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Abstract: Population-based optimization algorithms are one of the most widely used and popular
methods in solving optimization problems. In this paper, a new population-based optimization algo-
rithm called the Teamwork Optimization Algorithm (TOA) is presented to solve various optimization
problems. The main idea in designing the TOA is to simulate the teamwork behaviors of the members
of a team in order to achieve their desired goal. The TOA is mathematically modeled for usability
in solving optimization problems. The capability of the TOA in solving optimization problems is
evaluated on a set of twenty-three standard objective functions. Additionally, the performance of the
proposed TOA is compared with eight well-known optimization algorithms in providing a suitable
quasi-optimal solution. The results of optimization of objective functions indicate the ability of the
TOA to solve various optimization problems. Analysis and comparison of the simulation results of
the optimization algorithms show that the proposed TOA is superior and far more competitive than
the eight compared algorithms.

Keywords: optimization; optimization algorithm; optimization problem; population-based; teamwork

1. Introduction

Optimization is the setting of inputs or specifications of a device, a mathematical
function, or an experiment in which the output (result) is maximized or minimized [1,2].
In optimization problems, the input contains a number of parameters (decision variables),
the process or function is called the cost function or the fitness function, and the output
is called the cost or fitness [3]. An optimization problem with only one variable is a
one-dimensional optimization problem, otherwise it is a multidimensional optimization
problem. As the dimensional of the optimization problem increases, optimization will
become more difficult [4].

In general, optimization problem-solving methods are classified into two classes of
deterministic and stochastic methods [5]. Deterministic methods include two groups of
gradient-based methods and non-gradient based methods. Methods that use derivative
information or gradients of objective functions and constraint functions are called gradient-
based methods. These methods are divided into two categories of first-order and second-
order gradient methods. The first-order gradient methods use only the objective function
gradient and constraint functions, while the second-order gradient methods use Hessian
information of the objective function or constraint functions in addition to the gradient [6].
One inherent drawback of mathematical programming methods is a high probability of
stagnation in local optima during the search of non-linear space. Methods that do not
use gradients or Hessian information in any way (either analytically or numerically) are
called non-gradient-based or zero-order methods. One of the drawbacks of non-gradient-
based deterministic methods is that their implementation is not easy and requires high
mathematical preparation to understand and use them.
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Population-based optimization algorithms (PBOAs) are stochastic methods that are
able to provide appropriate solutions to optimization problems without the need for
derivative information and gradients and are based on random scanning of the problem
search space [7]. PBOAs are methods that first offer a number of random solutions to an
optimization problem. Then, in an iterative process based on the steps of the algorithm,
these proposed solutions are improved. After completing the iterations of the algorithm
and at the end of implementing the algorithm on the optimization problem, the algorithm
presents the best proposed solution for the optimization problem.

Each optimization problem has a basic solution called a global optimal solution.
Achieving a global optimal solution requires a lot of time and computation in some complex
optimization problems. The advantage of PBOAs is that they provide suitable solutions in
less time and computations. The important issue about solutions provided by PBOAs is that
these solutions are not necessarily global optimal solutions. For this reason, the solution
provided by the PBOAs is called a quasi-optimal solution. The quasi-optimal solution
is at best the same as the global optimal, otherwise it should be as close to the global
optimal as possible. Therefore, in comparing the performance of several PBOAs in solving
an optimization problem, the algorithm that presents the quasi-optimal solution closer
to the global optimal is a better algorithm. Additionally, an optimization algorithm may
perform well in solving one optimization problem but fail to solve another optimization
problem and fail to provide a suitable quasi-optimal solution. For these reasons, the various
PBOAs have been proposed to solve optimization problems and provide more appropriate
quasi-optimal solutions.

PBOAs are presented based on modeling various processes and phenomena such as
behaviors of animals, plants, and other living organisms in nature, laws of physics, rules
of games, genetics and reproductive processes, and any other phenomenon or process
that has the character of an evolutionary process or progress. For example, simulation of
natural ant behaviors has been used in the design of Ant Colony Optimization (ACO) [8].
Hook’s physical law simulation has been used to design the Spring Search Algorithm
(SSA) [9]. The rules of the game of throwing a ring and simulating the behavior of the
players have been used in the design of Ring Toss Game-Based Optimization (RTGBO) [1].
Immune system simulation is used in the design of the Artificial Immune System algorithm
as an evolutionary algorithm [10]. Additionally, by ideation of different phenomena, it is
possible to design different systems and algorithms for problem solving. For example, in
the Blackboard system, which is an artificial intelligence approach based on the Blackboard
architecture model, a common knowledge base, the “blackboard”, is repeatedly updated
by a diverse group of specialized knowledge resources [11].

The Genetic Algorithm (GA) is one of the most widely used and oldest evolutionary-
based optimization methods which has been developed based on simulation of reproduc-
tive processes and Darwin’s theory of evolution. In the GA, changes in chromosomes
occur during the reproductive process. Parents’ chromosomes are first identified by a
selection operator, then randomly exchanged through a special process called crossover.
Thus, children inherit some of the traits or characteristics of the father and some of the
traits or characteristics of the mother. A rare process called mutation also causes changes
in the characteristics of living things. Finally, these new children are considered as parents
in the next generation and the process of the algorithm is repeated until the end of the
implementation of the algorithm [12]. The concepts of the GA are simple and understand-
able, but having control parameters and high computation are the main disadvantages of
the GA.

Particle Swarm Optimization (PSO) is another old and widely used method of optimiza-
tion that is inspired by the natural behaviors of birds and the relationships between them. In
PSO, the position of each member of the population is updated at any point in time under the
influence of three components. The first component is the speed of the population member in
the previous repetition, the second component is the personal experience of the population
member gained until each repetition, and the third component is the experience that the
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entire population has gained up to that repetition. [13]. One of the advantages of PSO is
the simplicity of the relationship and its implementation. However, poor convergence and
entrapment in local optimum areas are the main disadvantages of PSO.

The Gravitational Search Algorithm (GSA) is a physics-based optimization algorithm
based on modeling the gravitational force between objects. In the GSA, members of the
population are objects that are in the problem-solving space at different distances from each
other. Objects that have a more optimal position in the search space attract other objects
based on the gravitational force [14]. High computation, a time-consuming process, having
several control parameters, and poor convergence in complex objective functions are the
most important disadvantages of the GSA.

Teaching–Learning-Based Optimization (TLBO) is an intelligent optimization algo-
rithm inspired by the learning and teaching process between a teacher and students in
the classroom. In the TLBO algorithm, a mathematical model for teaching and learning is
considered, which is finally implemented in two stages and can lead to optimization:

(i) Teaching stage: In this stage, the best member of the population is selected as a teacher
and directs the average population towards itself. This is similar to what a teacher
really does in the real world.

(ii) Learning phase: In this phase, people in the population (who are considered class-
mates) develop their knowledge by cooperation together. This is similar to what really
happens in relationships between friends and classmates [15].

The main disadvantage of TLBO is the convergence rate, and it gets even worse when
dealing with high-dimensional problems.

The Grey Wolf Optimizer (GWO) is a swarm-based algorithm which models the hierar-
chical structure and social behavior of gray wolves while hunting. In the GWO, four types of
gray wolves, alpha, beta, delta, and omega, are used to simulate the leadership hierarchy. In
addition, the process of hunting is mathematically modeled in three main stages of searching
prey, encircling prey, and attacking prey. In the GWO, alpha is the best solution, and beta and
delta are the second and third best solutions. Other members of the population are considered
as omega wolves. The hunting process is led by the alpha, beta, and delta wolves, while omega
wolves follow these three types of wolves [16]. The main disadvantages of the GWO include
low convergence speed, poor local search, and low accuracy in solving complex problems.

The Whale Optimization Algorithm (WOA) is a nature-inspired meta-heuristic opti-
mization algorithm which mimics the social behavior of humpback whales. In the WOA,
the bubble-net hunting strategy is simulated in three stages of encircling prey, spiral bubble-
net feeding maneuver, and search for prey [17]. Low accuracy, slow convergence, and
easily falling into local optimum are the main disadvantages of the WOA. Moreover, the
WOA cannot perform well enough in solving high-dimensional optimization problems.

The Marine Predators Algorithm (MPA) which is a swarm-based algorithm which is
inspired by the movement strategies that marine predators use when trapping their prey
in the ocean. The optimization process in the MPA is divided into three main optimization
stages due to the different hunting and prey speeds (see [18]):

Phase 1: When the prey moves faster than the hunter.
Phase 2: When the prey and the hunter move at almost the same speed.
Phase 3: When the hunter is moving faster than the prey.

High computation, a time-consuming process, and having two control parameters
whose adjustment is an important challenge in the quality of performance of the MPA are
the most important disadvantages of the MPA.

The Tunicate Swarm Algorithm (TSA) is a swarm-based approach which is based on
the simulation of swarm behaviors and jet propulsion of tunicates pending the navigation
and foraging process. Although a tunicate has no mindset or idea about food sources, it is
able to find food sources. In the TSA, jet propulsion behavior is modeled based on avoiding
collisions between population members, moving toward the best member, and staying
close to it. Swarm behavior has also been used to update members of the population [19].
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Poor convergence and falling to local optimal solutions in solving high-dimensional
multimodal optimization problems are the main disadvantages of the TSA. In addition, the
TSA has several control parameters, and assigning appropriate values for these parameters
is a challenging process.

The innovation and contribution of this paper is in presenting a new population-
based optimization algorithm called the Teamwork Optimization Algorithm (TOA) to
solve various optimization problems. The main idea in designing the proposed TOA is
to simulate the activities, behaviors, and interactions of team members in performing
teamwork in order to achieve the goal of the team. The theory and various stages of the
TOA are explained and then, to implement it in optimization problems, its mathematical
modeling is also presented. The capability of the TOA in optimizing and presenting suitable
quasi-optimal solutions on a standard set of different objective functions is evaluated.
In order to analyze and evaluate the quality of the obtained optimization results, the
performance of the TOA is compared with eight well-known algorithms.

The rest of this paper is organized as follows. The proposed TOA is presented in
Section 2. Simulation studies and performance analysis of the TOA are presented in
Section 3. A discussion of the performance of the TOA is presented in Section 4. Finally,
conclusions and several suggestions for future studies are presented in Section 5.

2. Teamwork Optimization Algorithm

In this section, the theory of the proposed algorithm is stated and its mathematical
model is presented in order to implement it in solving optimization problems.

The Teamwork Optimization Algorithm (TOA) is a PBOA which is designed based on
simulation of relationships and behaviors of team members in performing their duties and
achieving the desired goal of the team. Therefore, in the TOA, the search agents are team
members, the relationships between team members are a tool for transmitting information,
and the goal of the team is actually the solution to the optimization problem.

In a team that uses teamwork to achieve a common goal, the relationships and behav-
iors of team members can be considered as follows:

Supervisor: A member of the team who is responsible for leading and guiding the
team. The supervisor is the member of the team who has the best performance compared
to the other team members.

Team members: Other members who perform more weakly than the supervisor.
Influence of supervisor on team members: Each team member strives to improve their

performance in accordance with the supervisor’s guidelines and instructions.
Influence of better members on weak team members: Each team member tries to

improve her/his performance by using the experiences of other team members who
perform better than themselves.

Individual activities: Each team member, based on personal efforts and activities, tries
to contribute more to the achievement of the whole team.

Modeling of the mentioned concepts is applied in the design of the proposed TOA.
In the proposed TOA, each member of the population represents a proposed solution

to the optimization problem. In fact, each member of the population proposes values for the
problem variable. This means that each member of the population can be mathematically
modeled as a vector whose number of components is equal to the number of problem
variables. Therefore, the population of the algorithm using a matrix whose number of rows
is equal to the number of members of the population and the number of columns is equal
to the problem variables and can be represented by Equation (1).

X =



X1
...

Xi
...

XN

|

x1,1 · · · x1,d · · · x1,m
...

. . .
...

...
xi,1 · · · xi,d · · · xi,m
...

...
. . .

...
xN,1 · · · xN,d · · · xN,m


N×m

, (1)



Sensors 2021, 21, 4567 5 of 26

where X is the population matrix of the TOA, Xi is the ith team member, xi,d is the value
for the dth problem variable suggested by the ith team member, N is the number of team
members, and m is the number of problem variables.

As mentioned, each member of the algorithm population proposes values for the
problem variables, and by placing these proposed values in the variables of the objective
function, a value for the objective function is obtained. Therefore, based on each member of
the population, a value is evaluated for the objective function. The vector of the objective
function values is determined using the following equation:

F =



F1
...
Fi
...

FN

|

F(X1)
...

F(Xi)
...

F(XN)


N×1

, (2)

where F is the vector of the objective function and Fi is the objective function value of the
ith team member.

In each iteration of the algorithm, based on the comparison of the values of the
objective function, the member who has provided the best performance among the team
members is selected as the supervisor. The task of the supervisor in teamwork is to lead the
team and guide the team members in order to achieve the goal of that team. The selection
of the supervisor in the proposed TOA is modeled using Equation (3).

Supervisor: S = Xs and s is the row number of the team member with a minimum of F vectors, (3)

where S is the supervisor of the team.
The algorithm population is updated in the TOA in three stages.
Stage 1: Supervisor guidance
In the first stage, team members are updated based on the supervisor’s instructions.

At this stage, the supervisor shares her/his information and reports to other team members
and guides them towards achieving the goal. This step of the update is simulated in the
TOA using Equations (4)–(6).

XS1
i : xS1

i,d = xi,d + r× (Sd − I × xi,d) , (4)

Xi =

{
XS1

i , FS1
i < Fi

Xi, else
, (5)

I = round(1 + r), (6)

where XS1
i is the new status for the ith team member based on supervisor guidance, FS1

i is
the objective function value, xS1

i,d is the new value for the dth problem variable suggested
by the ith team member updated based on supervisor guidance, I is the update index, and
r is a random number in a [0, 1] interval.

Stage 2: Information sharing
In the second stage, each team member tries to use the information of other team mem-

bers who have performed better than themselves in order to improve the performance. This
stage of updating team members in the proposed TOA is modeled using Equations (7)–(9).

XM,i : xM,i
d =

∑Ni
j=1 xg,i

j,d

Ni
, (7)

XS2
i : xS2

i,d = xi,d + r×
(

xM,i
d − I × xi,d

)
× sign

(
Fi − FM,i

)
, (8)
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Xi =

{
XS2

i , FS2
i < Fi

Xi, else
, (9)

where XM,i is the average of the team member which is better than that of the ith team
member, FM,i is the its objective function value, Ni is the number of team members with
better performance than the ith team member, xg,i

j,d is the value of the dth variable suggested

by the jth better team member for the ith team member, XS2
i is the new status for the ith team

member based on the second stage, and FS2
i is the its objective function value.

Stage 3: Individual activity
At this stage, each team member tries to improve her/his performance based on

her/his current situation. This stage of updating team members is modeled using
Equations (10) and (11).

XS3
i : xS3

i,d = xi,d + (−0.01 + r× 0.02)× xi,d, (10)

Xi =

{
XS3

i , FS3
i < Fi

Xi, else,
, (11)

where XS3
i is the new status for the ith team member based on the third stage and FS3

i is
the objective function value.

In each iteration of the algorithm, the members of the population are updated in three
stages according to Equations (4)–(11). The update process is repeated until the algorithm
reaches the condition of stopping. Finally, after the full implementation of the algorithm, the
TOA proposes the best quasi-optimal solution obtained for the optimization problem. The
pseudocode of the proposed TOA is presented in Algorithm 1 and its flowchart in Figure 1.

Algorithm 1. Pseudocode of TOA.

Start TOA.
1. Input problem information: variables, objective function, and constraints.
2. Set number of team members (N) and iterations (T).
3. Generate an initial population matrix at random.
4. Evaluate the objective function.
5. For t = 1:T
6. Update supervisor based on Equation (3).
7. For i = 1:N
8. Stage1: supervisor guidance
9. Update Xi based on first stage using Equations (4) and (6).
10. Stage2: information sharing
11. Determine better team members and Ni for i’th team member.
12. Calculate based on Equation (7).
13. Update Xi based on second stage using Equations (8) and (9).
14. Stage 3: individual activity
15. Update Xi based on third stage using Equations (10) and (11).
16. End For i = 1:N
17. Save best quasi-optimal solution obtained with the TOA so far.
18. End For t = 1:T
19. Output best quasi-optimal solution obtained with the TOA.
End TOA.
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Step-by-Step Example

In this subsection, the steps of the TOA are implemented and described on an objective
function. For this purpose, the sphere function with 2 variables and 10 population members
has been used.

Sphere function: F(X) = F(x1, x2) = x2
1 + x2

2 subject to : −100 ≤ x1, x2 ≤ 100
Step 1:
In the first step, members of the population are randomly created. The values proposed

for the problem variables must be within an acceptable range. The following general
formula can be used to create initial and feasible random solutions:

Xi : xd = xlo + rand× (xhi − xlo) where i = 1 : N, d = 1
X1:
x1 = −100 + rand× (100− (−100)) : x1 = 98.12666
x2 = −100 + rand× (100− (−100)) : x2 = 72.68003
Step 2:
In the second step, the objective function is evaluated based on the values proposed

by each member of the population for the variables.
Fi = F(Xi) = F(x1 : xd)
F1 = F(X1) = F(98.12666, 72.68003) = 14911.23
Step 3:
In the third step, based on the comparison of the values of the objective functions,

the team supervisor is determined. The supervisor is the member of the population that
provides the least amount of objective function.

S : Member with the minimum value o f the objective f unction
S = X5 : [14.63504 , 17.21673] , F5 = 510.6002
Step 4:
In the fourth step, the members of the population are updated according to the

supervisor’s instructions. This step is calculated using Equations (4)–(6).
Step 5:
In the fifth step, each member of the population is updated based on the guidance of

better qualified team members. This step is calculated using Equations (7)–(9).
Step 6:
In the sixth step, each member of the population improves her/his condition with

individual activities. This step is calculated using Equations (10) and (11).
Step 7:
The third to sixth steps are repeated until the stop condition is reached. Additionally,

after the algorithm is fully implemented, the best solution is available.
The various steps of the proposed TOA for the first iteration are presented in Table 1.

Additionally, the final solution for the “sphere function” is presented after 50 repetitions.
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Table 1. The various steps of the proposed TOA for the first iteration in sphere function solving.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

FinalX
F(X) S

X XM X X
F(X)

x1 x2 x1 x2 xM
1 xM

2 x1 x2 x1 x2

X1 98.12666 72.68003 14911.23 19.65399 20.55081 14.63504 17.21673 17.16322 8.697356 17.16322 8.697356 370.22 3.97 × 10−55

X2 37.61062 17.84777 1733.102 29.87663 11.62747 15.89913 12.95704 21.92269 5.767422 21.92269 5.767422 513.8675 8.85 × 10−56

X3 19.00723 −69.7136 5221.263 10.5817 −38.3855 17.90698 10.5605 10.17539 −32.2784 10.17539 −32.2784 1145.432 1.84 × 10−57

X4 51.43423 49.23254 5069.323 25.26888 26.46832 15.97408 −0.14922 24.50555 22.1087 24.50555 22.1087 1089.317 1.71 × 10−57

X5 14.63504 17.21673 510.6002 X5 12.52158 17.21673 17.16322 8.697356 9.967937 14.45587 9.967937 14.45587 308.332 4.15 × 10−57

X6 59.62064 51.23127 6179.263 52.33316 48.86162 22.99721 0.240222 −22.3172 4.418826 −22.3172 4.418826 517.582 1.35 × 10−55

X7 84.65901 −87.3821 14802.78 32.22874 56.36313 16.52373 0.837165 7.995059 −0.20421 7.995059 −0.20421 63.96267 6.64 × 10−54

X8 54.2485 −17.3096 3242.523 45.23606 −5.51647 9.916097 3.280799 19.61827 0.864246 19.61827 0.864246 385.6233 1.88 × 10−56

X9 −46.1119 77.9884 8208.503 −35.6225 67.49466 11.12887 2.97873 −5.91138 19.88028 −5.91138 19.88028 430.1698 5.42 × 10−58

X10 89.51302 75.22706 13671.69 77.52489 65.93948 9.235507 4.85668 56.40553 47.04885 56.40553 47.04885 5395.179 9.51 × 10−56

Best Solution: x1 = −2.0213 × 10−29, x2 = −1.1566 × 10−29 and F(X) = 5.4232 × 10−58
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3. Simulation Studies

In this section, simulation studies on the proposed TOA performance in solving opti-
mization problems and the ability to provide quasi-optimal solutions are presented. To
achieve this goal, the performance of the TOA is implemented and analyzed on twenty-
three of different types of unimodal and multimodal standard objective functions. Com-
plete information on these objective functions and their details are provided in Appendix A
and Tables A1–A3 [20].

In order to analyze the quality of the results obtained from the proposed algorithm,
these results have been compared with the performance of eight other well-known al-
gorithms: Particle Swarm Optimization (PSO) [13], the Genetic Algorithm (GA) [12],
Teaching–Learning-Based Optimization (TLBO) [15], the Gravitational Search Algorithm
(GSA) [14], the Whale Optimization Algorithm (WOA) [17], the Grey Wolf Optimizer
(GWO) [16], the Tunicate Swarm Algorithm (TSA) [19], and the Marine Predators Algo-
rithm (MPA) [18]. The simulation results of the performance and implementation of the
TOA and compared optimization algorithms on the mentioned twenty-three objective
functions are shown using two indicators of the average of the obtained best solutions
(ave.) and the standard deviation of the obtained best solutions (std.).

The values of the parameters are selected based on the values used in similar studies
and those proposed by the main authors of the algorithms. In general, having control
parameters is a negative point for optimization algorithms. In fact, setting the appropriate
values for the control parameters of optimization algorithms is a major challenge that has
a significant impact on the performance of optimization algorithms. However, standard
values for control parameters are usually suggested by algorithm designers. The values
used for the main controlling parameters of the comparative algorithms are specified in
Table 2.

Table 2. Parameter values for the comparative algorithms.

Algorithm Parameter Value

GA
Type Real coded

Selection Roulette wheel (proportionate)
Crossover Whole arithmetic (probability = 0.8, α ∈ [−0.5, 1.5])
Mutation Gaussian (probability = 0.05)

PSO
Topology Fully connected

Cognitive and social constant C1 = 2, C2 = 2
Inertia weight Linear reduction from 0.9 to 0.1
Velocity limit 10% of dimension range

GSA
Alpha, G0, Rnorm, Rpower 20, 100, 2, 1

TLBO
TF: teaching factor TF = round [(1 + rand)]
Random number rand is a random number in [0, 1].

GWO
Convergence parameter (a) a: Linear reduction from 2 to 0.

WOA
Convergence parameter (a) a: Linear reduction from 2 to 0.

r is a random vector in [0, 1].
l is a random number in [−1, 1].

TSA
Pmin and Pmax 1, 4

c1, c2, c3 Random numbers lie in the range of [0–1].
MPA

Constant number P = 0.5
Random vector R is a vector of uniform random numbers in [0, 1].

Fish Aggregating Devices (FADs) FADs = 0.2
Binary vector U = 0 or 1
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3.1. Evaluation Unimodal Objective Function

The set of objective functions F1 to F7 has been selected from the unimodal objective
functions. The proposed TOA and eight compared optimization algorithms are applied to
optimize these objective functions. The optimization results of these objective functions are
presented in Table 3. Based on the results of this table, the TOA is able to provide the global
optimal solutions for F1, F2, F3, F4, and F6. The proposed TOA is also the best optimizer for
objective functions F5 and F7 and has been able to provide better quasi-optimal solutions
than the compared algorithms. The optimization results show that the TOA has provided a
suitable and effective performance in solving this type of objective function and is much
more competitive than the eight compared optimization algorithms.

3.2. Evaluation High-Dimensional Multimodal Objective Functions

The objective functions from F8 to F13 are high-dimensional multimodal functions. The
results of the implementation of the TOA and eight comparative optimization algorithms
on this type of optimization problem are presented in Table 4. According to this table, it
is clear that for the functions F9 and F11, the proposed TOA provides the global optimal
solutions. Analysis of the simulation results indicates the optimal ability of the proposed
TOA to solve high-dimensional multimodal optimization problems.

3.3. Evaluation Fixed-Dimensional Multimodal Objective Functions

The set of objective functions from F14 to F23 has been selected from the fixed-
dimensional multimodal objective functions to analyze the optimization algorithms. Table 5
presents the optimization results of this type of objective function using the TOA and eight
compared optimization algorithms. Based on this table, the TOA is able to provide the
global optimal for F18. Although in other objective functions the index “ave.” obtained from
the TOA is similar to some of the compared optimization algorithms, the TOA has a more
efficient ability to solve this type of objective function by providing better performance in
index “std.”. The optimization results show that the proposed TOA has a more efficient
performance in solving this type of objective function.

In order to compare the performance of optimization algorithms in solving opti-
mization problems, the optimization results of twenty-three objective functions using the
proposed TOA as well as eight compared optimization algorithms are presented in the
form of the boxplot in Figure 2.

3.4. Statistical Analysis

The results of the optimization of objective functions using two indexes of averages of
the best obtained quasi-optimal solutions and their standard deviation provide important
and valuable information about the ability and effectiveness of optimization algorithms.
However, even with a very low probability, the superiority of one optimization algorithm
over the compared optimization algorithms may be stochastic after twenty independent
runs. Therefore, a statistical test is used in order to ensure the superiority of the proposed
TOA over the eight compared optimization algorithms. In this regard, the non-parametric
Wilcoxon rank sum test is applied. The Wilcoxon rank sum test is used to evaluate the
similarity of two dependent samples with a ranking scale.
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Table 3. Optimization results of TOA and compared algorithms on unimodal test function.

MPA TSA WOA GWO TLBO GSA PSO GA TOA

F1
Ave 3.2715 × 10−21 7.71 × 10−38 2.1741 × 10−9 1.09 × 10−58 8.3373 × 10−60 2.0255 × 10−17 1.7740 × 10−5 13.2405 0

std 4.6153 × 10−21 7.00 × 10−21 7.3985 × 10−25 5.1413 × 10−74 4.9436 × 10−76 1.1369 × 10−32 6.4396 × 10−21 4.7664 × 10−15 0

F2
Ave 1.57 × 10−12 8.48 × 10−39 0.5462 1.2952 × 10−34 7.1704 × 10−35 2.3702 × 10−8 0.3411 2.4794 0

std 1.42 × 10−12 5.92 × 10−41 1.7377 × 10−16 1.9127 × 10−50 6.6936 × 10−50 5.1789 × 10−24 7.4476 × 10−17 2.2342 × 10−15 0

F3
Ave 0.0864 1.15 × 10−21 1.7634 × 10−8 7.4091 × 10−15 2.7531 × 10−15 279.3439 589.492 1536.8963 0

std 0.1444 6.70 × 10−21 1.0357 × 10−23 5.6446 × 10−30 2.6459 × 10−31 1.2075 × 10−13 7.1179 × 10−13 6.6095 × 10−13 0

F4
Ave 2.6 × 10−8 1.33 × 10−23 2.9009 × 10−5 1.2599 × 10−14 9.4199 × 10−15 3.2547 × 10−9 3.9634 2.0942 0

std 9.25 × 10−9 1.15 × 10−22 1.2121 × 10−20 1.0583 × 10−29 2.1167 × 10−30 2.0346 × 10−24 1.9860 × 10−16 2.2342 × 10−15 0

F5
Ave 46.049 28.8615 41.7767 26.8607 146.4564 36.10695 50.26245 310.4273 26.2476

std 0.4219 4.76 × 10−3 2.5421 × 10−14 0 1.9065 × 10−14 3.0982 × 10−14 1.5888 × 10−14 2.0972 × 10−13 3.26× 10−14

F6
Ave 0.398 7.10 × 10−21 1.6085 × 10−9 0.6423 0.4435 0 20.25 14.55 0

std 0.1914 1.12 × 10−25 4.6240 × 10−25 6.2063 × 10−17 4.2203 × 10−16 0 1.2564 3.1776 × 10−15 0

F7
Ave 0.0018 3.72 × 10−4 0.0205 0.0008 0.0017 0.0206 0.1134 5.6799 × 10−3 9.92× 10−6

std 0.001 5.09 × 10−5 1.5515 × 10−18 7.2730 × 10−20 3.8789 × 10−19 2.7152 × 10−18 4.3444 × 10−17 7.7579 × 10−19 1.74 × 10−20

Table 4. Optimization results of TOA and compared algorithms on high-dimensional test function.

MPA TSA WOA GWO TLBO GSA PSO GA TOA

F8
Ave −3594.16321 −5740.3388 −1663.9782 −5885.1172 −7408.6107 −2849.0724 −6908.6558 −8184.4142 −9631.41

std 811.32651 41.5 716.3492 467.5138 513.5784 264.3516 625.6248 833.2165 3.86 × 10−12

F9
Ave 140.1238 5.70 × 10−3 4.2011 8.5265 × 10−15 10.2485 16.2675 57.0613 62.4114 0

std 26.3124 1.46 × 10−3 4.3692 × 10−15 5.6446 × 10−30 5.5608 × 10−15 3.1776 × 10−15 6.3552 × 10−15 2.5421 × 10−14 0

F10
Ave 9.6987 × 10−12 9.80 × 10−14 0.3293 1.7053 × 10−14 0.2757 3.5673 × 10−9 2.1546 3.2218 8.88 × 10−16

std 6.1325 × 10−12 4.51 × 10−12 1.9860 × 10−16 2.7517 × 10−29 2.5641 × 10−15 3.6992 × 10−25 7.9441 × 10−16 5.1636 × 10−15 0

F11
Ave 0 1.00 × 10−7 0.1189 0.0037 0.6082 3.7375 0.0462 1.2302 0

std 0 7.46 × 10−7 8.9991 × 10−17 1.2606 × 10−18 1.9860 × 10−16 2.7804 × 10−15 3.1031 × 10−18 8.4406 × 10−16 0
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Table 4. Cont.

MPA TSA WOA GWO TLBO GSA PSO GA TOA

F12
Ave 0.0851 0.0368 1.7414 0.0372 0.0203 0.0362 0.4806 0.047 0.2463

std 0.0052 1.5461 × 10−2 8.1347 × 10−12 4.3444 × 10−17 7.7579 × 10−19 6.2063 × 10−18 1.8619 × 10−16 4.6547 × 10−18 7.45 × 10−17

F13
Ave 0.4901 2.9575 0.3456 0.5763 0.3293 0.002 0.5084 1.2085 1.25

std 0.1932 1.5682 × 10−12 3.2539 × 10−12 2.4825 × 10−16 2.1101 × 10−16 4.2617 × 10−14 4.9650 × 10−17 3.2272 × 10−16 4.47 × 10−16

Table 5. Optimization results of TOA and compared algorithms on fixed-dimensional test function.

MPA TSA WOA GWO TLBO GSA PSO GA TOA

F14
Ave 0.998 1.9923 0.998 3.7408 2.2721 3.5913 2.1735 0.9986 0.998

std 4.2735 × 10−16 2.6548 × 10−7 9.4336 × 10−16 6.4545 × 10−15 1.9860 × 10−16 7.9441 × 10−16 7.9441 × 10−16 1.5640 × 10−15 4.72 × 10−16

F15
Ave 0.003 0.0004 0.0049 0.0063 0.0033 0.0024 0.0535 5.3952 × 10−2 0.0003

std 4.0951 × 10−15 9.0125 × 10−4 3.4910 × 10−18 1.1636 × 10−18 1.2218 × 10−17 2.9092 × 10−19 3.8789 × 10−19 7.0791 × 10−18 1.16 × 10−18

F16
Ave −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

std 4.4652 × 10−16 2.6514 × 10−16 9.9301 × 10−16 3.9720 × 10−16 1.4398 × 10−15 5.9580 × 10−16 3.4755 × 10−16 7.9441 × 10−16 1.99 × 10−16

F17
Ave 0.3979 0.3991 0.4047 0.3978 0.3978 0.3978 0.7854 0.4369 0.3978

std 9.1235 × 10−15 2.1596 × 10−16 2.4825 × 10−17 8.6888 × 10−17 7.4476 × 10−17 9.9301 × 10−17 4.9650 × 10−17 4.9650 × 10−17 9.93 × 10−17

F18
Ave 3 3 3 3 3.0009 3 3 4.3592 3

std 1.9584 × 10−15 2.6528 × 10−15 5.6984 × 10−15 2.0853 × 10−15 1.5888 × 10−15 6.9511 × 10−16 3.6741 × 10−15 5.9580 × 10−16 0

F19
Ave −3.8627 −3.8066 −3.8627 −3.8621 −3.8609 −3.8627 −3.8627 −3.85434 −3.8628

std 4.2428 × 10−15 2.6357 × 10−15 3.1916 × 10−15 2.4825 × 10−15 7.3483 × 10−15 8.3413 × 10−15 8.9371 × 10−15 9.9301 × 10−17 2.68 × 10−16

F20
Ave −3.3211 −3.3206 −3.2424 −3.2523 −3.2014 −3.0396 −3.2619 −2.8239 −3.322

std 1.1421 × 10−11 5.6918 × 10−15 7.9441 × 10−16 2.1846 × 10−15 1.7874 × 10−15 2.1846 × 10−14 2.9790 × 10−16 3.9720 × 10−16 1.69 × 10−15

F21
Ave −10.1532 −5.5021 −7.4016 −9.6452 −9.1746 −5.1486 −5.3891 −4.3040 −10.1532

std 2.5361 × 10−11 5.4615 × 10−13 2.3819 × 10−11 6.5538 × 10−15 8.5399 × 10−15 2.9790 × 10−16 1.4895 × 10−15 1.5888 × 10−15 1.39 × 10−15

F22
Ave −10.4029 −5.0625 −8.8165 −10.4025 −10.0389 −9.0239 −7.6323 −5.1174 −10.4029

std 2.8154 × 10−11 8.4637 × 10−14 6.7524 × 10−15 1.9860 × 10−15 1.5292 × 10−14 1.6484 × 10−12 1.5888 × 10−15 1.2909 × 10−15 3.18 × 10−15

F23
Ave −10.5364 −10.3613 −10.0003 −10.1302 −9.2905 −8.9045 −6.1648 −6.5621 −10.5364

std 3.9861 × 10−11 7.6492 × 10−12 9.1357 × 10−15 4.5678 × 10−15 1.1916 × 10−15 7.1497 × 10−14 2.7804 × 10−15 3.8727 × 10−15 7.94 × 10−16
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A p-value specifies whether the given algorithm is statistically significant or not. If
the p-value of the given optimization algorithm is less than 0.05, then the corresponding
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optimization algorithm is statistically significant. The result of the analysis using the
Wilcoxon rank test for the objective functions is shown in Table 6. It can be observed
from Table 6 that the TOA is significantly superior to the eight compared optimization
algorithms based on the p-values, which are less than 0.05.

Table 6. Obtained results from the Wilcoxon test (p ≥ 0.05).

Compared
Algorithms Unimodal High-Multimodal Fixed-Multimodal

TOA vs. MPA 0.015625 0.625 0.125

TOA vs. TSA 0.015625 0.21875 0.007813

TOA vs. WOA 0.015625 0.15625 0.015625

TOA vs. GWO 0.015625 0.84375 0.015625

TOA vs. TLBO 0.015625 0.3125 0.007813

TOA vs. GSA 0.03125 0.3125 0.015625

TOA vs. PSO 0.015625 0.15625 0.007813

TOA vs. GA 0.015625 0.15625 0.003906

In addition, in order to further analyze the results and performance of the optimization
algorithms, another test, called the Friedman rank test, is used. The results of this test
are presented in Table 7. Based on the results of the Friedman test, the proposed TOA
ranks first in optimizing of all three types of unimodal, high-dimensional multimodal, and
fixed-dimensional multimodal objective functions compared to the GA, PSO, GSA, TLBO,
GWO, WOA, TSA, and MPA.

Table 7. Results of the Friedman rank test.

Test Function GA PSO GSA TLBO GWO WOA TSA MPA TOA

Unimodal
(F1 − F7)

Friedman value 57 56 37 28 26 42 37 17 7

Friedman rank 8 7 5 4 3 6 5 2 1

High-dimensional
multimodal

(F8 − F13)

Friedman value 38 36 30 23 22 37 31 26 19

Friedman rank 9 7 5 3 2 8 6 4 1

Fixed-dimensional
multimodal
(F14 − F23)

Friedman value 56 46 39 36 32 34 16 34 10

Friedman rank 8 7 6 5 3 4 2 4 1

All 23 test functions
Friedman value 151 138 106 87 80 113 84 77 36

Friedman rank 9 8 6 5 3 7 4 2 1

3.5. Sensitivity Analysis

In this section, the effects of two important parameters, the number of members of the
algorithm population and the maximum number of iterations, on the performance of the
proposed TOA in optimizing the objective functions are analyzed.

Sensitivity analysis of the proposed TOA to the parameter of the number of members
of the population matrix is carried out for all twenty-three standard objective functions for
numbers of members of the population of 20, 30, 50, and 80. The results of the sensitivity
analysis of the TOA to the number of population members are presented in Table 8. Based
on the analysis of the results presented in this table, it is found that when increasing
the number of population members, the value of the objective function is decreased.
Additionally, the effect of population members on the behavior of convergence curves is
presented in Figure 3.
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Table 8. Results of the algorithm sensitivity analysis of the number of population members.

Objective Function
Number of Population Members

20 30 50 80

F1 0 0 0 0

F2 0 0 0 0

F3 0 0 0 0

F4 0 0 0 0

F5 28.0905 27.66011 26.24746 26.22656

F6 0 0 0 0

F7 4.49 × 10−5 2.18 × 10−5 9.92 × 10−6 2.87 × 10−6

F8 −9222.78 −9279.11 −9631.41 −10035.1

F9 0 0 0 0

F10 8.88× 10−16 8.88× 10−16 8.88× 10−16 8.88× 10−16

F11 0 0 0 0

F12 0.367779 0.25017 0.246392 0.213644

F13 1.7093 1.436574 1.25003 1.129791

F14 0.998004 0.998004 0.998004 0.998004

F15 0.000307 0.000307 0.000307 0.000307

F16 −1.03163 −1.03163 −1.03163 −1.03163

F17 0.397887 0.397887 0.397887 0.397887

F18 3 3 3 3

F19 −3.86278 −3.86278 −3.86278 −3.86278

F20 −3.32199 −3.32199 −3.322 −3.322

F21 −10.1529 −10.1532 −10.1532 −10.1532

F22 −10.4028 −10.4029 −10.4029 −10.4029

F23 −10.5363 −10.5364 −10.5364 −10.5364

Sensors 2021, 21, x FOR PEER REVIEW 16 of 23 
 

 

Table 9. Results of the algorithm sensitivity analysis of the maximum number of iterations. 

Objective Function 
Maximum Number of Iterations 

100 500 800 1000 𝐹ଵ 9.45 × 10−90 0 0 0 𝐹ଶ 9.19 × 10−47 1.5 × 10−238 0 0 𝐹ଷ 1.83 × 10−53 1 × 10−267 0 0 𝐹ସ 1.68 × 10−42 2.5 × 10−217 0 0 𝐹ହ 28.0631 27.2074 27.20696 26.24746 𝐹 0 0 0 0 𝐹 0.000146 1.3 × 10−5 1.23 × 10−5 9.92 × 10−6 𝐹  −6711.59 −8944.49 −9358.76 −9631.41 𝐹ଽ 0 0 0 0 𝐹ଵ 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 𝐹ଵଵ 0 0 0 0 𝐹ଵଶ 0.307775 0.301889 0.266274 0.246392 𝐹ଵଷ 1.867947 1.59195 1.310176 1.25003 𝐹ଵସ 0.998004 0.998004 0.998004 0.998004 𝐹ଵହ 0.000307 0.000307 0.000307 0.000307 𝐹ଵ −1.03163 −1.03163 −1.03163 −1.03163 𝐹ଵ 0.397887 0.397887 0.397887 0.397887 𝐹ଵ଼ 3 3 3 3 𝐹ଵଽ −3.86278 −3.86278 −3.86278 −3.86278 𝐹ଶ −3.32155 −3.32198 −3.32199 −3.322 𝐹ଶଵ −10.1532 −10.1532 −10.1532 −10.1532 𝐹ଶଶ −10.4029 −10.4029 −10.4029 −10.4029 𝐹ଶଷ −10.5364 −10.5364 −10.5364 −10.5364 
 

    

    
Figure 3. Cont.



Sensors 2021, 21, 4567 18 of 26
Sensors 2021, 21, x FOR PEER REVIEW 17 of 23 
 

 

    

    

    

   

Guide: 
Number of population members 

 

Figure 3. Sensitivity analysis of TOA for number of population members. 

    

Figure 3. Sensitivity analysis of TOA for number of population members.

Sensitivity analysis of the TOA for the maximum number of iterations of the algorithm
is carried out for all twenty-three standard objective functions for numbers of iterations of
100, 500, 800, and 100 repetitions. The simulation results obtained from this analysis for all
objective functions and for the number of different iterations are presented in Table 9. Based
on the sensitivity analysis of the number of iterations of the algorithm, it has been shown
that by increasing the maximum number of iterations of the algorithm, the values of the
objective functions are reduced and more suitable quasi-optimal solutions are obtained. The
convergence curves of the objective functio1ns are plotted in Figure 4 under the influence
of the different maximum numbers of iterations.
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Table 9. Results of the algorithm sensitivity analysis of the maximum number of iterations.

Objective Function
Maximum Number of Iterations

100 500 800 1000

F1 9.45 × 10−90 0 0 0

F2 9.19 × 10−47 1.5 × 10−238 0 0

F3 1.83 × 10−53 1 × 10−267 0 0

F4 1.68 × 10−42 2.5 × 10−217 0 0

F5 28.0631 27.2074 27.20696 26.24746

F6 0 0 0 0

F7 0.000146 1.3 × 10−5 1.23 × 10−5 9.92 × 10−6

F8 −6711.59 −8944.49 −9358.76 −9631.41

F9 0 0 0 0

F10 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

F11 0 0 0 0

F12 0.307775 0.301889 0.266274 0.246392

F13 1.867947 1.59195 1.310176 1.25003

F14 0.998004 0.998004 0.998004 0.998004

F15 0.000307 0.000307 0.000307 0.000307

F16 −1.03163 −1.03163 −1.03163 −1.03163

F17 0.397887 0.397887 0.397887 0.397887

F18 3 3 3 3

F19 −3.86278 −3.86278 −3.86278 −3.86278

F20 −3.32155 −3.32198 −3.32199 −3.322

F21 −10.1532 −10.1532 −10.1532 −10.1532

F22 −10.4029 −10.4029 −10.4029 −10.4029

F23 −10.5364 −10.5364 −10.5364 −10.5364
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4. Discussion

Exploitation and exploration indicators are two important and effective criteria in
evaluating and analyzing the performance of optimization algorithms and comparing them
with each other.

The exploitation index is an important criterion that indicates the ability of the al-
gorithm to achieve a suitable quasi-optimal solution. In fact, according to the concept of
exploitation, an optimization algorithm must be able to provide a quasi-optimal solution
after a complete implementation of an optimization problem. Therefore, in comparing the
exploitation index between several different algorithms, an algorithm has a higher ability
in the exploitation index which can provide a more suitable quasi-optimal solution. The
objective functions of the unimodal type, including F1 to F7, have only one basic optimal
solution. For this reason, these types of functions are desirable in order to evaluate the
exploitation index. Based on the optimization results of these objective functions, as shown
in Table 3, the proposed TOA has been able to achieve the global optimal solutions in the
objective functions of F1, F2, F3, F4, and F6. Additionally, the TOA in F5 and F7 functions
has provided a more suitable quasi-optimal solution than similar algorithms. These results
indicate the high ability of the TOA in the exploitation index and the presentation of
quasi-optimal solutions.

The exploration index is another criterion in evaluating the performance of opti-
mization algorithms, which shows the ability of the algorithm to accurately search the
problem-solving space and not get caught up in local optimal solutions. In fact, accord-
ing to the concept of exploration, an optimization algorithm should be able to search
the various regions of the problem-solving space during successive iterations of the al-
gorithm and provide a suitable quasi-optimal solution that is close to the global optimal
one. High-dimensional multimodal objective functions, including F8 to F13, as well as
fixed-dimensional multimodal objective functions, including F14 to F23, have several local
optimal solutions, and achieving the global optimal solution of these functions is a chal-
lenge. Therefore, these objective functions are suitable for evaluating the exploration index
of optimization algorithms. Based on the optimization results of these objective functions,
presented in Tables 4 and 5, the TOA in the objective functions F9, F11, and F15 has been
able to provide the global optimal with its high exploration ability. Additionally, the TOA
has provided acceptable performance in other objective functions and has been able to
provide appropriate quasi-optimal solutions by carefully searching the problem-solving
space. The results of optimizing the set of multimodal objective functions show that the
proposed TOA has a high ability in the index of exploration and accurate search of the
problem-solving space.

The important thing about optimization algorithms as stochastic methods is that
it cannot be claimed that a particular algorithm provides the best performance in all
optimization problems. It is also possible to improve the performance of an algorithm
by modifying it. In this study, the proposed TOA is compared with standard versions of
the GA, PSO, GSA, TLBO, GWO, WOA, TSA, and MPA. However, the results obtained
from the proposed TOA are far more competitive than the results of the implementation
of the eight algorithms. The TOA has also been able to provide optimal global solutions
in F1, F2, F3, F4, F6, F9, F11, and F18 functions. Therefore, one of the pros of the proposed
TOA is that it is able to offer much more competitive solutions than similar algorithms. On
the other hand, one of the cons of any optimization algorithm is that new optimization
algorithms may be designed in the future that provide quasi-optimal solutions that are
more appropriate and closer to the global optimal.

A comparative review of the TOA and compared algorithms, contrasting the charac-
teristics of the heuristics, is presented in Table 10.
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Table 10. Comparative review of TOA and compared algorithms.

Algorithm Advantage Disadvantage

GA Good global search, simplicity, and
comprehensibility

High memory consumption, control
parameters, and poor local search.

PSO Simplicity of the relationship and its
implementation.

Control parameters, poor
convergence, and entrapment in local

optimum areas.

GSA
Easy implementation, fast

convergence in simple problems, and
low computational cost.

High computation, time consuming,
several control parameters, and poor

convergence in complex
objective functions.

TLBO Good global search, simplicity, and
no requirement for any parameters Poor convergence rate.

GWO

Fast convergence due to continuous
reduction of search space, fewer

storage and computational
requirements, and easily
implemented due to its

simple structure.

Low convergence speed, poor local
search, and low accuracy in solving

complex problems.

WOA
Simple structure, fewer required

operators, and appropriate balance
between exploration and exploitation.

Low accuracy, slow convergence, and
easily falls into local optimum.

MPA Good global search and
fast convergence.

High computation, time consuming,
and control parameters.

TSA
Fast convergence, good global search,

and appropriate balance between
exploration and exploitation.

Poor convergence, control
parameters, and falling into local
optimal solutions when solving

high-dimensional
multimodal problems.

TOA

Simplicity of equations, easy
implementation, lack of control
parameters, proper exploitation,

proper exploration, not caught up in
local optimal solutions, and high

convergence power.

The important thing about all
optimization algorithms is that it

cannot be claimed that one particular
algorithm is the best optimizer for all

optimization problems. It is also
always possible to develop new
optimization algorithms that can

provide more desirable quasi-optimal
solutions that are also closer to the

global optimal.

Comparison with Blackboard System

Based on the theoretical comparison of the TOA and Blackboard system, one can
understand that it is very difficult to compare the two algorithms in the same conditions.
The main idea in the Blackboard system is based on the metaphor of a group of experts
standing next to a large blackboard to solve a problem. The blackboard is actually a place
to develop a solution to the problem. Every specialist is waiting for the suitable time to
use the blackboard and improve the solution [11]. However, the main idea of the proposed
TOA is the hierarchical structure of management in teamwork, consisting of a supervisor
and other team members.

In the structure of the proposed TOA, the supervisor leads the team members to
achieve a specific goal. In fact, the team members are influenced by the supervisor’s
information and even other better members of the population to update the proposed
solutions. However, in the Blackboard structure, instead of the population of members,
there is a set of knowledge modules named the Knowledge System (KS) and the KS does
not use any other KSs to improve participation in problem solving over time.
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In the TOA, the number of population members is constant during execution and
problem solving, while in the Blackboard system, without changing other KSs, additional
KSs can be added to the Blackboard system, inappropriate KSs can be removed, and poorer
performing KSs can be enhanced.

From the analysis of the above concepts, it can be deduced that although there are
some similarities in the idea of the proposed TOA and the Blackboard system, they differ
completely in structure, updating, and implementation.

5. Conclusions and Future Works

There are many optimization problems in different disciplines of science that should
be optimized using appropriate methods. Population optimization algorithms are one of
the most efficient and widely used methods to solve optimization problems. In this paper, a
new optimization algorithm called the Teamwork Optimization Algorithm (TOA) has been
described. The main idea in designing the proposed TOA was to model the relationships
and teamwork behaviors of the members of a team in order to achieve the goal of that
team. In teamwork, the supervisor is the member who performs best and is responsible
for leading the team. Other people carry out their activities as team members under
the supervision of a supervisor. Each team member tries to improve their performance
by being influenced by the supervisor’s instructions as well as following the example
of other team members who perform better than themselves. Additionally, each team
member tries to improve his/her situation based on his/her individual activities in order
to have a greater share in the team’s achievement of the goal. The theory of the TOA was
described and then mathematically modeled for implementation in solving optimization
problems. The quality of the TOA in solving optimization problems has been tested on
twenty-three standard objective functions of unimodal, high-dimensional multimodal, and
fixed-dimensional multimodal types. The results showed that the proposed TOA has a
good ability to provide quasi-optimal solutions. Additionally, the performance of the TOA
is compared with eight well-known optimization algorithms in providing quasi-optimal
solutions. Analysis and evaluation of the results showed that the proposed TOA performed
better in optimizing the objective functions and is much more competitive than the eight
compared optimization algorithms.

The authors suggest some ideas and perspectives for future studies. The design of the
binary version as well as the multiobjective version of the TOA is an interesting possibility
for future investigations. Apart from this, implementing the TOA on various optimization
problems and real-world optimization problems can be considered as significant contribu-
tions, as well. The use of a collaborative learning phase as a corrective phase in improving
the performance of other algorithms is also a suggestion for further studies.
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Appendix A

Information of the twenty-three objective functions is provided in Tables A1–A3; these
functions were introduced and studied by Yao [20]. Unimodal functions have only one
optimal point and, in fact, the behavior of this type of function is such that if up to a
point (mode) it is uniform and descending, from that point onwards, it is uniform but
ascending. Multimodal functions, in addition to the main solution, also have several local
solutions, and the main challenge in optimizing this type of function is not to get stuck in
local solutions and approach the main solution.

Table A1. Unimodal test functions.

Objective Function Range Dimensions Fmin

F1(x) =
m
∑

i=1
x2

i
[−100, 100] 30 0

F2(x) =
m
∑

i=1
|xi|+

m
∏
i=1
|xi| [−10, 10] 30 0

F3(x) =
m
∑

i=1

(
i

∑
j=1

xi

)2
[−100, 100] 30 0

F4(x) = max{|xi| , 1 ≤ i ≤ m } [−100, 100] 30 0

F5(x) =
m−1
∑

i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2)
]

[−30, 30] 30 0

F6(x) =
m
∑

i=1
([xi + 0.5])2 [−100, 100] 30 0

F7(x) =
m
∑

i=1
ix4

i + random(0, 1) [−1.28, 1.28] 30 0

Table A2. High-dimensional multimodal test functions.

Objective Function Range Dimensions Fmin

F8(x) =
m
∑

i=1
−xi sin

(√
|xi|
)

[−500, 500] 30 −12,569

F9(x) =
m
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] [−5.12, 5.12] 30 0

F10(x) =

−20 exp

(
−0.2

√
1
m

m
∑

i=1
x2

i

)
− exp

(
1
m

m
∑

i=1
cos(2πxi)

)
+ 20 + e

[−32, 32] 30 0

F11(x) = 1
4000

m
∑

i=1
x2

i −
m
∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600] 30 0

F12(x) =
π
m

{
10 sin(πy1) +

m
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

m
∑

i=1
u(xi, 10, 100, 4)

u(xi, a, i, n) =


k(xi − a)n, xi > −a;
0, −a < xi < a
k(−xi − a)n, xi < −a

;

[−50, 50] 30 0
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Table A2. Cont.

Objective Function Range Dimensions Fmin

F13(x) = 0.1
{

sin2(3πx1)

+
m
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxm)

]}
+

m
∑

i=1
u(xi, 5, 100, 4)

[−50, 50] 30 0

Table A3. Fixed-dimensional multimodal test functions.

Objective Function Range Dimensions Fmin

F14(x) =

(
1

500 +
25
∑

j=1

1
j+∑2

i=1(xi−aij)
6

)−1
[−65.53, 65.53] 2 0.998

F15(x) =
11
∑

i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
[−5, 5] 4 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 [−5, 5] 2 −1.0316

F17(x) =
(

x2 − 5.1
4π2 x2

1 +
5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 [−5, 10] × [0, 15] 2 0.398

F18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2

−36x1x2 + 27x2
2
)
]

[−5, 5] 2 3

F19(x) = −
4
∑

i=1
ci exp

(
−

3
∑

j=1
aij

(
xj − Pij

)2
)

[0, 1] 3 −3.86

F20(x) = −
4
∑

i=1
ci exp

(
−

6
∑

j=1
aij

(
xj − Pij

)2
)

[0, 1] 6 −3.22

F21(x) = −
5
∑

i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.1532

F22(x) = −
7
∑

i=1

[
(X− ai)(X− ai)

T + 6ci

]−1
[0, 10] 4 −10.4029

F23(x) = −
10
∑

i=1

[
(X− ai)(X− ai)

T + 6ci

]−1 [0, 10] 4 −10.5364
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