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ABSTRACT

Cancer genome sequencing has led to important dis-
coveries such as the identification of cancer genes.
However, challenges remain in the analysis of can-
cer genome sequencing. One significant issue is
that mutations identified by multiple variant callers
are frequently discordant even when using the same
genome sequencing data. For insertion and dele-
tion mutations, oftentimes there is no agreement
among different callers. Identifying somatic muta-
tions involves read mapping and variant calling, a
complicated process that uses many parameters
and model tuning. To validate the identification of
true mutations, we developed a method using k-mer
sequences. First, we characterized the landscape
of unique versus non-unique k-mers in the human
genome. Second, we developed a software pack-
age, KmerVC, to validate the given somatic muta-
tions from sequencing data. Our program validates
the occurrence of a mutation based on statistically
significant difference in frequency of k-mers with
and without a mutation from matched normal and
tumor sequences. Third, we tested our method on
both simulated and cancer genome sequencing data.
Counting k-mer involving mutations effectively val-
idated true positive mutations including insertions
and deletions across different individual samples in
a reproducible manner. Thus, we demonstrated a
straightforward approach for rapidly validating mu-
tations from cancer genome sequencing data.

INTRODUCTION

Next-generation sequencing analysis has been widely
adopted in cancer research for identifying mutations and
other genetic aberrations (1). For example, The Cancer
Genome Atlas (TCGA) Project has relied on exome se-
quencing to identify numerous driver mutations in over

30 cancers. These catalogues of cancer genetic alterations
provide insight into the underlying mechanisms of cancer
and are used clinically for predicting response to certain
therapies and have prognostic implications (2–4). However,
the analysis of cancer genome sequencing data relies on
human genome assemblies for reference alignment. Since
mapping sequence reads enables the identification of mu-
tations, their positions and their allelic fractions, accurate
variant analysis depends on alignment reference mapping
accuracy.

Although cancer genome sequencing has become routine
for biomedical research studies and diagnostic genetic test-
ing of tumors, there are significant challenges in accurately
identifying cancer mutations. The complexity of this task is
evident in the discordant results produced by different mu-
tation callers (5). The relatively sparse overlap among vari-
ous mutations callers is a major dilemma and directly stems
from the use of the human reference genome for sequence
alignment (6). The human reference build is a static repre-
sentation of assembled sequences derived from the genomes
of 13 individuals, encompasses only a small proportion of
human genome diversity and lacks feature indicating struc-
tural complexity. The broad spectrum of novel and com-
plex somatic alterations present in cancer genomes is often
missed or misclassified due to these limitations of the refer-
ence genome. For example, short sequence reads unique to
a specific tumor genome and containing a novel mutation
may prove to be unmappable and thus are excluded from
analysis. Unknown homologous or paralogous genes are
similarly problematic due to uncertain mapping locations
of the genomic reads.

A major challenge in alignment-based variant calling is
the identification of insertions and deletions (indels); this
challenge is intrinsically related to alignment scoring met-
rics. Single-nucleotide variants such as substitutions have a
lower alignment penalty score than indels. As a result, reads
with substitutions have higher alignment scores compared
to reads with indels. Lowering the penalty for indels does
not resolve this issue (7). For example, we observed that
modifying the penalty threshold resulted in the interpreta-
tion of true substitutions as one-base indels whenever adja-
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cent bases matched the alternate allele. Altering these set-
tings leads to the calling of spurious indels for ∼25% of the
substitutions. Furthermore, variant calling programs such
as GATK (8), Mutect2 (9) and VarScan2 (10) require statis-
tical models to identify mutation events from mapped reads.
Despite these programs’ ability to identify true positive mu-
tations, there are issues with reproducibility when making
comparisons among different callers or even when using the
same caller repeatedly (11,12). For example, repeating the
analysis for discovering mutations can lead to a different
set of variant calls despite starting from the same dataset of
mapped reads.

For this study, we examined the properties of k-mers,
short segments of DNA sequence, that include somatic mu-
tations identified in cancer genome sequencing data. Our
goal was to determine the k-mer properties of somatic mu-
tations and to assess the properties of unique k-mers for
validating true versus artifactual mutation calls. Previous
studies have utilized k-mers to analyze sequences from or-
ganisms lacking a complete reference genome (13). K-mers
are used in sequencing alignment programs such as BLAST,
BLAT, BWA (14–16) and RNA-seq analysis (17,18). Some
studies have used k-mers to genotype known variants (19),
capture reads for efficient target mutation validation from
targeted sequencing (20) or construct local assemblies for
identifying somatic variants in tumor samples (21). How-
ever, none of these previously published studies has con-
ducted a thorough, systematic evaluation of the property of
k-mers related to cancer mutations found in exome or whole
genome sequence data.

For this analysis, we developed a computational tool,
KmerVC, that determines the properties of k-mers such as
their uniqueness in the human genome reference. Moreover,
we determined which specific k-mer properties defined mu-
tations as somatic. After obtaining k-mer counts, we used
a binomial statistical test to validate cancer mutations and
given mutation calls. Our results suggest that using k-mers
without a conventional static reference has the potential for
first-pass mutation calling.

MATERIALS AND METHODS

We implemented KmerVC as a Python 3.6/2.7 software
package consisting of a command-line program, kmervc.py,
and a reusable library, kmervclib. The GitHub repository
is open access at https://github.com/compbio/kmerVC. The
KmerVC program requires three inputs: (i) a list of muta-
tion calls of interest in VCF or BED file format; (ii) the ref-
erence genome sequence; and (iii) the primary sequencing
data in FASTQ or FASTA format.

The overall analysis pipeline of KmerVC

The overall structure of KmerVC is outlined in Figure 1.
Our tool has five steps: (i) pre-processing to assess the
uniqueness of a k-mer in the human genome; (ii) count-
ing k-mers in sequencing data; (iii) retrieving expected k-
mers from regions surrounding mutation calls of inter-
est; (iv) compiling k-mer counts related to called muta-
tions from a variant caller; and (v) validating true positive
mutations.

Pre-processing. With the default settings, we used JELLY-
FISH, a k-mer frequency counting software to obtain k-mer
counts (22) using the following command-line call:

jellyfish count -m 31 -s 100M -t 24 –C –o grch38 31mer.jf
grch38.fa

Counting k-mers. Accounting for multiple FASTQ input
files, we obtain k-mer counts using the following command-
line calls:

jellyfish count -m 31 -s 100M -t 24 -C -o normal.jf -F 2
normal R1.fastq normal R2.fastq

jellyfish count -m 31 -s 100M -t 24 -C -o tumor.jf -F 2
tumor R1.fastq tumor R2.fastq

Retrieving expected k-mers. We extracted the sequence re-
gions and generated a set of k-mers encompassing each mu-
tation. This process occurs with a list of mutation coordi-
nates used to generate a BED file. For a given mutation co-
ordinate and a specific k-mer length denoted by k, each seg-
ment is defined by the mutation coordinate minus (k – 1)
and plus k. With this BED file, we extract the correspond-
ing sequences from the reference genome using the genomic
analysis toolkit, BedTools. Then, we generated a FASTA
file of the surrounding sequence regions with the following
command:

bedtools getfasta -fi reference.fa -fo regions.fa -bed re-
gions.bed -name

The BedTools getfasta functions through indexing the
reference genome FASTA file and quickly identifying the
specific sequence segment. We selected the use of Bedtools
over another genome analysis toolkit Samtools, due to its
faster runtime efficiency. Using the segment of sequence sur-
rounding each variant, we determined whether the k-mers
were wild type, representing the reference versus being one
derived from mutation. Wild-type k-mers were obtained by
generating all k-mers that cover a segment containing the
variant position of interest. Mutation-containing k-mers
were generated: substituting the specified mutation at the
given variant position and similarly generating all k-mers
that include the mutation such as a substitution. Subse-
quently, we constructed a list of wild-type and mutant k-
mers particular to each variant provided as input. This
yielded a set of k-mers for each variant that we utilize to
assess its validation.

Further, where multiple somatic mutations exist in one k-
mer region, KmerVC validates them independently. How-
ever, -m (multiple mutations) arguments examine two po-
tential scenarios that would result due to the diploid chro-
mosome: (i) both mutations exist on the same chromosome
or (ii) each of the mutations exists on different chromo-
somes. The mutation k-mers differ in these two cases and
they are validated separately. In addition, we considered a
scenario in which there are multiple mutations in a k-mer
region. In this case, we deal with each pair of consecutive
mutations as we would in the case of two mutations in a re-
gion as just described. Cases in which more than two muta-
tions are contained in a single k-mer region were discarded
from further analysis and reported as such.

Compiling. We evaluated the total counts of unique k-
mers in the reference genome per variant. To identify a vari-

https://github.com/compbio/kmerVC
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Figure 1. Overview of pipeline. (A) Preprocessing. (i) Determining the frequency of every distinct k-mer in the reference genome to ascertain its uniqueness.
(ii) Determining the frequency of k-mers in normal and tumor FASTQ input files using JELLYFISH: a fast k-mer counting software. (B) Extraction. For
all variants, we obtained the surrounding sequence region and generated a set of respective k-mers that include the target. Overlapping regions have the
variants considered separately and consecutively accounted for in decomposition. Finally, non-unique normal and nonzero mutant k-mers are filtered
from the sets. (C) Compilation. For all variants, we obtained the frequency of the corresponding k-mer set from the pre-processed count dictionaries. (D)
Validation. We assess whether the variants are germline, somatic or otherwise using a binomial test. For the binomial test, we utilize a sequencing error
rate of 0.01 and an alpha value of 0.01. We determine whether the median counts of wild-type and mutant k-mers are nonequivalent in the normal sample
in the first test and whether the median counts of wild-type and mutant k-mers are nonequivalent in the tumor sample in the latter.

ant given its surrounding k-mers, it is important that a por-
tion of the k-mers is unique. We only proceeded with the
statistical analysis of variants that had five or more unique
k-mers in its surrounding region. We calculated the median
count for each variant’s generated set of wild-type and mu-
tant k-mers. We used the median value since it was more ro-
bust to sequencing errors and yielded more reliable results.

Validating. We performed statistical analysis using a bino-
mial or Poisson test provided by the scipy.stats Python pack-
age. First, we tested whether a candidate variant is germline
by determining the difference between wild-type and mu-
tation k-mer counts in the normal sample. Thereafter, we
determined whether the variant is somatic using the dif-
ference between counts of wild-type and mutation k-mer
counts in the tumor sample. We assumed a sequencing er-

ror rate of 1% and utilized an alpha value of 0.01. For the
insertion/deletion, we fixed the sequencing error rate as 0.01
regardless of their length, which is more stringent threshold
compared to adjusted lower sequencing error rate for longer
indels. These hyperparameters were tuned using simulated
data although users can choose their own value. In addi-
tion, we applied a Bonferroni correction to the alpha value
based on the number of tested variants. We validated a vari-
ant when the tests (i) failed to reject null hypothesis (i.e. that
it is wild type) in the normal sample and (ii) rejected the
null hypothesis in the tumor sample, thereby qualifying it
as a somatic mutation. In the case that both null hypothe-
ses were rejected, the variant was determined to be germline.
In all other cases, the variant was considered an artifact.
We required that the count of unique wild-type k-mers and
the count of unique mutant k-mers, which should not be
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present in the genome, were a threshold of 5 or above. This
threshold value ensured that the identified variants could
be mapped back to the genome with accuracy and robust-
ness. Calls passing this criterion were determined to be true
positive somatic variants and thus validated.

We provided a validity assessment for each input variant
regarding its validity as described among one of several cat-
egories (Figure 2). A variant marked as ‘insufficient’ had
not met the proper conditions regarding the count of sur-
rounding unique wild-type and unique mutant k-mers. As a
result, assessment of this variant and its validation were un-
reliable. A variant marked SNP affected possesses a count
of wild-type k-mers near 0; thus, the k-mer properties were
insufficient to proceed with the validation.

We consolidated the software’s analysis and results into
one final summary (Figure 2). In the final table, we orga-
nized the k-mer counts by mutations and determine whether
the counts of mutant k-mers sufficiently verified the muta-
tions using binomial tests that assume a sequencing error
rate of 1%. The summary table has reporting headers and
17 columns (Supplementary Table S1) with information re-
garding the variants and their surrounding k-mer regions.

Reference and sequence data

Reference genome and annotations. We downloaded
GRCh38 from the National Center for Biotechnology
Information (www.ncbi.nlm.nih.gov). Only the canonical
chromosomes and chromosome M were used in the analy-
sis. The coordinates of gaps (N) and repeats were obtained
from UCSC Genome Browser: gap.txt.gz. For the defini-
tion of coding sequence, we downloaded consensus coding
sequence (CCDS) from NCBI. RepeatMasker by Institute
for Systems Biology provides the list of the repetitive DNA
families. We downloaded hg38.fa.out.gz (RepeatMasker
open-4.0.6) from repeatmasker.org/species/hg.html.

Simulated data. We simulated sequence dataset contain-
ing substitutions, insertions, deletions and indels from 10
randomly selected regions by BedTools after excluding sex
chromosomes and regions with >10% of Ns (Supplemen-
tary Table S2). For instance, a segment of human GRCh38
chromosome 1 from positions 629640 to 5629640 (5 Mb)
was used as the reference sequence for these in silico data.
Then, we introduced mutations at 120 random positions
into this segment. The indels had six different base pair
lengths: 1, 3, 5, 10, 15 and 20. Two different datasets were
generated with one representing ‘normal’ and the other con-
taining the mutations. We used the read simulator wgsim
(http://github.com/lh3/wgsim) to generate simulated short
paired-end reads with 100 bp length at a depth of 25 (nor-
mal) and 50× coverage (mutation-containing). This simu-
lation incorporated a 1% sequencing error model. The fol-
lowing command was used:

wgsim -e0.01 -N625000 -1100 -2100 -r0.0 -R0.0 -X0.0 -S4
chrT.fa seq R1.fq seq R2.fq

All simulated sequencing data are publicly avail-
able at our website (https://dna-discovery.stanford.edu/
publicmaterial/software/kmervc/simulation/).

Exome sequencing data from TCGA. We downloaded
exome sequencing data (BAM files) of 50 colorectal cancers

from the Genomic Data Commons (GDC) data portal
(portal.gdc.cancer.gov). FASTQ files were derived from
BAM files using Picard SamToFastq (version 2.9.0). We
also downloaded four MAF (Mutation Annotation For-
mat) files generated by Mutect2, SomaticSniper, MuSE,
and VarScan2 Variant Aggregation and Masking from
the GDC data portal: (i) TCGA.COAD.mutect.03652df4-
6090-4f5a-a2ff-ee28a37f9301.DR-10.0.somatic.maf.gz;
(ii) TCGA.COAD.somaticsniper.70835251-ddd5-
4c0d-968e-1791bf6379f6.DR-10.0.somatic.maf.gz;
(iii) TCGA.COAD.muse.70cb1255-ec99-4c08-b482-
415f8375be3f.DR-10.0.somatic.maf.gz; and (iv)
TCGA.COAD.varscan.8177ce4f-02d8-4d75-a0d6-
1c5450ee08b0.DR-10.0.somatic.maf.gz. We only included
variants with ‘PASS’ in the ‘FILTER’.

In silico sequence data for indels. To test the performance
of our approach for validating indels, we examined a cate-
gory of sequence that is one of the most challenging cases.
Specifically, microsatellites (MSs) are composed of simple
tandem repeats (STRs) that are present throughout the hu-
man genome. STRs have different classes of repeat motifs
that include mono-, di-, tri- and tetranucleotide sequences.
MSs are prone to accumulating indel mutations at a high
frequency and are extremely difficult to identify reliably
given their repetitive structure.

We generated virtual VCF files that could be used as
inputs. First, we located MSs by searching for particu-
lar mononucleotide repeat motifs. This process involved
matching of single-nucleotide repeats against the reference
genome. This method gave us a total of 5751 MS regions.
Next, we identified insertions or deletions of up to three
bases occurring in these MS regions. Therefore, six vari-
ant calls were generated: three deletions and three insertions
with each of the MS’s repeated nucleotide with lengths from
1 to 3 bp. Finally, we created VCF files recoding the simu-
lated indels at these regions and utilized these files as input
to the KmerVC to evaluate their significance as plausible
mutations. This file, MS DNA indels grch38.vcf, is avail-
able at https://github.com/compbio/kmerVC.

RESULTS

Overview of k-mer evaluation

Our analysis of k-mer counts relied on the analysis of
matched samples to confirm candidate mutations (Figure
3). The use of matched normal versus tumor samples en-
ables us to eliminate germline polymorphisms, rare variant
and hereditary mutations. We determined the properties of
a somatic mutation and how it generates a series of novel
(neo) k-mers. These sequences are different from k-mers
present in the reference genome or the matched germline
comparison. These neo k-mers identify the somatic muta-
tions in the tumor. For instance, a substitution such as a G
to T will generate nine neo k-mers (length of nine bases) as
seen in Figure 3A. We utilized a sliding window to obtain
the k-mers of the designated lengths spanning the mutation
region of interest; this provided both mutation-containing
and wild-type k-mers. A normal genome yields no mutation
k-mers, while a tumor sample with mutations yields a sig-
nificant number of mutant k-mers. Similarly, the number of
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Figure 2. An example of final summary table. The final summary table with the validation status of variants by KmerVC.

Figure 3. Principle of k-mer counts for variant detection. (A) The majority of mutations generate neo k-mers. (B) The counts of k-mers are affected by
mutations. The mutation is noted by a red bar occurring with an exon that is denoted by a green box.

corresponding wild-type k-mers in the tumor will be lower if
the mutation is heterozygous and diminished if the mutation
is homozygous. For example, with a coverage of 50× the
count of mutant k-mers is expected to be 50 for homozy-
gous and 25 for heterozygous mutations in the tumor sam-
ple, assuming a 100% tumor purity (Figure 3B illustrates a
heterozygous example). A difference in the counts of wild-
type and mutant k-mers between the matched normal and
tumor sequencing data allows for the statistical assessment
of the validity of a somatic mutation variant.

Evaluation of genome-wide base positions by unique k-mers

For this study, one of the most important properties of a k-
mer is the uniqueness of its sequence compared to the total

number of k-mers present in the human genome reference
(GRCh38). Specifically, this means whether a given k-mer
appears only once in either the forward or reverse direction
of the genome reference. We postulated that mutations ap-
pearing in these unique ‘neo’ k-mers have specific proper-
ties that make them readily distinguishable (Supplementary
Figure S1).

We determined the number of unique k-mers in the refer-
ence. All k-mers in the reference genome were counted using
1 bp increments over its length. When the length of a k-mer
is ≥19 bases, >90% of distinctive k-mers are uniquely rep-
resented in the human genome reference (Supplementary
Figure S2). When k-mers are 31 bases in length, 96.96% of
these sequences are unique. Based on our analysis, k-mer
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lengths of >31 bases lead to only minimal increases (<2%
with 100-mers) in the proportion of unique k-mers among
distinctive k-mers (Supplementary Figure S2). This result
has been confirmed elsewhere (23).

It is important to note that the length of k-mers directly
determines the total fraction of unique k-mers. However,
we found that increasing the size of k-mers also leads to
greater probability of sequencing error artifact. Specifically,
we observed that there was a trade-off in that the distribu-
tion of longer k-mers and their properties could be artifac-
tually skewed by sequencing errors. Shorter length k-mers
were less prone to artifact from these errors. Another study
confirmed this issue (18). Thus, our software allows users to
select different k-mer lengths for their studies.

Having identified 31-mers as a length with suitable prop-
erties, we identified the total number of detectable bases
within the human genome reference. We used the follow-
ing definition of unique k-mer as related to individual base
positions in the reference. If one examines any given posi-
tion in the human genome reference, there are a total of 31
k-mers (length = 31) that overlap this base. Stating it differ-
ently, a sliding window provides a series of k-mers that cover
a given base position B with the first having B as its last po-
sition and the last having B as its first position. So long as
one of these 31-mers is unique, this base is considered map-
pable. For our analysis, we defined several terms. We defined
a ‘detectable base’ as one that overlaps five or more unique
31-mers. This metric provides robust and unique mapping
from multiple 31-mers even when they contain regions with
sequencing errors.

Similarly, we conducted an extensive analysis of genome
positions that are not mapped with unique k-mers. We used
the term ‘dark base’ to refer to a base position that is
covered by less than five unique 31-mers (Figure 4A). We
used the term ‘dark region’ to refer to a segment of se-
quence containing two or more adjacent dark bases. These
are segments of genome sequence that may have issues
aligning correctly to the reference. We provide the coordi-
nates of dark regions as BED files (dark bed.zip), which
can be downloaded from https://dna-discovery.stanford.
edu/publicmaterial/software/kmervc/.

Based on these definitions, we determined that 86% of
the reference genome bases can be mapped using unique k-
mers. As an added filter, we eliminated the unknown bases
(typically annotated with the character N), which comprise
5.3% of the reference genome and make up a total of 164
Mb. As a result, we found that 87.78% of the known bases
in genome reference are detectable by at least five or more
unique 31-mers. This high level of overall coverage based
on unique k-mers is remarkable given that more than two-
thirds of the human genome is composed of repeat elements
and low-complexity regions (24). As expected, most (96%)
of dark regions were located within repetitive DNA fam-
ilies. Mostly, short interspersed nuclear elements, long in-
terspersed nuclear elements and satellite DNAs contribute
38.3%, 30.6% and 20.1% of dark regions, respectively.

If one considers only exon regions, which total ∼33 Mb
according to CCDS (25), 95.6% of the exon bases are de-
tectable by at least five or more unique 31-mers. The vast
majority (79.5%) of genes do not contain any dark regions
and 89.3% of genes have <10% as dark regions. The exons

of established cancer genes such as TP53, APC and KRAS
have a very high portion (96.2%) of detectable bases on av-
erage (100% by median). In general, the genes with dark
regions belong to families (Supplementary Table S3).

We determined that these dark regions (i.e. gaps in de-
tectable bases) generally were <150 bases in length (Figure
4B); this length is shorter than the typical sequence read
from an Illumina system. We identified adjacent unique 31-
mers as either upstream or downstream anchors of the dark
region within the length of a single sequence read (i.e. 150–
300 bases) or within the insert size distribution that occurs
for paired-end reads (i.e. 150–500 bases). With this extended
definition of detectable base using pair-end reads, we found
that the detectable regions of whole genomes and exomes in-
creased from 87.78% and 95.68% to 93.84% and 98.60%, re-
spectively (Figure 4C). With this observed increase in exon
detectable bases, there were no dark regions found in 17 996
(94.1%) of the 19 124 genes annotated per CCDS. If one
considers the long sequence reads available from Oxford
Nanopore or Pacific Biosciences, these dark regions can be
further reduced in size and more bases can be identified us-
ing our k-mer approach. This prediction can be seen in the
theoretical example of sequence read lengths of 1 kb (Figure
4C).

There are other resources that consider the ‘mappability’
of k-mers. For example, the Umap resource available from
the UCSC Genome Browser provides mapping information
for sequences of varying lengths, ranging from 24 to 100
bases (26). This feature is used for determining which se-
quences can be accurately aligned to the reference genome
using k-mers. Our method is different in several ways. First,
we define a single base as ‘detectable’ if it overlaps with
five or more unique k-mers. Using Umap’s formula, our
‘detectable’ base has the minimum ‘mappability’ of 0.167
(=5/30). We use this definition of a ‘detectable’ base to val-
idate somatic mutations, which has not been described for
Umap. Our method also allows us to introduce and charac-
terize the ‘dark regions’ of the genome where conventional
mapping could be problematic.

Validation of simulated variants from in silico sequence data

We evaluated the feasibility of k-mer counts to validate the
identification of a ground truth set of mutations generated
in silico. We applied the KmerVC program to a simulated
sequencing dataset of a wild-type genome with three sim-
ulated sequencing data files generated from the mutated
genome that contain (i) 120 substitutions, (ii) 120 inser-
tions and (iii) 120 deletions, respectively (see the ‘Materi-
als and Methods’ section). We measured the performance
by TP, FP and FN, where TP is true positive, FP is false
positive and FN is false negative. TP indicates the number
of correctly validated simulated mutations. FP indicates the
number of validated mutations that were not one of the sim-
ulated ones. FN indicates the number of simulated muta-
tions that were not validated.

We generated a ground truth set of mutations embedded
within in silico sequence data. Categories of different muta-
tions included (i) 120 simulated substitutions + 380 random
substitutions + 1352 raw variants from GATK 3.8, (ii) 120
simulated insertions + 380 random insertions + 1346 raw

https://dna-discovery.stanford.edu/publicmaterial/software/kmervc/
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Figure 4. The characteristics of detectable and dark. (A) Definition of detectable and dark base/region. (B) The distribution of size of dark regions. (C)
Coverage of unique k-mers in GRCh38 after excluding dark regions.

variants from GATK 3.8 and (iii) 120 simulated deletions +
380 random deletions + 1362 putative variants from GATK
3.8. Substitution mutations were provided to the program
as a BED file. We provided the actual sequences with the
indel mutations seeing that microhomology motifs compli-
cate the use of coordinates for reporting the location of ei-
ther insertions or deletions.

Figure 5 shows the number of TPs, FNs and FPs of
KmerVC for simulations based on an alpha value of 0.01
with multiple testing correction. We tested different lengths
of k-mers and found that 31-mers performed better than 21-
mers, but there was no significant improvement with 41- or
51-mers (Supplementary Figure S3). However, we observed
the trade-off between shorter and longer k-mers. For in-
stance, we observed that some of variants were validated by
31-mers, but not by 51-mers because the number of mutant
51-mer counts was reduced as longer k-mers are likely to in-
cur a higher frequency of sequencing errors with miscalled
bases (Supplementary Table S4). To see whether genomic
composition affects the performance, we conducted analy-
sis on other simulation dataset derived from nine randomly
selected regions. We observed similar outcomes (Supple-
mentary Table S2).

Furthermore, we examined the performance by differ-
ent thresholds of minimum unique k-mers, which we set 5
as default (Supplementary Table S5). There was no signif-
icant difference in TPs, FNs and FPs between the differ-
ent thresholds of minimum unique k-mers. This is expected
given that there is only 1.64% of the entire genome that
is mappable (by one or more unique k-mers) but not de-

tectable (by five or more unique k-mers). In fact, while the
difference is minimal, the threshold of 5 generates the best
performance in substitution simulation (see Supplementary
Table S5) compared to 1 or 3, because it is more desirable
to have smaller number of FPs than FNs. In the case of
insertion simulation, we saw that the better performance
in the lesser thresholds was due to our longest insertions
(20 bp), which indicates that the insertions that can be reli-
ably validated by 31-mers are <20 bp. As such, we conclude
that the maximum size of insertion that can be reliably val-
idated is half of the selected k-mer size. Lastly, the simula-
tions of deletions performed equally well regardless of the
threshold. It is expected that longer insertions suffer more
from stringent threshold than deletions and substitutions
because an insertion generates [k − (size of insertion) − 1]
mutant k-mers, while a deletion and a substitution gener-
ate (k − 3) and k mutant k-mers, respectively. As a result,
we believe that the threshold of five or more unique k-mers
provides optimal performance. Users also have the option
to change this parameter within the framework of KmerVC
if necessary.

From the ground truth sequence data, we used Mutect2
to call mutations. This program was run in both its GATK
3.8 and GATK 4 versions. Because the upgrades of GATK
4 involved improvements in specificity of variant calling, we
observed a significantly lower performance in detecting in-
dels in the simulated data. This calling decrement was ap-
parent even after extensive filtering. Therefore, we used vari-
ant calls from GATK 3.8. The performance of the Mutect2
pipeline is shown in Figure 5. When we analyzed the GATK
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Figure 5. Validation of simulated substitutions, insertions and deletions in sequencing data.

substitution variants, Mutect2 called 116 TPs, 4 FNs and 6
FPs. Of the four FNs, one was not called at all while three
did not pass the clustered events filter (i.e. proximal variant
calls failed on the assumption that the clustering is a proxy
for mapping artifacts). Against the insertion data, Mutect2
found 100 TPs, 20 FNs and 8 FPs. Two of the FNs were
not called at all; 7 failed at least in part because of the clus-
tered events filter, while 10 failed because they failed to pass
the triallelic sites filter. This situation occurs when at least
two candidate alternate alleles are found to be equally likely;
since this is unlikely to occur in a tumor, it is assumed to be
evidence of an artifact. Against the deletion data, Mutect2
found 107 TPs, 13 FNs and 9 FPs. Here, five TPs were not
called, four were filtered by the clustered events filter, and
two were filtered because they involved deletions of tandem
repeats. As we noted previously, Mutect2 had had reduced
performance for calling insertions with a lower recall rate
relative to deletions.

Next, we ran KmerVC to validate the simulated variants
along with all the raw Mutect2 calls. Our program con-
firmed nearly all of the ground truth mutations successfully
and invalidated nearly all other tested mutations regard-
less of variant types (Figure 5). Remarkably, all FPs but
two, which were called by Mutect2, were not validated by
KmerVC and thus invalidated them properly. Furthermore,
KmerVC successfully validated 2 out of 4 FNs in substitu-
tions, 17 out of 20 FNs in insertions and 5 out of 13 FNs in
deletions; our program was able to increase the number of
TPs from FNs. Overall, these results indicated that our k-
mer analysis validated TPs while avoiding false calls made
by a well-established variant caller.

KmerVC analysis of TCGA exome data

Next, we determined our application’s performance for
validating mutations from actual exome sequence data
representing 50 normal–tumor pairs. We downloaded the
matched normal/tumor FASTQ files and VCF files derived
from four pipelines (Mutect2, VarScan, MuSE and Somat-
icSniper), all available from the TCGA data portal. The
VCF files for each mutation caller are available separately
for each caller pipeline for the 50 cancer samples and sep-
arated into two groups: (i) substitutions and (ii) indels. For
example, Mutect2 called a total of 21 673 substitutions and
3409 indels across the 50 tumor samples.

Substitutions. We used KmerVC to process the FASTQ
and VCF files of each sample. For our first analysis, we ex-
amined the Mutect2 calls. Our analysis determined which
of 21 673 Mutect2 substitutions could be validated for each
sample. For any given normal–tumor pair, KmerVC suc-
cessfully validated on average 92.4% of Mutect2 variants
for an alpha value of 0.01 and 85.6% after multiple test-
ing correction (Supplementary Table S6). The difference in
the percentages that were validated is an indicator of the
smaller alpha value due to Bonferroni correction; a lower al-
pha value imposes a more stringent threshold that excludes
lower quality variants.

To determine what features distinguished the validated
versus non-validated mutations, we conducted a manual
inspection of the calls from Mutect2 that were not vali-
dated by KmerVC in the tumor sample of TCGA-AA-3350.
KmerVC failed to validate 4 out of 111 mutations derived
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from Mutect2. Three of the four missed mutations were due
to proximal single-nucleotide polymorphisms (SNPs), while
one was due to the mutation being located at the end of most
of the reads.

With an alpha value of 0.01 with multiple testing correc-
tion, KmerVC validated 89.6%, 91.2% and 93.4% of vari-
ants derived from VarScan, MuSE and SomaticSniper, re-
spectively, on average (Supplementary Table S6). Interest-
ingly, the number of Mutect2 variant calls validated by
KmerVC was larger than the number of Mutect2 variants
also identified by any of the three other variant callers (Sup-
plementary Table S7).

Insertions and deletions. We analyzed indels among these
50 tumors. Our validation analysis required there to be a
flanking base on both sides of the mutation to ensure the
length of insertion and the indel’s identity. Therefore, the
number of affected k-mers was extrapolated using the size
of the indels. For instance, a two-base insertion in turn over-
laps with 28 of the surrounding 31-mers.

We examined all 3409 indels identified in 50 sam-
ples. On average, KmerVC validated the greater major-
ity of indels (78.0%) derived from Mutect2 with a cor-
rected alpha value of 0.01. The percentage of validated
indels went down to 73.5% if one decreased alpha value
by Bonferroni correction (Supplementary Table S8). In
conclusion, KmerVC validated most substitution calls as
well as indels identified by Mutect2 with a high perfor-
mance. The KmerVC outcomes (tcga.zip) for all TCGA
samples are available at https://dna-discovery.stanford.edu/
publicmaterial/software/kmervc/.

Validating MS mutation

KmerVC has the flexibility to validate different classes of
mutations. One of the most challenging somatic mutations
to identify includes indels present within MS sequences. To
determine whether our approach had applicability to ver-
ifying MS indels, we generated a VCF file that contains
potential indels at 5751 MS DNA in the coding regions
(see the ‘Materials and Methods’ section). KmerVC suc-
cessfully validated 65 (median) indels at MS DNA per sam-
ple ranging from 7 to 658 MS DNA with a corrected alpha
value of 0.01 (Supplementary Table S9). We examined se-
quence alignment plots by Golden Helix GenomeBrowse
3.0.0 (www.goldenhelix.com), and visually confirmed the
presence of a set of these indels (Supplementary Figure S4).

DISCUSSION

Our study examined the properties of k-mers from the hu-
man genome reference. With this information, we developed
an application that validates somatic mutation calls for TPs
using the characteristics of counts and uniqueness extrapo-
lated from primary sequencing data. Our approach provides
a way of rapidly validating indels. One can imagine strate-
gies where the indel threshold can be lowered to improve
sensitivity with follow-up KmerVC analysis and validation
to improve specificity.

We evaluated the performance of KmerVC using sim-
ulated sequencing data and exome data from TCGA.

KmerVC achieved high performance by validating >93%
of true mutations with nearly zero false validation based
on the simulation data for all variant types: substitutions,
insertions and deletions. Furthermore, KmerVC success-
fully validated most of the variants derived from Mutect2
in TCGA exome sequencing data. Remarkably, we observed
that KmerVC rarely validates any variants falsely, which is a
strength in identifying mutations with implications for dis-
ease and diagnosis.

Several studies have utilized the k-mer count for identify-
ing previously known germline mutations or indels. How-
ever, there are few if any studies examining the application
of k-mer counts to evaluating somatic mutations in cancer
sequencing data. As demonstrated in this study, KmerVC
validates the mutation of interest with a straightforward bi-
nomial test using only four numbers: (i) wild-type counts in
normal; (ii) mutation counts in tumor; (iii) wild-type counts
in tumor; and (iv) mutation counts in tumor. The simplic-
ity of this metric enables us to validate variants easily with-
out the need for hidden heuristics or complex optimizations.
This feature is extremely useful for identifying cancer mu-
tations of interest when sequencing data are available from
multiple different projects. The counts of expected k-mers
for these mutations can be quickly compared between sam-
ples. Any validated variant calls by KmerVC can be com-
pared among different samples easily, providing an added
level of quality control.

Our method has some limitations. First, insert sizes larger
than the k-mer length cannot be detected. For a future
study, we plan to extend our approach to detect structural
variations, which should generate novel combinations of k-
mers. These potential features may allow us to identify in-
sertions larger than the k-mer size. Second, some regions do
not overlap with any unique k-mers despite the high number
of unique k-mers across the human genome reference. Our
characterization of the dark regions of the genome high-
lights our use of unique k-mers. Moreover, different lengths
of sequence reads that cover these mutations provide a num-
ber of opportunities to improve validation analysis. Third,
KmerVC is strictly a validation program of variant calls and
does not account for FNs. These unaccounted variants may
arise from mutation-related k-mers that are not unique or
expected k-mer counts for a given coordinate position that
occur as the result of SNPs. The use of matched normal
samples provides a way of eliminating SNPs. However, we
anticipate that a substantial number of somatic mutations
lead to neo k-mers that are unique and this property may
enable us to identify FNs and provide a way to transition
our tool into a full-fledged mutation caller.

In conclusion, for this study, we comprehensively exam-
ined the landscape of mappable regions by unique k-mers
in the human genome. Using the characteristics of k-mers,
including their uniqueness in the reference and the ease
of counting them, provides an excellent way to determine
whether called mutations are TPs, especially for indels.

DATA AVAILABILITY

The KmerVC program and all simulated sequencing data
are available in the GitHub repository (https://github.com/
compbio/kmerVC). All whole exome sequencing data are
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available at TCGA data portal (https://portal.gdc.cancer.
gov/).
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