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Abstract
The morbidity and mortality of HIV type-1 (HIV-1)-related diseases were dramatically dimin-

ished by the grounds of the introduction of potent antiretroviral therapy, which induces persis-

tent suppression ofHIV-1 replication and gradual recovery of CD4+ T-cell counts. However,∼10–
40% of HIV-1-infected individuals fail to achieve normalization of CD4+ T-cell counts despite

persistent virological suppression. These patients are referred to as “inadequate immunologi-

cal responders,” “immunodiscordant responders,” or “immunological non-responders (INRs)” who

show severe immunological dysfunction. Indeed, INRs are at an increased risk of clinical progres-

sion to AIDS and non-AIDS events and present higher rates of mortality than HIV-1-infected

individuals with adequate immune reconstitution. To date, the underlying mechanism of incom-

plete immune reconstitution in HIV-1-infected patients has not been fully elucidated. In light of

this limitation, it is of substantial practical significance to deeply understand the mechanism of

immune reconstitution and design effective individualized treatment strategies. Therefore, in this

review, we aim to highlight the mechanism and risk factors of incomplete immune reconstitution

and strategies to intervene.
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1 INTRODUCTION

The hallmark of HIV infection is the persistent destruction of CD4+

T cells, resulting in progressive immunodeficiency, opportunistic

diseases, and death.1 It has been 32 years since the first antiretroviral

drug, zidovudine (ZDV, formerly called AZT), was introduced to treat
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HIV infection. The increasing accessibility and use of antiretroviral

therapy (ART) can suppress the HIV viral load to undetectable levels

and to increase the CD4+ T-cell counts; therefore, the acquired

immunodeficiency syndrome (AIDS)-related morbidity and mortality

in HIV-1-infected individuals is sharply diminished.2–4 However, in

some patients, optimal treatment and persistent suppression of viral
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TABLE 1 Definitions of immunological nonresponder and immunological responder from the literature

Definition of “immunological nonresponder” Definition of “immunological responder” Reference

Total CD4+ T-cell count< 500 cells/µl at 2–12 years after ART
initiation, with an undetectable plasma VL.a

Total CD4+ T-cell count> 500 cells/µl at 2–12 years after ART
initiation, with an undetectable plasma VL.

16,179,230–233

Increase in the CD4+ T-cell count< 200 cells/µl from baseline at
7 years after ART initiation, with plasmaHIV RNA< 200
copies/ml.

Increase in the CD4+ T-cell count> 500 cells/µl from baseline at
7 years after ART initiation, with plasmaHIV RNA< 200
copies/ml.

54

Increase in the CD4+ T-cell count< 20% from baseline and/or
CD4+ T-cell counts< 200 cells/µl at 1–3 years after ART
initiation, with plasmaHIV RNA< 50 copies/ml.

Increase in the CD4+ T-cell count> 20% from baseline and/or
CD4+ T-cell counts> 200 cells/µl at 1–3 years after ART
initiation, with plasmaHIV RNA< 50 copies/ml.

35,234,235

Increase in the CD4+ T-cell count< 100 cells/µl from baseline at
1 year after ART initiation, with plasmaHIV RNA
< 50 copies/ml.

Increase in the CD4+ T-cell count> 100 cells/µl from baseline at
1 year after ART initiation, with plasmaHIV RNA
< 50 copies/ml.

236

Increase in the CD4+ T-cell count< 50 cells/µl from baseline at
3–9months after ART initiation, with an undetectable
plasma VL.

Increase in the CD4+ T-cell count> 50 cells/µl from baseline at
3–9months after ART initiation, with an undetectable
plasma VL.

9,237

Total CD4+ T-cell count< 200 cells/µl at 2 years after ART
initiation, with an undetectable plasma VL.

Total CD4+ T-cell count> 500 cells/µL at 2 years after ART
initiation, with an undetectable plasma VL.

238,239

Increase in the CD4+ T-cell count< 200 cells/µl from baseline at
1 year after ART initiation, with plasmaHIV RNA
< 50 copies/ml.

Increase in the CD4+ T-cell count> 200 cells/µl from baseline at
1 year after ART initiation, with plasmaHIV RNA
< 50 copies/ml.

240

Total CD4+ T-cell count< 350 cells/µl at 2 years after ART
initiation, with plasmaHIV RNA< 50 copies/ml.

Total CD4+ T-cell count> 400 cells/µl at 2 years after ART
initiation, with plasmaHIV RNA< 50 copies/ml.

48,105,106,241

Total CD4+ T-cell count< 350 cells/µl and/or increase in the
CD4+ T-cell count< 30% from baseline at 1–10 years after
ART initiation, with an undetectable plasma VL.

Total CD4+ T-cell count> 350 cells/µl and/or increase in the
CD4+ T-cell count> 30% from baseline at 1–10 years after
ART initiation, with an undetectable plasma VL.

144,177,242,243

Total CD4+ T-cell count< 500 cells/µl and CD4/CD8 ratio< 1 at
8 years after ART initiation, with plasmaHIV RNA
< 50 copies/ml.

Total CD4+ T-cell count> 900 cells/µl and CD4/CD8 ratio< 1 at
8 years after ART initiation, with plasmaHIV RNA
< 50 copies/ml.

37

Increase in the CD4+ T-cell count< 400 cells/µl from baseline at
5 years after ART initiation, with an undetectable plasma VL.

Increase in the CD4+ T-cell count> 400 cells/µl from baseline at
5 years after ART initiation, with an undetectable plasma VL.

117

Total CD4+ T-cell count< 350 cells/µl at 2 years after ART
initiation, with an undetectable plasma VL

Total CD4+ T-cell count> 500 cells/µl at 2 years after ART
initiation, with an undetectable plasma VL.

66,116,175,244

Total CD4+ T-cell count< 400 cells/µl at 2 years after ART
initiation, with plasmaHIV RNA< 20 copies/ml.

Total CD4+ T-cell count> 600 cells/µl at 2 years after ART
initiation, with plasmaHIV RNA< 20 copies/ml.

110,111

Total CD4+ T-cell count< 250 cells/µl at 2–3 years after ART
initiation, with an undetectable plasma VL.

Total CD4+ T-cell count> 250 cells/µl at 2–3 years after ART
initiation, with an undetectable plasma VL.

23,170,180,245

Increase in the CD4+ T-cell count< 50 cells/µl from baseline at 1
year after ART initiation, with plasmaHIVRNA< 40 copies/ml.

Increase in the CD4+ T-cell count> 100 cells/µl from baseline at
1 year after ART initiation, with plasmaHIV RNA
< 40 copies/ml.

47

Total CD4+ T-cell count< 270 cells/µl at 2 years after ART
initiation, with an undetectable plasma VL.

Total CD4+ T-cell count> 270 cells/µl at 2 years after ART
initiation, with an undetectable plasma VL.

176

aViral load.

replication fail to restore their CD4+ T-cell counts. These patients

are referred to as inadequate immunological responders, immunodis-

cordant responders, or immunological non-responders (INRs), and

an impaired immunological response is linked to an increased risk of

disease progression and death for these patients.5–7 INRs present

severe immune dysfunction, and the morbidity and mortality of AIDS

and non-AIDS events (such as metabolic syndrome, liver disease,

nephropathy, cardiovascular disease, non-AIDS-related malignancies,

and HIV-1-related neurocognitive disorder) were significantly ele-

vated compared with those for HIV-1-infected patients who achieved

complete immune reconstitution.8–13 In this review, we focus on

recent advances to identify the various mechanisms of poor immune

reconstitution in HIV-1-infected patients and explore effective, newly

specific therapeutic strategies to restore immunity and thus prevent

AIDS-related events.

2 DEFINITION OF INCOMPLETE

IMMUNE RECONSTITUTION

Currently, there is no worldwide consensus on the definition of INRs

(Table 1). Over the years, in different studies, INRs have been defined

by either a failure to meet the prescribed CD4+ T-cell count threshold

(e.g., > 200 or > 250 or > 350 or > 400 or > 500/µl) or a prescribed

percentage of CD4+ T-cell increase over baseline (e.g., < 5% or < 20%

or < 30%). In addition, some researchers defined INRs as those with

an increase in CD4+ T-cell counts from baseline, e.g., <50, <100,

or <400/µl. However, the duration of ART in HIV-1-infected people

varies substantially in different studies, ranging from 6 to 144 months

(Table 1). The duration of ART can significantly affect the magnitude

of immune reconstitution in HIV-1-infected patients, thus hindering

the comparison of different findings. According to the heterogeneity
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among study populations and discrepancy in definitions, the preva-

lence of INRs varies from 10% to 40%.7,14,15 In contrast, an adequate

immune response to ART is defined as CD4+ T-cell counts >500

cells/µl, mainly because HIV-1-infected patients with this level of

immune restoration have a morbidity and mortality rate approaching

or comparable to those of HIV negative individuals.13,16–18 In addition,

the Department of Health and Human Services (DHHS) considered

that patients with CD4+ T-cell counts that had not increased to 350–

500 cells/µl after 4–7 years of effective ART were defined as INRs.19

The various terms used to describe this poor immune reconstitution or

immune reconstitution failure in the literature are outlined in Table 1.

To date, it is commonly believed that the CD4+ T-cell count is the

most important predictor of immune recovery, treatment outcome,

and disease progression in HIV-1 infection, but recent reports clearly

indicate the need for additional markers to supplement the CD4+

T-cell count. Compared with the CD4+ T-cell count and viral load,

the CD4/CD8 ratio is potentially of higher predictive and evalua-

tive value for the recovery of immunological function especially in

patients who reached a CD4+ T-cell count > 500/µl after initiation

of ART.20–22

3 POTENTIAL MECHANISMS OF

INCOMPLETE IMMUNE RECONSTITUTION

The underlying mechanisms for this phenomenon are very compli-

cated and may be multifactorial, including decreased hematopoiesis

of bone marrow, insufficient thymic output, residual virus replication,

aberrant immune activation, perturbations of cytokine secretion, and

specific genetic or metabolic characteristics (Fig. 1).14,23–25 However,

none of these independent factors can fully explain the mechanism

of incomplete immune reconstitution. At any time, the CD4+ T-cell

counts in HIV-1-infected individuals are associated with the produc-

tion, destruction, and migration between secondary lymphoid organs

and peripheral tissues.6,26 INRs may have both reduced CD4 produc-

tion and excessive destruction.

3.1 CD4+ T-cell production

3.1.1 Bonemarrow and hematopoietic progenitor cells

T cells originate from bone marrow CD34+ hematopoietic progen-

itor cells (HPCs) and hematopoietic stem cells (HSCs), followed by

their development and maturation in the thymus.27 Chelucci et al.

found a proportion of CD34+ HPCs lineages can express the CD4

receptor together with the CXCR4 and/or CCR5 coreceptor and may

thus be susceptible to HIV-1.28,29 It has been demonstrated that HIV

can infect multiple subsets of bone marrow CD34+ HPCs in vivo

and in humanized mice, establishing latent cellular reservoirs.30–32

Tsukamoto et al. utilized the in vitro OP9-DL1/HIV-1 model, cocul-

tured cord-derived CD34+ HPCs and CXCR4-tropic HIV-1 NL4-3,

and showed that CD34+CD7+CXCR4+ cells were rapidly depleted

1week after HIV-1 infection, accompanied by dramatically diminished

numbers of CD34+CD7+CD4+ cells. These results suggest that the

CXCR4-tropicHIV-1 strainmay affect the differentiation rate or death

rate of CD34+CD7+ lymphoid progenitor cells, resulting in impaired

T-cell production capacity.33 Li et al. found that CD34+CD38− early

HPCs were preferentially depleted in HIV-1-infected individuals and

humanized mice via plasmacytoid dendritic cell-dependent mecha-

nisms, accompaniedwith a significant reduction in proliferation capac-

ity, while CD34+CD38+ intermediate HPCs were rarely affected.34 In

addition, Isgro et al. found that the clonogenic capability in vitro and

the level ofmoreprimitiveCD34+ progenitor cells in INRswas reduced

in parallel with reduced IL-2 production and increased production of

TNF-𝛼. Furthermore, Fas and Fas ligand expression was significantly

up-regulated, which could lead to the apoptotic depletion of CD34+

HPCs and decreased production of naïve CD4+ T cells.35 In addition,

Sauce et al. found that the numbers of circulating CD34+ HPCs and

mature lymphocyte numbers (i.e., CD8+ T cells, natural killer (NK) cells,

or B cells) decreased dramatically with HIV disease progression and

the number of circulating CD34+ HPCs was positively correlated with

the number of CD4+ T cells, which may be due to the reduction in

production of multiple lymphocyte lineages caused by bone marrow

dysfunction.36 Menkova-Garnier et al. reported that the capacity of

CD34+ HPCs to differentiate into T cells is more significantly reduced

in INRs than in immune responders (IRs) and healthy controls, which

may be related to the significant up-regulation of the ATP receptor

P2 × 7 on CD34+ HPCs in INRs. Inhibition of the P2 × 7 pathway in

vitro restores the potential of CD34+ HPC differentiation into T cells

in INRpatients, further confirming this view.37 The binding ofATPwith

its receptor, P2×7, induces the formationof inflammatorybodies, acti-

vates the caspase-1 signaling pathway, and promotes the secretion of

the proinflammatory cytokines IL-1𝛽 and IL-18, thus inducing host cell

apoptosis and pyroptosis.38 Another study byGuo et al. found that cir-

culating CD4+ T-cell counts correlate with the proliferation ability of

HPCsandHSCs. In addition, the colony-forming ability ofCD34+HPCs

and HSCs from INRs is much lower than that the colony-forming abil-

ity of those from IRs.39 These studies suggest that incomplete immune

reconstitution in HIV-1-infected individuals may be associated with

impaired bone marrow hematopoietic function and decreased prolif-

erative capacity.

3.1.2 Thymus and naïve cells

The thymus is crucial for the generation of naïve CD4 and CD8 cells

with a broad T-cell receptor repertoire. The most reliable method for

evaluating thymic function is to perform a thymic biopsy. However,

it is neither practical nor economical in HIV-1-infected individuals;

therefore, thymic function is indirectly assessed by T-cell receptor

excision circles (TRECs), or recent thymus emigrants (RTEs) or naïve

CD4+ T-cell counts. After ART initiation, the thymic output improved

significantly inHIV-1-infected adults and children, indicating that early

ART initiation is essential for immune reconstitution in HIV-1-infected

patients.40,41 It hasbeen reported that the thymic volume, as evaluated

by computed tomographic scans, is a powerful independent predictor

of themagnitudeofCD4+ T-cell recovery inHIV-1-infected individuals



600 YANG ET AL.

Reduced production of
progenitor cells in the
bone marrow

Reduced CD34+

hematopoetic
progenitor cells

Residual
viremia

CD4+ T cells

Abnormal immune activation

Immuno-senescence

Immune exhaustion

Apoptosis/pyroptosis

Th17

NK cells

NK cells dependent
CD4+ T cells lysis/apoptosis

Lymphoid tissue fibrosis
HIV reservoir/replication

Treg

Th17/Tregs imbalance

Microbial translocation
Intestinal flora imbalance
Mucosal barrier damage

Other factors associated with INR

1.  Age

3.  Nadir CD4

5.  Metabolism

7.  Early/delayed ART

9.  Cytokine

2.  Gender

4.  Genetics

6.  Drugs

8.  Co-infection

     10.  HIV R5/X4 tropism

HIV

Low naive T cells

Persistent viral
replication

Reduced thymic
output

F IGURE 1 Factors associatedwith immunological non-responders. Current understanding of themechanismof incomplete immune reconsti-
tution. INRs show severe immune dysfunction, including reduced production of progenitor cells in the bone marrow; thymic dysfunction; reduced
CD34+ hematopoietic progenitor cells; abnormal immune activation; immuneexhaustion; immunoregulatory cell imbalance, such as Treg andTh17
cells; increased immune-senescence and cell apoptosis/pyroptosis, lymphoid tissue fibrosis, and microbial translocation; and persistent viral repli-
cation due to the HIV reservoir, and so on. Arrows in red highlight the maturation route of CD4+ T cells, while arrows in black indicate the factors
associated with incomplete immune reconstitution. Th: helper T cell; Treg: regulatory T cell; NK: natural killer

receiving ART.42–44 Simultaneously, other studies demonstrated that

the thymic volume is associated with increased CD4+ TRECs content,

CD4+ naïve cells and total CD4+ T-cell counts in ART-experienced

HIV-1-infected individuals.45,46 These studies suggest that in the

case of lymphopenia, ongoing thymopoies may contribute to immune

recovery in adult HIV-1-infected individuals. It has been shown that

the frequency of CD4+ RTE cells, the numbers of sj-TRECs and the

sj/𝛽-TREC ratios are markedly lower in INRs than in IRs and healthy

individuals, indicating that lower thymic output is the main cause of

incomplete immune recovery in these patients.37,47–49 Furthermore,

Menkova-Garnier et al. found that the frequency of CD4+ RTEs was

positively correlated with the peripheral CD4+ T-cell count.37 A study

by Li et al. showed that INRs had a lower naïve CD4+ T-cell increase

and a lower percentage of CD4+ RTE than immunological responders

and healthy controls, indicating that reduced thymic output may be

a major mechanism of incomplete immune reconstitution.50 In accor-

dance, it has been reported that thymic function,measured by the sj/𝛽-

TREC ratio or CD4+ RTE%, can predict HIV-1 disease progression in

HIV-1-infected adults and adolescents with perinatally acquired HIV-

1.51,52 These studies indicate that reduced thymic output may play

an important role in the incomplete immune reconstitution of HIV-1-

infected individuals. Conversely, Cobos Jiménez et al. found in HIV-1-

infected ART-experienced 45-year-old adults with detectable viremia

(<50 copies/ml) for at least 1 year, the percentage of CD31+CD4+

cells and Sj-TREC content in PBMCs are much higher than those in

healthy controls. However, there was no correlation between Sj-TREC

content and CD4+ T-cell recovery.53 In addition, a study by Delobel

et al. found that the level of intrathymic proliferation, measured by the

sj/𝛽-TREC ratio, as well as the frequency of CD31+ RTEs in INRs

was comparable to that found in IRs despite their reduced numbers

of naïve CD4+ T cells.54 These studies suggest that reduced thymic

output does not help to explain the loss of CD4+ T-cell counts. Our

group recently found that INRs had a low number of CD3+CD4−CD8−

T cells after long-term ART and that the number of these cells posi-

tively correlated with the CD4+ T-cell count. This study demonstrates

that low double CD3+CD4−CD8− T-cell counts may play a role in

the incomplete restoration of CD4+ T cells.55 In conclusion, these

studies indicate that a functional thymus is of vital importance for

the maintenance of T-cell homeostasis and achievement of optimal

immune reconstitution.
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3.1.3 Cytokines

Interleukin-7 (IL-7), which is mainly produced by stromal cells in pri-

mary and secondary lymphoid organs, such as bone marrow stromal

cells, thymic epithelial cells, fibroblastic reticular cells, and lymphatic

endothelial cells, and IL-7 receptor (IL-7R), consisting of a common 𝛾-

chain (CD132) and an IL-7R-specific 𝛼-chain (CD127), are crucial for

CD4+ T-cell homeostasis due to promotion of survival, proliferation,

and de novo production of T cells.56,57 It has been reported that in

HIV-1-infected individuals, a decreasedpercentageofCD127+CD4+ T

cells and an increased percentage of CD127+CD8+ central memory T

cells are associatedwith incomplete immune reconstitution.58,59 How-

ever, a study by Hartling et al. demonstrated that neither the plasma

level of IL-7 nor CD127 expression on CD4+ T cells was associated

with an increase in the total CD4+ T-cell count after initiation of ART.

In contrast, they found positive associations between baseline CD127

density on CD4+ T cells and an increase in CD4+ RTE cell counts and

naïve CD4+ T-cell counts after 2 years of effective ART, indicating that

CD127 expression on CD4+ T cells is a predictor of increased thymic

output after 2 years of suppressive ART.60 Furthermore, a few studies

have found that in INRs, plasma levels of IL-7wereelevatedandCD127

expression both on CD4+ and CD8+ T cells was decreased; however,

there was no statistically significant correlation between the base-

line plasma IL-7 level and absolute CD4+ T-cell count after success-

ful ART.61 Furthermore, others have shown a positive association59,62

or a negative association63–65 between baseline plasma IL-7 levels

and CD4 recovery in HIV-1-infected individuals after ART initiation.

CD4+ T cells from INRs exhibited diminished CD127 expression and

reduced IL-7-mediated proliferation responsiveness.66,67 These stud-

ies demonstrated that IL-7 responsiveness is impaired in INRs and

may be related to downregulation of CD127. In addition, a study by

Cote et al. showed that Th17 cells (a subset of CD4+ T cells) from

aviremic HIV-1-infected individuals have increased CD127 expression

but impaired IL-7-induced proliferation, indicating that this reduction

in proliferation is not the result of the lack or dysfunction of the IL-7

receptor.68 Accordingly, perturbations in the IL-7/IL-7R system may

not be a reliable predictor of incomplete immune reconstitution. It

has been reported that in HIV-1-infected individuals with incomplete

immune reconstitution, elevated plasma levels of IL-6, and increased

CD4+ T cell turnover are already present before ART initiation.69,70 A

study by Shive et al. showed that pre-exposure of PBMCs from healthy

subjects to IL-1𝛽 or IL-6 can drive CD4+ T cell turnover, downregulate

CD127 expression, and diminish CD4+ T-cell responsiveness to IL-7.71

While numerous studies have found that plasma IL-6 levels69,72,73 and

lymphoid tissue IL-1 levels71 are elevated in HIV-1-infected individu-

als, these levels did not normalize even after effective ART. In addition,

thymic atrophy and fibrosis in lymphoid tissuesmay hinder IL-7 access,

which seems to be related to the continuous expression of type I IFNs

and decreased expression of IL-7R induced by IL-1 and IL-6, which is

linked to cell death and reduced thymopoiesis.74 Therefore, IL-1𝛽 and

IL-6 induce thymic atrophy and fibrosis in lymphoid tissues, increas-

ing CD4+ T-cell turnover, and diminished T-cell responsiveness to IL-7

may partially explain the lack of CD4+ T-cell recovery in aviremic HIV-

1-infected individuals.

3.2 CD4+ T-cell destruction

3.2.1 Coinhibitory receptors

Coinhibitory or immune checkpoint receptors (ICRs), including pro-

grammed cell death 1 (PD-1), cytotoxic T lymphocyte-associated pro-

tein 4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), T

cell immunoglobulin andmucin domain-containingmolecule-3 (Tim-3),

lymphocyte activation gene-3 (Lag-3), and 2B4 (CD244), play a vital

role in regulating immune responses against HIV-1 infection. In HIV-

1 infection up-regulation of ICRs is associated with T-cell exhaustion,

which is characterized by decreased proliferation and production of

cytokines.75,76 Furthermore, ICRs also participate in the establishment

andmaintenance of viral reservoirs, which is themain obstacle of HIV-

1 eradication.77–80 Numerous studies have shown that expression of

ICRs (such as PD-1, Tim-3, CTLA-4, and Lag-3) on CD4 and CD8 T cells

is substantially up-regulated in untreated HIV-1-infected individuals

and decreased after ART initiation, which is positively correlated with

plasma viral load and negatively with CD4+ T-cell count, and blockade

of the corresponding pathways resulted in enhancedHIV-specific CD4

andCD8T-cell proliferation and effector functions.81–88 These studies

indicate that ICR expression on T cells is associatedwith T-cell exhaus-

tion and disease progression.

Noyan et al. found that the frequencies of PD-1, CTLA-4, and TIGIT

expression on CD4+ T cells in HIV-1 elite controllers (ECs), who can

spontaneously control HIV-1 replication in the absence of ART and

maintain a high CD4+ T-cell count, were comparable with those in

healthy individuals and significantly lower than those in untreated

viremic subjects and ART-treated aviremic subjects. In addition, all

of these ICR coexpressed CD4+ T cells were positively correlated

with pVL and negatively correlated with the CD4+ T-cells count and

CD4/CD8 ratio, suggesting that the state of CD4+ T-cell exhaustion in

ECs is equivalent to that in healthy subjects.88 It has been reported

that INRs had significantly higher levels of PD-1 than IRs on total

CD4+ T cells,87,89–91 and that PD-1 expression on CD4+ T cells was

significantly inversely associated with the CD4+ T-cell count.87,89 A

studyby Saidakova et al. showed that bothCD4+ T-cell cycling (expres-

sion of Ki-67) and the exhaustion rate were significantly elevated in

HIV-1-infected INRs on suppressive ART compared to those in IRs. In

addition, the percentages of CD4+Ki-67+ CM and EM T lymphocytes

were inversely related to the CD4+ T-cell counts, and the frequency

of CD4+Ki−67+ CM T cells was significantly positively related to the

proportion of CD4+PD-1+ cells, suggesting that lymphopenia-induced

intensive homeostatic proliferation of CD4+ T cells is associated with

CD4+ T-cell exhaustion and poor CD4+ T-cell recovery.91 In conclu-

sion, these studies indicate that inhibitory receptor-mediated T-cell

exhaustion may have an important role in incomplete immune recon-

stitution in HIV-1-infected individuals.

3.2.2 Immune activation

Immune activation is manifested by mainly the acquisition of an

activated phenotype by innate and adaptive immune cells and the

secretion of soluble inflammatory mediators, such as IFN-𝛼, IL-1𝛽 ,

IL-6, IL-8, TNF, TGF-𝛽 , sCD14, sCD163, MIP-1𝛼, MIP-1𝛽 , RANTES,
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and IP-10. During HIV-1 infection, persistent immune activation and

inflammation are driven by multiple factors, including residual virus

replication, inflammatory lipids, gut microbial translocation, and co-

infection.92–94 Although long-termeffectiveARTsubstantially reduces

the level of immune activation and inflammation in HIV-1-infected

individuals, it fails to normalize the activation and inflammation.95–99

It was reported that persistent T-cell activation was associated with

decreased CD4+ T-cell gains in HIV-1-infected individuals during

ART.53,100–103 Hunt et al. found that for every 5% increase in the per-

centage of activated CD4+ T cells, the CD4+ T-cell counts decreased

by 45 cells/µl in the first 3 months of ART. Similarly, for every 5%

increase in the percentage of activated CD8+ T cells, the CD4+

T-cell counts decreased by 35 cells/µl after 3 months of ART.100 In

addition, a study by Cobos Jiménez et al. found that the plasma sCD14

and sCD163 levels and the percentages of activated (coexpressing

CD38+HLA-DR+) CD4+ and CD8+ T cells were higher in ART-treated

HIV-1-infected individuals than in healthy controls. The sCD14 and

sCD163 levels were positively associated with the percentage of acti-

vated CD4+ T cells. Furthermore, the percentage of activated CD4+ T

cells was significantly inversely associated with the CD4+ T-cell count

and CD4+ T-cell recovery after starting ART. This study indicated

that T-cell activation driven by monocyte activation and bacterial

translocation, as demonstrated by sCD14 and sCD163 levels, is asso-

ciated with poor immune recovery in HIV-1-infected individuals.53 In

support of this finding, Khoury et al. also found that activated CD4+

T cells were significantly inversely correlated with current and nadir

CD4+ T-cell counts.79 It was reported that INRs showed increased

levels of immune activation, mainly in CD4+ T cells; increased levels of

proliferation; and increased rates of spontaneous CD4+ T-cell death

by apoptosis.48,104–109 These studies indicate that activated-mediated

CD4+ T-cell hyperproliferation and spontaneous cell death may

impede immune recovery in HIV-1-infected individuals. Stiksrud et al.

showed that INRs displayed higher activation of both monocytes and

DCs than IRs and that this increase was correlated with enhanced

CD4+ and CD8+ T-cell activation. HIV-1-specific monocyte plasma

IFN-inducible protein-10 (IP-10, also known as CXCL-10, a marker of

monocyte activation) responses were shown to be negatively asso-

ciated with future CD4 gain.110 This group also found that INRs had

elevated plasma IP-10 levels. Furthermore, the plasma IP-10 levels and

IDO-1 enzyme activity, measured as the kynurenine/tryptophan ratio,

were inversely associated with the CD4+ T-cell count 2 years after

inclusion.111 IDO is predominantly expressed in macrophages and

DCs and is the rate-limiting enzyme for the catabolism of tryptophan

into kynurenines. Therefore, IDO activity may serve as a marker of

inflammation and immune activation.112 Others have demonstrated

that elevated IDO-1 activity is associated with reduced CD4+ T-cell

recovery in HIV-1-infected individuals on ART.113,114 A study by Luo

et al. showed that the frequency of activatedNK cells was significantly

increased in IRs and healthy controls and that NK cell activation

was inversely correlated with peripheral CD4+ T-cell counts in

HIV-1-infected individuals on ART. Furthermore, NK cells from INRs

had the ability to induce uninfected CD4+ T-cell death via cytotoxic

effects. These results suggest that activatedNK cells may play a role in

unsatisfactory CD4+ T-cell recovery in HIV-1-infected individuals on

long-termART.115

In addition, Bandera et al. found that the nucleotide-binding

oligomerization domain (NOD)-like receptor (NLR) family, pyrin

domain containing 3 (NLRP3) inflammasome and caspase-1 were sig-

nificantly up-regulated in INRs compared to those in IRs and that

NLRP3-mediated activation of caspase-1 could induce CD4+ T-cell

loss via persistent immune activation and pyroptosis, resulting in

unsatisfactoryCD4+ T-cells recovery.116 Itwas reported that INRshad

a higher frequency of CXCR4-tropic viruses than IRs and that CXCR4-

tropic virus can trigger persistent T-cell activation and bystander

apoptosis through the interaction of gp120-CXCR4, thus resulting in

the depletion of naïve T cells, and may play a role in the impaired

immune reconstitution in INRs.54,117

3.2.3 Microbial translocation and intestinal

flora imbalance

In the early stage of HIV-1 infection, massive amounts of CD4+ T cells

in the gut are depleted, especially T helper (Th) 17 cells and Th22 cells,

which play an important role in maintaining the integrity of the gut.

HIV-1 infection is also associated with gut epithelial barrier damage

characterized by villous atrophy, enterocyte apoptosis, crypt hyper-

plasia, decreased expression of tight junction proteins, and increased

gastrointestinal inflammation, which contributes to increased intesti-

nal permeability.118–120 These abnormalities eventually result in alter-

ation of the intestinal microbiota composition (dysbiosis) and release

of bacterial products into the circulation (microbial translocation),

leading to chronic immune activation and inflammation.74,121,122 A

study by Jiang et al. found that bacterial ribosomal 16S RNA, a marker

ofmicrobial translocation from the gastrointestinal tract, was substan-

tially elevated in HIV-1-infected subjects on effective ART compared

with that in healthy controls andwaspositively associatedwith the lev-

els of T-cell activation and inversely associatedwith the levels of CD4+

T-cell restoration.123 In addition, Mehraj et al. reported that plasma

levels of the fungal antigen 𝛽DG, a component of fungal cell walls that

serves as a potent pathogen-associatedmolecular pattern in triggering

antifungal immunity, were significantly elevated in HIV-1-infected

individuals and did not normalize despite long-term ART. 𝛽DG content

correlated positivelywith activatedCD4+ andCD8+ T cell levels, IDO-

1 enzyme activity, and plasma sCD14 and Lipopolysaccharide levels

and inversely with CD4+ T-cell counts.124 These studies suggest that

microbial product translocation from the gut to the circulation was

associated with immune activation and imply CD4+ T-cell depletion

during suppressive ART treatment. HIV-1 infection is associated with

a decrease in intestinal microbial diversity.118,121 Nowak et al. found

that the alpha-diversity of the gutmicrobiota,measured as the number

of observed bacterial species and Shannon index, was significantly

lower in HIV-1-infected individuals, both at baseline and after ART

initiation, than in healthy controls. The alpha diversity correlated with

CD4+ T-cell counts and inversely with markers of microbial translo-

cation and monocyte activation. For every increase in the number of

bacterial species, theCD4+ T-cell count increased by 0.88 cells/µl. This
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study suggests a pivotal role of microbiota diversity in host immune

homeostasis.125 Several studies have found that HIV-1-infected

individuals have a significant increase in the relative abundance of the

Gram-negative bacteria Prevotella in conjunction with a decrease in

Bacteroides abundance compared to those in healthy controls.126–130

A study by Kaur et al. also found that the abundance of Prevotella

was significantly higher in perinatal HIV-1-infected children than in

uninfected controls despite ART. The relative abundance of Prevotella

positively correlated with the levels of IP-10 and sCD14, a marker of

monocyte activation and microbial translocation, and was inversely

associated with the CD4+ T-cell count.131 In addition, Dillon et al.

reported that the relative abundance of Prevotella was strongly pos-

itively associated with the number of activated mucosal CD4+ and

CD8+ T cells and the level of myeloid DC activation.127,132 These

studies suggest that enrichment of Prevotella may be detrimental to

immune reconstitution by driving immune activation. Lee et al. found

that INRs had a higher abundance of Fusobacterium than IRs and

healthy controls. The relative abundance of Fusobacterium abundance

was positively correlated with CD4+ T-cell activation but negatively

correlated with CD4+ T-cell counts, suggesting that the enrichment of

Fusobacterium may be associated with poor CD4+ T-cell recovery.133

In addition, Lu et al. showed that INRs were enriched with Faecalibac-

terium prausnitzii, unclassified Subdoligranulum sp., and Coprococcus

comes compared with those in IRs. Moreover, the relative abundances

of unclassified Subdoligranulum sp. and C. comes were positively cor-

related with CD8+ T-cell activation and inversely associated with

CD4+ T-cell counts.130 A study by Pérez-Santiago et al. found that

gut Lactobacillales was associated with an increased CD4 percentage,

reduced microbial translocation, and decreased systemic immune

activation during HIV infection, which may be related to the fact that

Lactobacillus can regulate the anti-inflammatory immune response

and participate in maintenance of intestinal mucosal barrier integrity,

thereby reducing the level of immune activation and the destruction

of CD4+ T cells.134 These observations suggest that altered intestinal

microbiota communities may be associated with systemic immune

activation andmicrobial translocation, thus contributing to incomplete

immune recovery in HIV-1-infected individuals. A study by Serpa et al.

showed that long-term use of proton pump inhibitors was associated

with increased microbial translocation, innate immune activation,

and poor immune reconstitution in HIV-1-infected individuals on

suppressive ART.135

3.2.4 Coinfection

Numerous studies have found that hepatitis B virus (HBV),136–139

hepatitis C virus (HCV),140–142 and CMV coinfections143,144 were

associated with poor CD4+ T-cell immune recovery in HIV-1-infected

individuals on ART. The precise mechanism by which HBV, HCV, and

CMV coinfections may have deleterious effects on CD4+ T-cell count

recovery is unclear. The impaired immunological recovery in HBV-,

HCV-, or CMV-coinfected patients could be due to the destruction

of CD4+ T cells by coinfection-mediated CD4+ T-cell activation,

apoptosis, or exhaustion.145–149 Others studies did not show an

association between HBV,142,150,151 HCV,152,153 or CMV154 coinfec-

tion and immunological recovery. Demographic characteristics (such

as age, sex, and ethnicity), baseline CD4+ T-cell counts, follow-up time,

duration of ART, and coinfection status might have contributed to

this discrepancy.

3.2.5 Secondary lymphatic organs

Lymphatic tissue structure and function is of vital importance in T-

cell homeostasis. HIV-1 infection is associated with persistent chronic

immune activation and inflammation, which results in progressive col-

lagen deposition in the parafollicular T-cell zone and lymphoid tissues

fibrosis, which replaces the fibroblastic reticular cell network (FRCn),

a structure that is vital to normal immune function, the FRCn also pro-

duce the T-cell homeostatic cytokine IL-7.155 Several studies demon-

strated the evidence of dramatically paracortical T-cell zone damage

was associatedwith the deposition of collagen in lymphoid tissues (LT),

and the magnitude of collagen deposition in LT was inversely corre-

lated with both the size of the CD4+ T-cell population in the LT and

the increase of peripheral CD4+ T-cell counts in HIV-1-infected indi-

viduals on effective ART.156–158 Consistently, the extent of loss of the

FRCn and collagen in the LT predicts the degree of the restoration of

both naïve T cells and peripheral total CD4+ T cells after 6 months of

ART.159,160 These studies suggest that collagen deposition and loss of

the FRCn in the LT limit the magnitude of the CD4+ T-cell recovery in

HIV-1-infected individuals under long-termART.

3.3 Other factors associatedwith immune

reconstitution

In addition to the factors mentioned above, older age,18,161–163 male

sex,164–166 lower nadir CD4 T-cell counts,18,167,168 lower CD4/CD8

ratios, and a lower naïve/memory CD4+ T-cell ratio167,169,170 have

been associated with a blunted immunological response to ART treat-

ment. Ethnic origin is also associated with immune recovery.171–174

Furthermore, host genetic factors, metabolic characteristics, and spe-

cific ART regimensmay play a role in incomplete immune recovery. Luo

et al. reported that HIV-1-infected INRs had significantly increased

surface-bound IgG on CD4+ T cells compared to that in IRs and

healthy controls. The percentage of auto-IgG binding on CD4+ T-cell

surfaces was associated with increased CD4+ T-cell apoptosis and

inversely correlated with absolute CD4+ T-cell counts. Furthermore,

purified anti-CD4 IgG from HIV-1-infected INRs bound to CD4+ T

cells and induced cell apoptosis through NK-mediated Ab-dependent

cell-mediated cytotoxicity (ADCC) in vitro.175 This study suggests that

autoreactive anti-CD4 IgGmay play a vital role in unsatisfactory CD4+

T-cell reconstitution despite effective ART. In addition, Lisco et al.

demonstrated that anti-CD4 antibody-mediated ADCC and aberrant

inflammasome/caspase-1 activation may be an important cause of

extreme CD4+ T-cell count decline in HIV-1-infected individuals with

ART-mediated viral suppression.176 A study by Tincati et al. showed

that the level of HIV-1 reservoirs, measured as the frequencies of cells

harboring total and integrated HIV-DNA as well as 2 long terminal

repeat circles, in both peripheral CD4+ T cells and intestinal tissue
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was comparable between HIV-1-infected INRs and IRs. However, HIV

reservoirs in both peripheral blood and the gut negatively correlate

with CD4+ T-cell reconstitution, suggesting that poor immune recov-

ery onARTmay be associatedwith increasedHIV reservoirs.177 Agrati

et al. reported that the frequency of myeloid-derived suppressor cells

(MDSCs) was significantly elevated during primary HIV-1 infection

and did not normalize after 48 weeks of successful ART. Furthermore,

an inverse correlation was also observed between the frequency of

MDSCs and the CD4+ T-cell count at 48 weeks after ART initiation,

indicating that the persistence of MDSCs may impede CD4+ T-cell

recovery.178 HIV-1-infected INRs had remarkably higher levels of

𝛼4𝛽7, a marker of lymphocyte gut-homing, on CD4+ T cells than

healthy controls despite effective ART treatment, suggesting that an

increase in the trafficking of CD4+ T cells to gut-associated lymphatic

tissue may contribute to unsatisfactory CD4+ T-cell recovery.179,180

A study by Sennepin et al. reported that the expression of NKp44L,

the cellular ligand of an activating NK cell receptor, was remarkably

up-regulated on CD4+ T cells in HIV-1-infected INRs compared with

that on CD4+ T cells in IRs and healthy controls. NKp44L expression

was associated with a significant expansion and apoptosis of highly

differentiated, multifunctional CD4+ T cells, indicating that a rapid

CD4+ T-cell turnover in HIV-1-infected individuals may prevent

immune recovery.181

3.3.1 Host genetic factors

Previous studies have shown that host genetic factors can influence

CD4+ T-cell recovery during suppressiveART treatment. TheCCL3L1-

CCR5 genotypes,182 polymorphisms in CD14 and TLR4,183 mitochon-

drial haplogroup H,184,185 and IL18 G variant allele and genotype186

were associated with enhanced long-term CD4+ T-cell recovery in

HIV-1-infected patients on suppressive ART. The IL-7 receptor subunit

alpha (IL7RA) rs6897932 CT/TT genotype was related to a faster and

better CD4+ T-cells recovery compared to that of the CC genotype;

a potential mechanism is that signal transduction and proliferation in

response to IL-7 was is substantially higher in the "TT" genotype com-

pared to that in the "CC" genotype in HIV-infected individuals.187–189

A study by Greenblatt et al. showed that 41 genes harbored varia-

tions that were independently predictive of CD4 recovery. Many of

these genes are associated with the cell cycle, apoptosis, lympho-

cyte migration, or CD4+ T-cell homeostasis.163 Conversely, the CCR2

rs1799864-AG genotypes,190 HLA-A68 andHLA-B15 alleles,191 TLR9

1635AA genotype,192 polymorphism rs1385129 in the glut1 gene

SLC2A1,193 and polymorphisms in the IFN-𝛾 and IL19 genes194 are

linked to poor CD4+ T-cell recovery in HIV-1-infected individuals.

3.3.2 Hostmetabolic factors

Numerous studies have shown that a higher baseline body mass

index (BMI) was associated with enhanced immune reconstitution

in HIV-1-infected individuals on suppressive ART.195–198 In support

of this finding, others have shown that an increasing BMI was an

independent predictor of elevated CD4+ T-cell counts in HIV-1 unin-

fected individuals.199–201 These studies indicate that adipose tissue

may affect peripheral CD4+ T-cell recovery. Glucose metabolism

plays a vital role in supporting the growth, proliferation, and effector

functions of T cells. Glucose transporter-1 (Glut1) is a kind of glucose

transporter with high affinity for glucose and is the main glucose

transporter in T cells. Glut1 can also serve as a marker of glycolysis

activation. The percentage of circulating CD4+Glut1+ T cells was

significantly elevated in HIV-1-infected individuals and did not nor-

malize despite long-term effective ART. In addition, the proportion of

CD4+Glut1+ T cells correlates positively with the percentage of acti-

vated CD4+ T cells and inversely with the absolute CD4+ T-cell count

irrespective of HIV treatment status. This group also demonstrated

thatGlut1was up-regulated on exhausted and senescent CD4+ T cells.

Thus, these observations indicate that hyperactivation of glycolysis in

CD4+ T cells duringHIV infection facilitatesmetabolic exhaustion that

drives CD4+ T-cell depletion.193,202 VitaminD (VitD) is a key regulator

of host defense against infections by activating genes and pathways

that enhance innate and adaptive immunity.203 Several studies have

demonstrated that baseline VitD deficiency in HIV-1-infected individ-

uals was associated with diminished CD4+ T-cell recovery after ART

initiation.204–207 This effect may be partially explained by the fact that

sufficient VitD levels can reduce inflammation and T cell activation,

restrain HIV-1 infection in T cells, and promote the proliferation of

CD4+ T cells induced by APCs.207,208 These observations suggest that

thebaselinemetabolic characteristicsmaybeassociatedwith impaired

immune reconstitution in HIV-1-infected individuals during ART.

3.3.3 Antiretroviral drugs and immune reconstitution

Numerous studies have demonstrated that the CD4+ T-cell count

recovery was superior under the raltegravir-containing regimen com-

pared with that under the efavirenz-containing regimen when com-

bined with tenofovir/emtricitabine in HIV-1-infected ART-utilizing

individuals after long-term ART.209–212 Others have shown that HIV-

1-infected individuals receiving the dolutegravir-abacavir-lamivudine

(DTG-ABC-3TC) regimen had a shorter median time to viral suppres-

sion, as well as greater increases in CD4+ T-cell count, than those

receiving the efavirenz–tenofovir disoproxil fumarate–emtricitabine

(EFV-TDF-FTC) regimen.213,214 Tanuma et al. reported that stavudine

(d4T)-based regimens (OR 0.51, vs AZT) and nevirapine (NVP)-based

regimens (OR 0.53, vs EFV) were associated with impaired immune

recovery.165 Furthermore, a study by Zhang et al. showed that the

risk of suboptimal immunologic recovery among patients with AZT-

containing regimens or d4T-containing regimenswas 2.1 and 2.4 times

higher, respectively, compared with that among patients with TDF-

containing regimens.215 These studies suggest that a specific ART reg-

imen may also affect the level of immune reconstitution in HIV-1-

infected individuals.

4 INTERVENTION MEASURES FOR POOR

IMMUNE RECONSTITUTION

Thus far, it is not clear which treatment can maximize the recov-

ery of CD4+ T cells in INRs. Although researchers have made
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various attempts to improve the level of immune reconstitution in

INRs, these specific interventions have not yet achieved convincing

results except for standard ART regimes, mainly because the mecha-

nism of immune reconstitution in INRs has not yet been clarified. As

mentioned above, the occurrence of poor immune reconstitution in

HIV-1-infected people may involve a variety of mechanisms, and the

relative contributions of these mechanisms vary greatly among indi-

viduals. Therefore, precise individualized treatment should be selected

according to the pathogenesis presented. In HIV-1 infection, persis-

tent immune activation contributes to rapid T-cell turnover, immune

exhaustion, and increased cell death. Several studies have evaluated

the effect of other strategies, such as intensification with maraviroc

or raltegravir, the immunomodulatory agents chloroquine and its ana-

logue hydroxychloroquine, statins, aspirin, and prebiotics and probi-

otics in combination with a standard ART regimen, in limiting immune

activation and immune reconstitution. As it is not possible to eradicate

HIV, the current intervention strategies to limit residual immune acti-

vation aremarginally successful.216

VitD deficiency is associated with an increased plasma HIV viral

load, decreased peripheral blood CD4+ T cells, and rapid AIDS

progression.203 Coelho et al. reported that plasma 25(OH)D lev-

els were significantly positively correlated with CD4+ T-cell counts

after 24 weeks of VitD supplementation and that each 1.0 ng/ml

increase in 25(OH)D during repletion therapy was associated with

a 3.3 cell/µl increase in the CD4+ T-cell count.217 Although others

have found that VitD supplementation is associated with reduced

immune activation and CD4+ T-cell exhaustion levels, it has no effect

on CD4+ T-cell recovery in both untreated and treatedHIV-1-infected

individuals.218–220 Therefore, additional investigation is needed to

determine whether VitD can promote immune reconstitution.

IL-2 is a cytokine that regulates the proliferation and differenti-

ation of lymphocytes and may help to reconstitute the immune sys-

tem. A systematic review summarized the role of IL-2 supplementa-

tion in HIV-1-infected individuals receiving ART treatment and found

that IL-2 in combination with ART increases the CD4+ T-cell count in

HIV-1-infected individuals comparedwith that of ART alone. However,

combining IL-2 therapy with ART does not confer any significant clin-

ical benefit in terms of mortality and the occurrence of opportunistic

infections and may increase grade 3 or 4 adverse effects. Therefore,

IL-2 is not recommended as a therapeutic adjunct in the treatment of

HIV infection.221

IL-7plays a vital role in thymopoiesis aswell as in theperipheral pro-

liferation and survival of mature T cells. Multiple phase I/II clinical tri-

als have evaluated the effect of recombinant human IL-7 supplementa-

tion on immune reconstitution in HIV-1-infected individuals receiving

ART treatment. The administration of r-hIL-7 resulted in a substantial

and sustained increase in the numbers of circulating CD4+ and CD8+

T cells, as well as enhanced cell proliferation and thymic output.222–227

IL-7 therapy is also associated with apparent improvement in gut bar-

rier integrity and decreased systemic inflammatory and immune acti-

vation. However, a study by Katlama et al. demonstrated that despite

IL-7 administration and dual ART intensification inducing a significant

expansion of central memory CD4+ T-cells, a mild HIV reactivation

and an amplification of the HIV reservoir was also observed.228 Taken

together, these studies revealed that patients may benefit from inter-

mittent therapy with IL-7 in combination with ART, but we should also

pay attention to the side effects caused by HIV-1 reactivation.

Mesenchymal stem cells (MSCs) can interact with cells of both

the innate and adaptive immune systems and inhibit their activation

and release of proinflammatory cytokines. A study by Zhang et al.

found that umbilical cord-MSCs transfusions are well tolerated and

can substantially reduce the level of systemic immune activation,

immune exhaustion, and the inflammatory response as well as effi-

ciently increase circulating naïve and central memory CD4+ T-cell

counts in HIV-1-infected INRs, suggesting that such interventionsmay

be helpful for immune reconstitution in INRs.229

5 CONCLUSIONS

In conclusion, numerous studies on the mechanism of INRs have

focused onmainly isolated portions of the complex processes of CD4+

T-cell production, differentiation, survival, and destruction. However,

poor immune reconstitution in HIV-1-infected individuals is related

to many factors. Thus far, there is no precise mechanism to explain

INRs, which may be due to the combination of several factors lead-

ing to poor immune reconstitution. Moreover, it should be noted that

different patients may have different dominant mechanisms of poor

immune reconstitution. These two aspects can affect the best treat-

ment choice for INRs. Therefore, precise individualized treatment

should be selected according to the specific pathogenic mechanism

presented. In summary, a further understanding and improvement of

immune reconstitution in HIV-1-infected patients remains an impor-

tant field of scientific research.
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