensive literature is available for small
molecule-based beta cell differentiation, especially on
bone marrow-derived mesenchymal cells (Table 2).

Small molecules in regenerative medicine
In pharmacology and molecular biology, a small mol-
ecule is defined as “a compound of low molecular
weight, which can diffuse into the cells to inhibit or
improve a biological process” [84]. Cell therapy becomes
feasible only when robust functional cells can be gener-
ated in unlimited quantities for transplantation. Stem
cell therapy incorporates processes of reprogramming
(process in which the somatic cell is converted back into
pluripotent stage), transdifferentiation (direct conversion of
one mature somatic cell into another), or dedifferentiation

(conversion of mature somatic cell into their immature pro-
genitor stage) to generate a desired cell type. Even though
most of the protocols generate the required cells, many of
them are non-functional and in some cases fail to restore
the disease condition in vivo [85]. The demand for generat-
ing biologically active differentiated cells was a driving force
for researchers to screen small molecules capable of direct-
ing cell-specific differentiation.
Initially, small molecules were used to modify the re-

programming efficiency of somatic cells by replacing
transcription factors and further extensive studies have
led to the discovery of molecules which can maintain
the self-renewal and differentiation [86]. Not only can
small molecules replace the transcription factors for re-
programming but can also be manipulated effectively to
achieve robust differentiation [87]. Their effects have
been specific and reversible [86]. Notable advantage of
chemical formulations is that they are easy to handle
and cost effective compared to transcription factor-me-
diated protocols [88]. Moreover, small molecules can aid
the progression to feeder-free and serum-free protocols
of stem cell culture [89]. Furthermore, they can reduce
the use of non-compliant, animal-derived, and recom-
binant products [90]. The expression of stage-specific
markers and the hierarchical targeting of signal pathways
are important to generate mature beta cells from any type
of stem cell [91]. Several key small molecules, which can
potentially inhibit or activate the key beta cell signaling
pathways, have already been reported [92].

Small molecule induced MSC differentiation to
beta cell-like cells
Beta cell differentiation from MSC follows two main
steps. Firstly, the cells are differentiated into pancreatic
progenitors followed by beta cell maturation (Fig. 1).
Pancreatic progenitor differentiation was achieved
mostly using nicotinamide with or without growth fac-
tors or peptides in high glucose culture (Table 2). In
addition, chemicals like L-taurine and sodium butyrate
also augmented the endocrine differentiation of MSC.
The key markers analyzed during the pancreatic pro-
genitor stage are PDX1, NKX6.1, and NGN3. The final
maturation to beta-like cells was achieved by nicotina-
mide combined with exendin-4 or glucagon-like pep-
tide-1 (GLP-1), and the critical genes analyzed included
ISL1, insulin, and c-peptide. Compared to MSC differen-
tiation, ESC- and iPSC-based protocols mainly comprise
of three to five differentiation stages targeting specific
signal pathways at each stage to achieve beta cell gener-
ation (Fig. 1). The different stages for pluripotent stem
cells are the definitive endoderm (primitive tube and
posterior foregut achieved separately or combined), pan-
creatic progenitor, and beta cell maturation. However,
most of the MSC differentiation, unlike ESC- or iPSC-
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based differentiation, starts with a stage-specific pancre-
atic differentiation. Stage-specific endodermal differenti-
ation is significant for generating efficient pancreatic
lineage from MSC [93]. Mostly, the endoderm stage re-
mains short that it may not be detected due to the
strong signaling toward the next differentiation stage,
which is pancreatic specification. Table 2 summarizes
some of the important protocols for beta cell induction
from MSC.
Conclusively, the MSC-based protocols take min-

imal time (7–25 days) to generate beta cell-like cells
in vitro [94, 95]. Most of the protocols incorporate
high glucose culture to drive the endocrine differenti-
ation; however, the mechanism responsible remains
unknown. Santos et al. have demonstrated that the
differentiated cells have displayed abnormal pheno-
types and consist of mixed population of endocrine
cells [67]. Besides, some of the protocols have min-
imal expression of the key beta cell markers NKX6.1
and PDX1 [65, 73, 74, 81]. Irrespective of the large
number of protocols, very few have succeeded to gen-
erate glucose-stimulated insulin secreted (GSIS) cells
from MSC [81]. Many have failed to demonstrate glu-
cose-specific insulin secretory responses, and have
variable pancreatic marker expression (beta or alpha
or beta and delta genes expressed together in the
same cell) [96, 97].
Data suggest that mesenchymal stem cells are ideal

protectants that aid in the survival of cell grafts after

transplantation in vivo [98]. Islets, co-transplanted with
MSC as protectants, were able to survive 2 months more
than the animals transplanted with islets alone [99]. Re-
sults also suggest that the mesenchymal cells trans-
planted alone have also generated insulin-secreting cells
and reversed the hyperglycemia in animal models by
driving the repair of the damaged cells through the para-
crine activity of MSC [100]. Follow-up of a clinical trial
involving the infusion of MSC in T2DM patients has
shown promising improvements in the blood glucose
levels, thereby reducing the diabetic complications in the
subjects [101].

Discussion
Current MSC-based protocols for beta cells generate a
variable population of non-functional cells with abnor-
mal phenotypes. Furthermore, the efficiency of beta cell
differentiation is also lower, compared to the pluripotent
stem cell-based differentiation (the average efficiency re-
ported from the differentiation of iPSC and MSC is 80
and 60% respectively). iPSC-based research has helped
to have a better understanding of the key genes neces-
sary for the beta cell differentiation. For an efficient
differentiation, the cells are converted into endoderm
and further differentiated into pancreatic cells (which gen-
erate a mixture of endocrine cells) [102]. Recent chemical-
based differentiation of patient-derived iPSC has revealed
that the stage-specific expression of markers PDX1,
NKX6.1, NEUROD1, and MAFA is critical for generating

Fig. 1 Stages of beta cell differentiation from pluripotent stem cells (PSC) and mesenchymal stem cells. Pluripotent stem cells like ESC/iPSC follow hierarchical
targeting of signaling pathways to drive stage-specific genes to generate beta cells. MSC-based protocols do not follow an endoderm differentiation before the
endocrine stage. KGF keratinocyte growth factor, T3 tri-iodo thyronine, XXi gamma secretase inhibitor, GLP-1 glucagon-like peptide 1
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functional cells during the course of differentiation [20].
MSC-based protocols primarily focus on generating insu-
lin-positive cells but do not focus on the stage-specific ex-
pression of genes. Furthermore, positive insulin gene
expression may not necessarily drive the release of the
hormone from the cells. In addition to insulin gene ex-
pression, the co-expression of PDX1 and NKX6.1 is
equally important to generate mature beta cells [103].
Critical analysis suggests that irrespective of the PDX1
and NKX6.1 expression in some protocols, the cells are
not functional. The percentages of cells expressing the key
mature beta cell markers are also lower following the

differentiation. One possible explanation for this
phenomenon can be a low expression of PDX1/NKX6.1,
regardless of the PDX1 expression. PDX1 functions to-
gether with NKX6.1 to initiate insulin transcription (or in-
sulin gene expression) during the differentiation, which
results in the release of the C-peptide molecule. If PDX1
and NKX6.1 levels are high, the transcription of insulin
gene is augmented leading to elevated levels of C-peptide
release (Fig. 2) [104]. On the other hand, reduced PDX1
and NKX6.1 gene levels result in the decrease of the insu-
lin gene transcription leading to the generation of non-
functional cells [105]. Therefore, the co-expression of

Fig. 2 Synergistic action between PDX1 and NKX6.1 regulates C-peptide release. PDX1 functions together with NKX6.1 to initiate insulin transcription
(or gene expression) during the differentiation, which results in the generation of functional beta cells. If PDX1 and NKX6.1 levels are high, the
transcription of insulin gene will be increased leading to positive expression of MAFA and NEUROD1, thereby generating functional beta cells. On the
other hand, reduced PDX1 and NKX6.1 gene levels will result in the decrease of the insulin gene further leading to the downstream generation of
mixed or variable cells. The green arrow indicates increased levels of gene expression. The red arrow indicates decreased levels of gene expression.
PDX1 duodenal homeobox 1, NKX6.1 NK6 homeobox 1, MAFA MAF BZIP transcription factor A, NEUROD1 neuronal differentiation 1
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markers PDX1 and NKX6.1 is critical to generate func-
tional beta cells. In addition, mechanistic studies also re-
veal that the PDX1 drives the co-expression of NEUROD1
and MAFA, which in turn is also significant during the
maturation of beta cells (Fig. 2) [91, 106]. Furthermore, to
maintain the PDX1 levels, the synergistic expression of
FoxA2 is also critical during the endodermal and pancre-
atic stages [107, 108]. The high efficiency of pluripotent
stem cell-based differentiation is due to the FoxA2 expres-
sion in the early stages of beta cell differentiation. During
the initial endoderm differentiation from pluripotent stem
cells, Sox-17+ve/FoxA2+ve cells are generated which in turn
are converted to pancreatic cells. However, FoxA2 has not
been analyzed in most MSC-based differentiation proto-
cols. Interestingly, a single study incorporating lentiviral
transfection of micoRNAs has shown the FoxA2 expres-
sion during the differentiation, thereby increasing the effi-
ciency of conversion to 85% [75].
Nicotinamide has been a critical component for the

generation of pancreatic cells from MSC (Table 2). A
single study involving nicotinamide alone has generated
insulin-secreting cells from MSC in high glucose culture
[65]. Cells transplanted together with nicotinamide have
generated insulin-positive cells in vivo aiding in the
homing of cells in the pancreas [109]. Results suggest
that nicotinamide aids in the generation of insulin-posi-
tive cells from undifferentiated cells; however, the exact
mechanism of nicotinamide-based conversion has been
unknown [110]. Some small molecules can function ef-
fectively in the presence of or combined with other fac-
tors. Synergistic action between nicotinamide and bone
morphogenetic protein-4 augments the levels of PDX1,
whereas their effects are not considerable when incorpo-
rated alone [111]. Furthermore, activin A combined with
betacellulin helps to maintain PDX1 expression during
pancreatic differentiation and maturation in ESC [112].
Interestingly, nicotinamide with betacellulin has also im-
proved the differentiation in bone marrow-derived MSC
[74].
The variable low percentage of pancreatic cell differen-

tiation from MSC suggests an impure donor culture and
therefore generating a homogenous culture before differ-
entiation is critical. Epigenetic modifiers like 5-aza cyti-
dine and Rg108, which belong to the well-known class
of epigenetic modifiers, can facilitate the generation of a
homogenous culture [113]. Bone marrow MSC treated
with 5-aza cytidine have been shown to generate GSIS-
positive cells in a high glucose culture [114]. Moreover,
mesodermal in origin, MSC could be less plastic to direct
pancreatic differentiation, as beta cells are endoderm-de-
rived. This germ layer hindrance can also account for the
low efficiency of current MSC-based differentiation as
most protocols follow the pancreatic differentiation first.
One possible solution to achieve successful differentiation

from MSC is to bring the cells initially into the same
nature that of beta cells (in this context, endoderm).
Moreover, this germ layer interconversion can be easily
achieved by small molecules [115]. Furthermore, a stage-
specific endodermal conversion and late stream differenti-
ation using sequential treatment with small molecules was
reported to generate 85% of functional beta cells from
urine-derived MSC [76]. These results suggest that the
endodermal differentiation is critical to generate efficient
beta cells from MSC. Recently, a potent molecule, IDE1
(inducer of definitive endoderm 1), has been reported to
generate a homogenous endodermal population (Sox-
17+ve/FoxA2+ve) in vitro [116]. IDE1 can replace activin A
suggesting that proper screening can identify molecules
that can replace recombinant proteins, and this, in turn,
can generate a clinically compliant protocol for therapy
[117]. Besides, our in-lab analysis of bone marrow-derived
MSC has revealed a positive expression of Sox-17 with the
treatment of IDE1 (Fig. 3).
Simultaneous induction and inhibition of pathways

with epigenetic modification are also crucial for accom-
plishing robust differentiation. Comparing the different
protocols of the beta cell differentiation from different
sources, the key signaling pathways that are crucial in
the differentiation of MSC are BMP, Wnt, Nodal, Notch,
Shh, retinoic acid, EGF, and FGF (Fig. 4). Favoring Wnt
and Nodal signaling has been reported to generate pan-
creatic cells from bone marrow- and fat-derived MSC.
Selective inhibition of ALK pathway (ALK 1, 2, 3, 6)
coupled with Notch inhibition is ideal for the generation
of robust endodermal cells from fat-derived MSC [93].
However, the differentiation of pancreatic endocrine
cells from iPSC is reported to be dose dependent on
Notch inhibition. As such, the effects are comparable in
MSC, which needs to be further investigated. Increasing
the EGF signaling by betacellulin has favorable effects on
the generation of PDX1+ cells from MSC [74]. The pro-
teins and substrates linked to the EGF signaling (PI3K,
AKT, mTOR) and HGF signaling (MEK, MAPK, and
ERK) play important role in the proliferation, differenti-
ation, and cell survival of pancreatic lineage. A small
molecule SB0203580 that interferes with both EGF and
HGF pathways has replaced the need for the recombinant
supply in culture during the differentiation of urine-de-
rived MSC [76]. In addition, notch and gamma secretase
inhibition also appears to be crucial for hindering the
transcription of genes non-ideal for beta cell differenti-
ation. Furthermore, epigenetic changes also influence the
differentiation considerably. However, limited information
is available on the epigenetic implications during pancre-
atic differentiation in MSC. Small molecules like trichosta-
tin and sodium butyrate help to maintain the necessary
acetylation patterns of genes favoring the differenti-
ation and repressing the ones for hepatic fate [118].
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Histone methyl transferase inhibitors promote the FoxA2-
dependent pancreatic fate and downstream transcription
of INS, MAFA genes for endocrine specification [119].
The various methods used for confirming the purity of

beta cells from MSC are not well advanced. Apart from
the typical stage-specific analysis of genes at the DNA
and RNA level, not much improvement has been made
to characterize them in vitro like ESC- or iPSC-derived
cells. Selective gene analysis (PDX1, NGN3, C-peptide,
and insulin) and occasional dithizone staining are per-
formed to characterize the differentiated cells from MSC
[120]. Furthermore, microscopic analysis (transmission
electron microscopy TEM) can be performed to check
the insulin-secreting granular structure [120, 121].
Insulin and C-peptide release with different glucose re-
sponses can be used to confirm the functional purity of

induced cells for therapeutics. Recently, calcium channel
analysis has become popular for assessing the in vitro
functionality of stem cell-derived beta cells [121]. Never-
theless, in vivo model studies have not been performed
for most protocols (Table 2), and where they were con-
ducted, long-term analyses need to be carried out.
Irrespective of the different sources of MSC, most of

the beta cell differentiation was reported from the bone
marrow and umbilical cord (Tables 1 and 2). Bone mar-
row-derived MSC are universal and stand superior in
terms of generating clinically graded cells for human
therapy [122]. Furthermore, perinatal tissue-derived cells
secrete more c-peptide than bone marrow-derived cells
after differentiation [123]. This can be due to naïve na-
ture of the cells, which accounts for the flexibility for
differentiation. However, translation of perinatal tissue-

Fig. 3 Sox-17 expression on bone marrow-derived mesenchymal stem cells after the treatment with 100 μM IDE1. Immunostaining of cells
demonstrates the variable expression of the marker on different MSC donor cells. Confocal images taken by Olympus FV3000 fluorescent
microscope at × 10 magnification, scale bar 100 μm. The blue color indicates individual nuclear staining of the cells by DAPI, and the red color
indicates the Sox-17 expression. Antibody control indicates the sample with secondary antibody alone (no Sox-17 antibody added)
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derived mesenchymal cells needs further extensive stud-
ies related to immunogenicity.

Conclusion
Apart from the recent advances, diabetic cell therapy has
been facing challenges for the successful transplantation
of grafts [124]. One possible treatment for diabetes is
the transplantation of glucose-responsive insulin-secret-
ing cells into the body [124]. Small molecule-aided, non-
integrative methods can be utilized to produce large
numbers of functional, glucose-responsive, insulin-se-
creting beta cells derived from patients’ own cells [14].
However, beta cell therapy requires ample quantities of
functional cells for transplantation (at least 109 for a sin-
gle graft) [125]. The population of target cells that are
required for beta cell therapies is proportional to the
amount of parent cells isolated. Even though the bone
marrow-derived MSC are the pioneer cells in the clinical
research, the method of sample isolation is invasive [31].
Further research is required to isolate and characterize
MSC so they can be isolated from less invasive samples
like the skin, blood, and urine. In particular, MSC iso-
lated from urine are an attractive donor-derived source
for regenerative therapy [31]. Research also suggests the

generation of functional beta cells from urine-derived
MSC by small molecule treatment alone [76]. Improve-
ments in differentiation can be achieved by screening
and thereby incorporating small molecules to drive
stand-alone and co-expression of functional markers in
other tissue-derived MSC. Analysis needs to be done to
screen and test small molecules that can favor the differ-
entiation of functional beta cells from MSC.
Current protocols mostly generate cells that exhibit

some biological characteristics of beta cells. The cells ex-
press some of the key beta cell markers; however, further
optimization is required to generate mature, good-qual-
ity cells for therapy. MSC differentiation combined with
the appropriate screening of small molecules can pos-
sibly generate any desired cell type for autologous per-
sonalized therapy. Moreover, clinically graded MSC are
commercially available enabling screening and parallel
differentiation to establish feasibility of the different pro-
tocols for clinical translation. Manufacturing beta cells
from MSC using small molecules can facilitate the devel-
opment of clinically compliant cells and superior grade
cells for therapy [126]. As chemical-based differentiation
can aid in the expression of the key functional genes
during differentiation, the cells will be able to perform

Fig. 4 Important signaling pathways that govern the differentiation of pancreatic conversion and the mechanism of action of different small
molecules and peptides reported on pancreatic differentiation from MSC. Violet boxes represent the small molecule that governs the
representative signaling pathways or epigenetic modification. The substrates or proteins in the pathway are represented in a rounded shape. HGF
hepatocyte growth factor, SHH sonic hedgehog, APP amyloid precursor protein, RA retinoic acid, ROS reactive oxygen species, EGF epidermal
growth factor, HDAC1 histone deacetylase inhibitor 1, HDAC2 histone deacetylase inhibitor 2, Ac acetylation marks, FGF fibroblast growth factor,
PKC protein kinase C, BMP bone morphogenic protein, TGF β transforming growth factor, GlyR glycine receptor, GLP-1 glucagon-like protein 1
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Table 3 Small molecules and peptides used for beta cell differentiation from MSC. Physiological or biochemical actions and
substitutes for the small molecules/peptides used to generate beta cells from different tissue-derived MSC

Small molecule or peptide—name Structure Mode of action
and effect

Possible
substitute

Ref

Nicotinamide PARP inhibition,
drives beta cell
outgrowth

Not known [131]

IDE-1 (inducer of definitive endoderm 1) Favors nodal
signaling, induces
Sox-17-reporter

IDE-2 [86, 116, 132]

L-Taurine (2-aminoethanesulfonic acid) Cryoprotective
agent binding with
glycine receptors,
involved in calcium
signaling

Not known [133]

Vitamin C Reducing p53
levels and
lightening
senescence,
thereby inducing
complete
reprogramming

Not known [134]

ILV (indolactam V) Protein kinase C
activation, can
induce pancreatic
progenitor
differentiation

PbdU [135, 136]

RA (retinoic acid) Receptor for
retinoic acid
receptors;
promotes
differentiation into
neurons, glia cells,
adipocytes

Not known [136, 137]

SB203580 MAP kinase
(MAPKAP kinase-2

PD98059,
U0216

[138]
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Table 3 Small molecules and peptides used for beta cell differentiation from MSC. Physiological or biochemical actions and
substitutes for the small molecules/peptides used to generate beta cells from different tissue-derived MSC (Continued)
Small molecule or peptide—name Structure Mode of action

and effect
Possible
substitute

Ref

and P38 MAPK)
inhibitor, heat
shock protein
inhibition

Trichostatin Class 1 and II
histone deacetylase
inhibitor, removes
acetyl groups from
the histone tails.

Not known [139]

Sodium butyrate Class I inhibitor of
histone
deacetylases

Not known [140]

Lithium chloride Promotes Wnt
signaling, blocks
glycogen synthase
kinase 3-β pathway

SB216763,
CHIR99021

[141]

PD0325901 MEK/ERK kinase
pathway inhibitor

Not known [142]

LDN 193189 Inhibitor of ALK 1,2,
3,6 pathways

Not known [143]
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functionally equivalent to mature beta cells after trans-
plantation [127]. Nevertheless, immature pancreatic cells
from mesenchymal cells (FoxA2+/PDX1+/NKX6.1+)
transplanted in diabetic mouse were able to integrate and
differentiate into mature cells (INS+) and rapidly reverse
the disease condition [128]. Likewise, differentiated beta
cell-like cells from the donor MSC can integrate, survive,
and efficiently function after the clinical transplantation in
patients. As transdifferentiated or differentiated using
small molecules from patients’ own cells, there will be no
rejection after the transplantation of MSC-derived beta
cells. Besides, compared to pluripotent stem cell-differen-
tiated cells, the chances of tumorigenicity will be less.

Furthermore, the toxicity or residual effect from the small
molecule treatment will be minimal as the concentrations
administered for differentiation is small (details of small
molecules used for differentiation is provided in Table 3).
The normal concentration of small molecules tested for
beta cell differentiation ranges from 10 nM–10mM, which
is comparatively lesser than the recommended small mol-
ecule drug concentrations for diabetic treatment by US
Food and Administration (FDA) in human body [129].
However, once the proper differentiation will be achieved
by the treatment of the small molecules, the differentiated
cells will be maintained in normal beta cell culture condi-
tions (RPMI with serum and antibiotics). Furthermore,

Table 3 Small molecules and peptides used for beta cell differentiation from MSC. Physiological or biochemical actions and
substitutes for the small molecules/peptides used to generate beta cells from different tissue-derived MSC (Continued)
Small molecule or peptide—name Structure Mode of action

and effect
Possible
substitute

Ref

DAPT Gamma secretase
inhibition

Compound
-E

[121]

Pentagastrin CCKB agonist,
expands beta cell
mass.

Not known [144]

GLP-1 Augments
maturation,
belongs to the
group of hormones
that reduce blood
glucose by binding
with GLP receptors

Exendin,
Exenatide,
semaglutide

[145, 146]

Exendin-4 GLP receptors
agonist

GLP-1 [147]
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this will help to remove any residual effects from the
chemicals prior to transplantation. MSC can be easily
maintained under feeder-free and serum-free conditions
compared to other widely used stem cells [130]. Although
non-differentiated donor-derived MSC do not impart an
immune reaction after transplantation, studies need to be
conducted to determine if the small molecule treatment
will cause immunogenicity.
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