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Abstract: The thermal behaviour of Ag2[PtCl4] and Ag2[PtCl6] complex salts in inert and reducing
atmospheres has been studied. The thermolysis of compounds in a helium atmosphere is shown
to occur in two stages. At the first stage, the complexes decompose in the temperature range of
350–500 ◦C with the formation of platinum and silver chloride and the release of chlorine gas.
At the second stage, silver chloride is sublimated in the temperature range of 700–900 ◦C, while
metallic platinum remains in the solid phase. In contrast to the thermolysis of Ag2[PtCl6], the
thermal decomposition of Ag2[PtCl4] at 350 ◦C is accompanied by significant heat release, which
is associated with disproportionation of the initial salt to Ag2[PtCl6], silver chloride, and platinum
metal. It is confirmed by DSC measurements, DFT calculations of a suggested reaction, and XRD. The
thermolysis of Ag2[PtCl4] and Ag2[PtCl6] compounds is shown to occur in a hydrogen atmosphere
in two poorly separable steps. The compounds are decomposed within 170–350 ◦C, and silver and
platinum are reduced to a metallic state, while a metastable single-phase solid solution of Ag0.67Pt0.33

is formed. The catalytic activity of the resulting nanoalloy Ag0.67Pt0.33 is studied in the reaction of
CO total (TOX) and preferential (PROX) oxidation. Ag0.67Pt0.33 enhanced Pt nano-powder activity in
CO TOX, but was not selective in CO PROX.

Keywords: thermolysis; silver; platinum; solid solution of metals; CO PROX

1. Introduction

The search for new efficient energy sources is an important problem nowadays. One
option to solve this problem is to use fuel cells, i.e., devices that convert chemical energy
into electrical energy, bypassing the inefficient stage of fuel combustion, which occurs with
great losses. Since there is no release of harmful substances into the atmosphere, such
elements are eco-friendly, which is very important today due to pressing environment-
related issues. Therefore, fuel cells are promising and have attracted the attention of many
researchers [1,2].

Catalysts are important components of fuel cells; they increase the efficiency of the
latter. Various catalysts can be used for low-temperature fuel cells, but highly dispersed
platinum catalysts on carbon are currently amongst the most popular ones.

Platinum is widely used in catalytic processes. It was shown in [3,4] that the activity of
platinum in the methanol oxidation reaction depends on the particle size and these changes
are not monotonic. The substrate and additives also make a significant contribution to the
oxidation of methanol. When used as a substrate of transition metal oxides, the rate of
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methanol oxidation depends on strong interactions between nanoparticles, platinum, and
transition metal oxides [4].

However, the use of pure platinum has its drawbacks, such as a high cost of the metal
due to limited reserves and degradation during long-term operation as a part of fuel cells,
and poisoning by CO. These problems can be solved by including a cheaper metal, e.g.,
silver, which helps to achieve the desired effect [5].

Silver itself is capable of catalyzing the oxidation reaction of methanol. This is due to
the fact that oxygen binds to silver, thus forming a methoxy group [6]. At the same time,
depending on the O2/CH3OH ratio and temperature, different products can be obtained.
For example, when the ratio O2/CH3OH = 0.39 and temperature 640 ◦C, formaldehyde is
formed with a yield of 91% [7], and at a low ratio and a temperature range of 500–650 ◦C,
methyl formate is mainly formed [8].

In the case of Ag/Pt, such samples have a high thermodynamical stability according
to the calculations of Ramirez-Caballero by using the density functional theory [9]. This is
a unique property of Ag/Pt bimetallic catalysts which makes them promising for catalytic
applications [10,11].

The Ag/Pt catalysts are more active in the selective or complete oxidation of methanol
or propylene, in contrast to pure platinum and silver [12,13]. The highest activity is
achieved with the composition Ag0.38Pt0.62 [11]. The use of AgPt as a catalyst to synthesise
H2O2 improves the selectivity up to 50%, unlike pure platinum, which yields only 6% [14].
The Ag2Pt/Al2O3 catalyst also shows a high activity when compared to monometallic
analogues during CO oxidation under ambient temperature [15]. This is due to the fact that
H2O and OH bind principally to Ag atoms in the presence of Pt, while the adsorbed OH on
Ag atoms oxidizes the adsorbed CO on the Pt surface [16].

Due to the similarity of the lattice parameters of Ag and Pt, they are capable of forming
AgPt alloys [17,18]. Moreover, Ag promotes the activation of surface-active centres due
to the fact that it can modify the electronic structure [19,20]. Ag promotes an increase
in photochemical activity due to the large specific surface area of silver and its unusual
electronic properties [21]. It was shown in [22] that AgPt deposited on N-doped graphene
quantum dots (N-GQD/AgPt HND) showed a 21-fold improvement in catalytic properties
compared to commercial Pt/C. It was also shown that under illumination with visible
light, the electrocatalytic activity of N-GQD/AgPt in relation to the oxidation of methanol
showed 1.7 times more than without treatment with visible light.

Depending on the morphology and composition, AgPt solid solution shows different
chemical and physical properties. The use of thin AgPt films with a nano-fern structure as
a substrate increases the sensitivity of creatine molecules in the surface-enhanced Raman
scattering (SERS). In the future, AgPt thin films can be potentially implemented in the mon-
itoring of environmental pollution, food quality, safety, and medical applications [23,24].
Furthermore, AgPt nanoparticles with a nano-fern structure show high catalytic and se-
lective activity in the acetone hydrogenation reaction to produce isopropyl alcohol, unlike
pure platinum and silver [25].

There is work underway to study the biological effect of AgPt nanoparticles. Thus,
bimetallic nanoalloys (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10
are considered in [26] with an increment of 20 mol.%. AgPt was found to demonstrate a com-
bination of properties of the simple metals: it shows antimicrobial activity associated with
Ag and osteo-promotive effect associated with Pt, as well as inhibiting osteoclastogenesis.
This combined effect of AgPt NP is valuable in the development of new antimicrobial and
osteo-promotive supplements for biomaterials that can support bone regeneration. The sta-
bility of the synthesised nanoalloys is also a significant aspect. As shown in [27], the stability
of Ag/Pt clusters decreases with increasing Pt content depending on the cluster compo-
sition. The nanoalloy stability increases in the following sequence: 5.1 < 3.6 < 2.5 < 1.6 of
the Ag/Pt molar ratio. The cluster’s stability was maintained for the Ag/Pt molar ratio of
0.4–5.1. There have been two particularly stable compositions identified with Ag/Pt ratios
of 1.6 and 0.4.
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Complex compounds of platinum metals are a good precursor for the synthesis of
solid solutions of metals. The thermal properties of hexa- and tetra-chloroplatinic salts
of ammonium and alkali metals have been studied in detail [28]. Alkali metal tetra-
chloroplatinate(II) is characterised by a disproportionation reaction in the temperature
range of 200–400 ◦C, leading to the formation of Pt, hexa-chloroplatinate(IV), and alkali
metal chloride [29]:

2 M2[PtCl4] = Pt + M2[PtCl6] + 2 MCl.

Therefore, this work is devoted to the synthesis of Ag2[PtCl6] and Ag2[PtCl4] compounds—
precursors of the bimetallic nanoalloys with precisely assigned ratio of metals—their
thermal properties in inert and reducing atmospheres. Ag0.67Pt0.33 nanoalloy which is
final product of the precursor compounds thermolysis has been studied in the reactions of
preferential (PROX) and total (TOX) CO oxidation. Its formation was investigated upon
heating up to 614 ◦C by in situ X-ray diffraction.

2. Results and Discussion
2.1. Photo Stability of Complex Compounds

Silver salts are well known to be unstable and to decompose under the daylight. We
conducted an experiment to determine the photo stability of the synthesised salts: some
amount samples of Ag2[PtCl4] and Ag2[PtCl6] were placed in a desiccator with P2O5 in
a dark place, while others were left in the light. No mass changes were observed for
two months, and no formation of new phases. Furthermore, no decrease in the intensity of
the reflections of the initial salts was detected on the diffraction pattern as well.

The additional UV–Vis and PL experiments are described in the Supplementary
Materials (S2).

Thus, we can talk about the photo stability of the synthesised compounds in relation
to light at least of the Ag2[PtCl6].

2.2. Thermal Properties of Ag2[PtCl4] in a Inert Atmosphere

A total of 12.4% of the mass of the substance is lost during the thermolysis of Ag2[PtCl4]
in an inert atmosphere (helium) in the temperature range of 340–515 ◦C, which corresponds
to the removal of the Cl2 molecule, and 87.6% of the initial mass remains in the solid,
which corresponds to 2 AgCl and Pt (Figure 1). This assumption is confirmed by X-ray
phase analysis.
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Figure 1. Mass loss curves and differential thermal analysis of Ag2[PtCl4] in a helium atmosphere. 
Figure 1. Mass loss curves and differential thermal analysis of Ag2[PtCl4] in a helium atmosphere.

It is noteworthy that intense heat is released at a temperature of 365 ◦C (at the very
beginning of the decomposition of the initial compound) which could be associated with a
phase transition or another process that is not accompanied by a change in mass.
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Samples of the complex Ag2[PtCl4] weighing 5–14 mg were investigated in the tem-
perature range from 27 to 380 ◦C. The thermal anomaly with the exo-effect of 662 ± 12 J/g
or 366 ± 7 kJ/mol corresponding to the decomposition process at Tonset = 358 ± 1 ◦C was
observed on the temperature dependence of the DSC signal (Figure 2). Irreversibility and
completion of the decomposition process was checked by reheating of samples after the
first measurement.
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The data of X-ray phase analysis show there is a disproportionation of platinum(II)
with the formation of metallic platinum and silver hexachloroplatinate(IV) and AgCl at
this stage (Figure 3):

2 Ag2[PtCl4] = Ag2[PtCl6] + Pt + 2 AgCl
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different temperatures. RT-room temperature.

In order to confirm this assumption, the model complexes were optimised using the
Density Functional Theory (DFT). The calculated enthalpy of the proposed reaction gives
good agreement with the experiment (3.6 eV or 345 kJ/mol).

In total, 48.3% of the mass is lost in the temperature range of 650–917 ◦C, which
corresponds to AgCl sublimation, and 39.3% of the substance remains, which corresponds
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to metallic platinum and apparently to the remaining silver chloride (2% of mass). These
calculations were also confirmed by X-ray phase analysis (Figure 3).

2.3. Thermal Properties of Ag2[PtCl4] in a Hydrogen Atmosphere

Two poorly separated stages occur during the thermolysis of Ag2[PtCl4] in a reducing
atmosphere in the temperature range of 100–350 ◦C. According to the mass loss calcula-
tions, these stages involve removal of chlorine molecules (Figure 4). According to X-ray
phase analysis, the final product is an FCC phase with the following unit cell parame-
ter: a = 4.024(4) Å, V/Z = 16.3 Å3, crystallite size of 4–6 nm, which corresponds to the
composition of Ag0.67Pt0.33 (S3).
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2.4. Thermal Properties of Ag2[PtCl4] in a Inert Atmosphere

The behaviour of Ag2[PtCl6] during thermolysis in an inert atmosphere (helium) is
similar to that of Ag2[PtCl4] with the only difference being a lack of intense heat release at
the beginning of decomposition. There is a loss of 22.7% of the mass in the temperature
range 370–560 ◦C, which corresponds to the elimination of two molecules of chlorine, and
the remaining mass of 77.3% corresponds to a mixture of platinum and silver chloride in
the ratio of 1:2, respectively (Figures 5 and S4).
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Above 760 ◦C, further mass loss occurs which corresponds to the sublimation of silver
chloride, while only platinum metal remains in the solid residue.

2.5. Thermal Properties of Ag2[PtCl6] in a Hydrogen Atmosphere

The first stage of Ag2[PtCl6] thermolysis in a reducing atmosphere occurs in the
temperature range of 170–260 ◦C, similar to decomposition in a helium atmosphere: 22.7%
of the mass is lost, which corresponds to two molecules of chlorine, and the remaining
mass of 77.3% corresponds to a mixture of platinum and silver chloride in the ratio 1:2,
respectively (Figure 6).
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In the temperature range of 260–360 ◦C, 11.4% of the mass is lost, which corresponds
to two Cl atoms; thus, the recovery of silver chloride and the formation of a solid solution
of silver and platinum in the ratio of 2:1 occur at this stage.

According to X-ray diffraction data (Figure 7), the initial compound remains un-
changed when heated to 130 ◦C, while at 220 ◦C wide peaks are observed on the diffraction
pattern from the platinum phase FCC and AgCl only. An increase in temperature to
250 ◦C leads to a decrease in the intensity of AgCl reflections, a simultaneous increase
in the intensity of the FCC phase, and a shift of the reflections towards smaller angles,
which is associated with atoms of silver entering the structure of platinum and forming a
solid solution.

At the end point of thermolysis (350 ◦C), the sample is an FCC phase with the unit
cell parameter: a = 4.012(4) Å, V/Z = 16.2 Å3, crystallite size of 3–4 nm as per the XRD
data, which corresponds to the composition of Ag0.67Pt0.33 according to the calibration line.
Further heating causes an increase in the crystallite size to 4–6 nm (500 ◦C). At the same
time, a peak asymmetry appears on the diffraction patterns, which is characterised by an
increase in the half-width from large angles. The value V/Z here increases to 16.4 Å3, which
may indicate the beginning of solid solution stratification, since the resulting nanoalloy is
metastable according to the phase diagram [30]. This assumption is confirmed by EDAX
analysis at various points of the sample; the relative content of silver and platinum varies
from 48:52 to 96:4 at.%. Thus, a sample obtained in a hydrogen atmosphere at 500 ◦C
includes porous branched agglomerates (Figure 8). Particles with distinguishable observed
interplanar distances can be seen in HRTEM images, which correspond at different points
to particles of different composition, from pure silver to a solid solution of Ag0.25Pt0.75.
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Figure 8. Micrographs of a sample obtained by decomposition of Ag2[PtCl6] in a hydrogen atmosphere.

The sample obtained at 600 ◦C is an FCC phase with the unit cell parameter: a = 4.012(4)Å,
V/Z = 16.2 Å3, and crystallite size of 7–13 nm, which, as for the sample at 350 ◦C, corresponds
to Ag0.67Pt0.33 along the calibration line. The peak profile is symmetrical, which indicates a
lack of the solid solution stratification.

In situ synchrotron studies were conducted to better understand the processes occur-
ring during the thermolysis of Ag2[PtCl6] in a hydrogen atmosphere.

2.6. In Situ X-ray Diffraction Study of the Ag2[PtCl6] Thermolysis in a Hydrogen Atmosphere

Heating in the in situ mode shows that AgCl peaks (36.3 and 52.3◦ 2θ) already appear
in the diffraction pattern (Figure 9) at 106 ◦C, in addition to the peaks of the initial complex
compound. As the temperature increases, the intensity of the AgCl peaks increases and
reaches a maximum at 185 ◦C, while the intensity of the peaks of the initial complex
compound Ag2[PtCl6] decreases. When the temperature reaches 169 ◦C, the background of
the diffraction pattern rises in the area of the angles corresponding to the FCC reflections
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of the platinum metal phase, while the peaks of the initial compound are almost invisible.
At 185 ◦C, the intensity of the FCC phase peaks increases; an asymmetry of the peaks is
manifested at the same time—a shoulder appears from the side of smaller angles, which
indicates the formation of metallic silver particles.
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(λ = 1.720 Å).

With a further temperature increase, AgCl is completely reduced to metallic silver
(255 ◦C) and a set of solid solutions is formed in the Ag–Pt system, as supported by wide
peaks with a truncated maximum in the diffraction pattern. Furthermore, the maximum is
shifted towards smaller angles up to 614 ◦C, which is evidence of homogenisation and the
formation of a solid solution with a clearly defined ratio of metals.

The sample obtained at 614 ◦C is an FCC phase with the unit cell parameter a = 4.032(4)Å,
V/Z = 16.4 Å3, which corresponds to the specified composition of Ag0.67Pt0.33, considering
the thermal expansion of metals.

2.7. Catalytic Properties

The catalytic properties of Ag0.67Pt0.33 nano-powder in CO TOX and PROX were
compared with monometallic Pt and Ag nano-powders. The data on CO TOX is presented
at Figure 10. It is observed that Ag activity is relatively low, reaching complete conversion
of CO only at ca. 280 ◦C. It can be seen that over Pt, CO is oxidized at T = 160–200 ◦C.
The addition of Ag significantly increases activity; a complete conversion of CO is already
observed at 92 ◦C. As CO TOX over Pt is inhibited by dense surface coverage by adsorbed
CO molecules [31], the positive effect of Ag doping could be associated with the realization
of CO oxidation reaction at Ag–Pt interface sites. Adsorbed CO molecules over Pt atoms
could react with oxygen atoms dissociatively adsorbed over Ag atoms. The presence of
both Ag and Pt at essential quantities onto the surface of Ag0.67Pt0.33 was confirmed by
XPS data (See Supplementary Materials). These results are in line with the literature data
on advanced properties of Ag–Pt catalysts in CO TOX [15].

Nano-powders were studied in the CO PROX under reducing conditions. CO2 and
H2O were the only products of the oxidation reactions of CO and H2, respectively. The
formation of methane and other hydrogenation products was not observed. The obtained
temperature dependences of CO conversion and selectivity are shown in Figure 11. It is
seen that Ag is poorly active in CO PROX, predominantly catalysing H2 oxidation, and
the oxidation of CO on pure Pt begins at T > ≈150 ◦C. In this case, the effect of blocking
the Pt surface by adsorbed CO takes place. Complete conversion of CO is observed at
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temperatures of 190–240 ◦C. A further increase in temperature leads to an acceleration
of the hydrogen oxidation reaction, which absorbs all the oxygen present in the system.
Therefore, the decrease in CO conversion at high temperatures on Pt and other samples
is due precisely to the competition between the CO and H2 oxidation reactions and the
oxygen deficiency in the system.
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Figure 10. The temperature dependences of CO conversion (XCO) for CO TOX over the Pt, Ag, and
Ag0.67Pt0.33 nano-powders. Feed gas composition (vol.%): 1.0 CO, 1.0 O2 with He as balance. WHSV:
80 000 cm3 g−1 h−1 (STP).
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Figure 11. The temperature dependences of CO conversion (XCO) (a) and selectivity (SCO) (b) for CO
PROX over the Pt, Ag, and Ag0.67Pt0.33 nano-powders. Feed gas composition (vol.%): 1.0 CO, 1.0 O2

with H2 as balance. WHSV: 80,000 cm3 g−1 h−1 (STP).

Ag0.67Pt0.33 nano-powder is more active in CO PROX, starting oxidising CO at ≈50 ◦C,
reaching the maximum conversion of 81% at 117–130 ◦C, and further oxidising predomi-
nantly H2 (Figure 11a). Properties of Ag0.67Pt0.33 with regard to CO oxidation at T < 100 ◦C
under CO TOX and PROX conditions are close, indicating that the excess of H2 does not
affect the catalyst performance at low temperatures while there is oxygen in reaction mix-
ture. At the same time Ag0.67Pt0.33 oxidises H2 even at 50 ◦C, accelerating with increased
temperature and becoming the predominant process which consumes all oxygen in the
reaction mixture at T > 130 ◦C.
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In summary, Ag0.67Pt0.33 is not a prospective catalyst for CO PROX despite high CO
TOX activity due to high activity in the undesirable H2 oxidation reaction. This is in a good
agreement with literature data as we have not found any information on good CO PROX
performance of Ag–Pt alloy catalysts.

3. Materials and Methods
3.1. Synthesis of Initial Compounds and Nanoparticles

The source complexes H2[PtCl6] and K2[PtCl6] were synthesised following the method
from [32]. All the initial reagents had ACS or AR purity grade.

The silver cation deposition reaction of the corresponding complex anion is used to
obtain the Ag2[PtCl6] and Ag2[PtCl4] compounds. These compounds are synthesised with
a high yield, which indicates their extremely low solubility. They do not dissolve in toluene,
acetone or water.

Yield of Ag2[PtCl6] is 99%. Anal. Calc. for Cl6PtAg: (Pt + Ag), 65.89. Found: (Pt + Ag), 65.9.
Yield of Ag2[PtCl4] is 99%. Anal. Calc. for Cl4PtAg: (Pt + Ag), 74.34. Found: (Pt + Ag), 74.3.
Catalytic nanopowders of unordered solid solution Ag0.67Pt0.33 and Pt were prepared

via Ag2[PtCl6] and [Pt(NH3)4](NO3)2·2H2O salts decomposition in H2/He stream at 400 ◦C
for 2 h.

3.2. Characterisation of Synthesised Substances

X-ray diffractometric analysis of the samples was performed on a DRON-RM4 diffrac-
tometer (Cu-Kα radiation, a graphite monochromator using a reflected beam and a scintilla-
tion detector with amplitude discrimination, Burevestnik, Saint Petersburg, Russia). The
samples were prepared by applying a suspension in alcohol on the polished side of a fused
quartz cuvette. A polycrystalline silicon sample (a = 5.4309 Å) prepared in the same way
was used as an external reference. The diffraction patterns were recorded in a step-by-step
mode in 2θ angles range of 5◦–120◦.

X-ray phase analysis (XRD) of the thermolysis products was carried out in accordance
with the data given in the PDF file for pure substances [33]. Parameters of the metal
phases were refined over the entire data array using the Powder Cell 2.4 application
programme [34]. The size of the crystallites in the obtained metal powders was estimated
from the coherent scattering regions as a result of Fourier analysis of the profiles of single
diffraction peaks using the WINFIT 1.2.1 software [35].

The composition of the obtained bimetallic solid solutions was determined using
calibration curves of the volume per atom ratio (V/Z, where V is the volume of the unit
cell, and Z is the number of structural units in it, that is atoms in this case) depending
on the concentration of one of the metals. The calibration curves were plotted from
the experimental values of atomic volumes for single-phase solid solutions of known
composition given in references for Ag–Pt systems [36–38].

Thermogravimetric analysis (TGA) in inert and reducing atmospheres was performed
using a NETZSCH TG 209 F1 Iris ® thermal microbalance (Erich NETZSCH GmbH & Co.
Holding KG, Selb, Germany). The sample weight was ~10 mg. Al crucibles were used,
with the gas flow rate being 60 mL/min and the heating rate of 10 deg/min within the
range 20–600 ◦C.

Differential scanning calorimeter NETZSCH 204 F1 Phoenix (Erich NETZSCH GmbH
& Co. Holding KG, Selb, Germany) was used to study thermodynamic properties. DSC
measurements were carried out by heat flow measurement method at a 6 K min−1 heating
rate in 25 mL min−1 Ar flux in an unsealed aluminium crucible with lid. Powdered
samples were distributed uniformly over the bottom, carefully tamped in aluminium
crucibles. The sensitivity of the sample carrier sensors and temperature scale graduation
were calibrated by melting and crystal-to-crystal transition measurements of standard
samples (Hg, Ga, benzoic acid, KNO3, In, Sn, Bi, Pb, and Zn). The baseline signal obtained
by heating two empty crucibles was subtracted from the experimental results of the samples.
Netzsch Proteus Analysis software was used to determine DSC peak areas and transition
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temperature values. The transition temperature was defined from the resulting heat flow
as intersections of the peak onset with the corresponding baseline. The peak area was
determined by integrating the area between the measurement curve and the integral
tangential baseline. The values of temperatures Tonset and enthalpy ∆H are the average of
three measurements.

The disproportionation reaction of Ag2[PtCl4] on Ag2[PtCl6], Pt and AgCl was sim-
ulated in Jaguar 8.2, Schrödinger Inc. software [39] using the Density Functional Theory
(DFT) and the Becke three-parameter hybrid functional (B3LYP) [40–43]. Relativistic effects
were included by using effective core potentials (ECPs) for Pt and Ag. The LACVP+* [44]
and LACV3P+* [44,45] basis sets associated with the ECPs were employed for Pt and Ag
atoms, respectively, and 6–311G+* basis set [46,47] for Cl atoms.

Microscopic studies were carried out using an electron microscope JEM-2010 (with
a resolution of 1.4 Å at an accelerating voltage of 200 kV, JEOL Ltd., Tokyo, Japan). Local
energy-dispersive X-ray analysis (EDXA) was performed using an EDX spectrometer
(EDAX Co., Tokyo, Japan) equipped with a Si(Li) detector with a resolution of 130 eV.
The samples for the TEM study were prepared by ultrasonic dispersing in ethanol and
consequent deposition of the suspension upon a “holey” carbon film supported on a
copper grid.

The thermal decomposition of the complex salt was studied in the XRD mode in
situ using an XRK-900 high-temperature reactor chamber (Anton Paar, Austria) mounted
on an X-ray powder diffraction instrument in the precise diffractometry system at the
Siberian Synchrotron and Terahertz Radiation Centre (SSTRC, Novosibirsk, Russia), and
an OD-3M-350 one-coordinate detector [15]. The detector has 3328 channels covering the
2θ angles range of 30◦. The synchrotron radiation wavelength λ is 1.720 Å. XRD patterns
were recorded for 60 s. Samples of the complex compound were loaded into an open
holder that allowed gas (hydrogen) to pass through, and then the holder was placed in the
reactor chamber.

3.3. Catalytic Testing

The CO PROX and TOX tests were performed in a fixed-bed continuous-flow quartz
reactor (i.d.: 3 mm) at atmospheric pressure. A portion of 50 mg (particle size less than
50 µm) of the catalysts was placed in the reactor between two filters made of fused needle
silica. The temperature was measured by a K-type thermocouple in the middle of the
catalyst bed. The experiments were performed with the following feed gas composition
(vol. %): 1.0 CO, 1.0 O2 with H2 as balance for CO PROX, and 1.0 CO, 1.0 O2 with He as
balance for CO TOX, at WHSV of 80,000 cm3 g−1 h−1 (STP). Prior to the experiments, the
samples were pre-treated in He flow for 1 h at 200 ◦C before CO TOX testing and in H2
flow for 1 h at 300 ◦C for CO PROX testing. Then, the samples were cooled down to 200 ◦C,
He (H2) flow was substituted by the reaction feed and the samples were held for 1 h in the
reaction mixture. Afterwards, several cycles of temperature decreasing/increasing were
performed: all samples demonstrated reproducible catalytic characteristics.

The inlet and outlet concentrations were determined online using a Chromos GC-
1000 chromatograph equipped with molecular sieve 5A and Porapak Q columns and with
thermal-conductivity (TCD) and flame-ionisation (FID) detectors (Supplementary Materials,
S1). The combination of a methanator (containing a reduced nickel catalyst) and the FID
allowed highly sensitive analysis of CO and CO2. The relative errors of CO, CO2, and O2
concentrations determination were 0.5%, 0.5%, and 1%, respectively. CO2 and H2O were
the only products of the reactions; no CH4 or other hydrocarbons were observed. In the
course of experiments, the carbon balance was controlled with an accuracy of ±1%.

The catalyst performance was characterised by the CO conversion (XCO) and selectiv-
ity (SCO) in the case of CO PROX which were calculated by the following equations:

XCO = ([CO]inlet − [CO]outlet)/[CO]inlet · 100%, (1)



Molecules 2022, 27, 1173 12 of 15

SCO =
1
2

([CO]inlet − [CO]outlet)/ ([O2]inlet - [O2]outlet) · 100%, (2)

where [CO]inlet and [O2]inlet are the inlet concentrations of CO and O2, respectively;
[CO]outlet and [O2]outlet are the outlet concentrations of CO and O2, respectively.

4. Conclusions

Thermolysis of Ag2[PtCl6] and Ag2[PtCl4] compounds in a helium atmosphere oc-
curs in two stages. At the first stage, the compounds decompose to form platinum and
silver chloride and release gaseous chlorine. At the second stage, silver chloride is sub-
limated, while platinum metal remains in the solid phase. In contrast to the thermolysis
of Ag2[PtCl6], the thermal degradation of Ag2[PtCl4] at 350 ◦C is accompanied by dis-
proportionation into Ag2[PtCl6], silver chloride, and platinum metal. This assumption is
confirmed by the change in the reaction enthalpy in the temperature range of 345–375 ◦C
and the corresponding calculations using the Density Functional Theory (DFT). The calcu-
lated enthalpy of the proposed reaction gives good agreement with the experiment (calc.
345 kJ/mol, found 366 kJ/mol).

Thermolysis of Ag2[PtCl6] and Ag2[PtCl4] compounds in a hydrogen atmosphere
occurs in two poorly differentiated stages. At low temperatures (below 350 ◦C), the
compounds decompose, and silver is reduced to a metallic state, while a single-phase
solid solution of Ag0.67Pt0.33 is formed in ex situ. An increase in the final temperature of
thermolysis to 500 ◦C initiates stratification of the resulting metastable solid solution.

In situ X-ray study of the Ag2[PtCl6] thermolysis in a hydrogen atmosphere indicates
that AgCl is formed and metallic platinum is released at the first stage. In the case of further
heating, AgCl is reduced to metal, with prolonged homogenisation and the formation of a
single-phase solid solution of Ag0.67Pt0.33 at 614 ◦C.

The catalytic activity of the resulting nanoalloy Ag0.67Pt0.33 is studied in the reaction
of CO total (TOX) and preferential (PROX) oxidation. Ag0.67Pt0.33 exceeds Pt and Ag
nano-powders in activity in CO TOX, but was not selective in CO PROX. Further research
could be directed to transition from nanopowders to supported Ag–Pt catalysts and better
particle size control; this will help to boost catalytic activity.

Supplementary Materials: The following are available online. S1: Gas chromatography of catalytic
reaction products (GC); Figure S1: Example of the GC data for outlet composition at temperature of
low CO conversion; S2: UV–Vis spectroscopy of Ag2[PtCl6] and Ag2[PtCl4]; Figure S2: Photolumines-
cence emission (PL) spectra of Ag2[PtCl6] and Ag2[PtCl4]; S3: Ex situ X-ray diffraction of Ag2[PtCl4]
in a hydrogen atmosphere; S4: Ex situ X-ray diffraction of Ag2[PtCl6] in a helium atmosphere;
S5: X-ray photoelectron spectroscopy (XPS); Table S1: Brief description of the studied samples;
Table S2: Relative atomic concentrations of elements in the near-surface layer of the studied samples;
Table S3: Binding energies (eV); Figure S3: The Pt4f and Ag3d spectra of the studied samples. [48–62]
are cited in the Supplementary Materials.
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