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Abstract: Quantum steering is an important quantum resource, which is intermediate between
entanglement and Bell nonlocality. In this paper, we study steering witnesses for Gaussian states
in continuous-variable systems. We give a definition of steering witnesses by covariance matrices
of Gaussian states, and then obtain a steering criterion by steering witnesses to detect steerability
of any (m + n)-mode Gaussian states. In addition, the conditions for two steering witnesses to be
comparable and the optimality of steering witnesses are also discussed.
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1. Introduction

Entanglement plays an important role in quantum information theory, which has been
widely used in quantum information processing [1–3]. The detection of entanglement has
attracted much attention in recent years (see [4–15]). Among these criteria, the entanglement
witness (EW) criterion provides a sufficient and necessary condition for the separability of
a bipartite quantum state ([5]). A self-adjoint operator W acting on a separable complex
Hilbert space H ⊗ K is an EW if W is not positive and Tr(Wσ) ≥ 0 holds for all separable
states σ. It was shown that a bipartite state is entangled if and only if there exists at least
one EW detecting it. Obviously, there does not exist an EW that can detect all entangled
states. So, the concept of the optimal EW is proposed in [8] and some methods are given to
check the optimality of EWs, for example, see [8,11,12,15].

In 1935, Einstein, Podolsky and Rosen (EPR) first discovered the anomalous phe-
nomenon of quantum states in multipartite quantum systems, which is contrary to the
classical mechanics ([16]). In order to capture the essence of the EPR paradox, the notion
of EPR steering was first introduced by Schrödinger in [17]. EPR steering is a quantum
correlation between entanglement and Bell nonlocality. Different from entanglement and
nonlocality, this correlation is inherently asymmetry with respect to the observers.

In recent years, EPR steering has attracted many authors’ attention. It has been shown
that EPR steering plays a fundamental role in various quantum protocols, secure com-
munication, and other fields ([18–20]). Various EPR steering criteria have been derived.
For example, Cavalcanti and James in [21] obtained the experimental criterion of EPR
steering from entropy uncertainty relations. Ji et al. in [22] obtained steerability criteria by
using covariance matrices of local observables, which are applicable for both finite- and
infinite-dimensional quantum systems. Wittmann et al. in [23] gave EPR steering inequal-
ities with three Pauli measurements; and then, as a generalization of the Pauli matrices,
Marciniak et al. in [24] found EPR steering inequalities with mutually unbiased bases.
For continuous-variable systems, the authors in [25] performed a systematic investigation
of EPR steering for bipartite Gaussian states by pseudospin measurements. Kogias and
Adesso [26] gave a measure of EPR steering for two-mode continuous variable states.

Inspired by EW, in this paper, we will try to consider quantum EPR steering witness
for Gaussian states in continuous-variable systems. This paper is organized as follows. In
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Section 2, we recall the concepts of Gaussian states and quantum EPR steering, and some
known EPR steering criteria for Gaussian states. Section 3 is devoted to giving a definition
of steering witness for Gaussian states in terms of covariance matrices and then discussing
properties of steering witness. Based on steering witnesses, a steering criterion for bipartite
(m + n)-mode Gaussian states are obtained. The conditions for two steering witnesses to be
comparable are given and the optimality of steering witnesses are also obtained. Section 4
is a brief conclusion.

2. Definition and Criterion of Gaussian Quantum EPR Steering

In this section, we briefly introduce the notion of Gaussian quantum steering.
Gaussian states. Recall that a quantum system is associated with a separable complex

Hilbert space H. A quantum state on H is a positive operator with trace 1. For arbitrary
state ρ in an n-mode continuous-variable system with state space H, its characteristic
function χρ is defined as

χρ(z) = tr(ρW(z)),

where z = (x1, y1, · · · , xn, yn)T ∈ R2n, W(z) = exp(iRTz) is the Weyl displacement op-
erator, R = (R1, R2, · · · , R2n) = (Q̂1, P̂1, · · · , Q̂n, P̂n). As usual, Q̂k = (âk + â†

k)/
√

2 and
P̂k = −i(âk − â†

k)/
√

2 (k = 1, 2, · · · , n) stand for, respectively, the position and momentum
operators, where â†

k and âk are the creation and annihilation operators in the kth mode,
satisfying the Canonical Commutation Relation (CCR)

[âk, â†
l ] = δkl I and [â†

k , â†
l ] = [âk, âl ] = 0, k, l = 1, 2, · · · , n.

Particularly, ρ is called a Gaussian state if χρ(z) is of the form

χρ(z) = exp[−1
4

zTΓz + idTz],

where

d = (〈R̂1〉, 〈R̂2〉, . . . , 〈R̂2n〉)T = (tr(ρR1), tr(ρR2), . . . , tr(ρR2n))
T ∈ R2n

is called the mean or the displacement vector of ρ and Γ = (γkl) ∈ M2n(R) is the covariance
matrix (CM) of ρ defined by γkl = tr[ρ(∆R̂k∆R̂l + ∆R̂l∆R̂k)] with ∆R̂k = R̂k − 〈R̂k〉 ([27]).
Here Md(R) stands for the algebra of all d × d matrices over the real field R. So, any
Gaussian state ρ with CM Γ and displacement vector d will be represented as ρ(Γ, d). Note
that Γ is real symmetric and satisfies the condition Γ + i J ≥ 0, where J = ⊕n

k=1 Jk with

Jk =

(
0 1
−1 0

)
for each k. Assume that ρAB is any (m + n)-mode Gaussian state. Then its

CM Γ can be written as

Γ =

(
A C

CT B

)
, A ∈ M2m(R), B ∈ M2n(R), C ∈ M2m×2n(R). (1)

Qauntum steering. Now let us recall the definition of steerability. A measurement
assemblage MA = {Ma|x}a,x is a collection of positive operators Ma|x ≥ 0 satisfying
∑a Ma|x = I for each x. Such a collection represents one positive-operator-valued mea-
surement (POVM), describing a general quantum measurement, for each x. In a (bipartite)
steering scenario, one party performs measurements on a shared state ρAB, which steers the
quantum state of the other particle. If Alice performs a set of measurements {MA

a|x}a,x, then

the collection of sub-normalized “steered states” of Bob are an assemblage {ρB
a|x}a,x with

ρB
a|x = TrA((MA

a|x ⊗ IB)ρAB).
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If every assemblage on Bob {σa|x}a,x can be explained by a local hidden state (LHS) model,
of the form

σa|x = ∑
λ

pλ p(a|x, λ)σλ,

where λ is a hidden variable, distributed according to pλ, σλ are “hidden states” of Bob,
and p(a|x, λ) are local “response functions” of Alice, then we say that it has LHS form, or
does not demonstrate steering ([28]). If there exist measurements such that σa|x does not
admit such an LHS decomposition, we say that the state ρAB is steerable from A to B. If
for all measurements we can never demonstrate steering with a given state, we say it is
unsteerable from A to B. Symmetrically, we can define the steerability of ρAB from B to A.
Steering is a quantum correlation between entanglement and Bell nonlocality. However,
unlike Bell nonlocality and nonseparability, which are symmetric between Alice and Bob,
steering is inherently asymmetric.

Gaussian Positive Operator-Valued Measurement. An m-mode Gaussian Positive Operator-
Valued Measurement (GPOVM) Π = {Π(α)} is defined as

Π(α) =
1

πm D(α)vD†(α),

where D(α) = exp[∑m
j=1(αj â†

j − α∗j âj)] is the m-mode Weyl displacement operator, α ∈ Cm,
v is a zero mean m-mode Gaussian state with CM Σ, which is called the seed state of the
GPOVM Π. So, we can denote a GPOVM with the seed CM Σ by ΠΣ = {ΠΣ(α)} ([29,30]).

A criterion for unsteerability of Gaussian states. For arbitrary bipartite Gaussian states, the
authors in [28] derived a linear matrix inequality that decides the question of steerability
via GPOVMs.

Theorem 1. [28] Assume that ρAB ∈ S(HA ⊗ HB) is any (m + n)-mode Gaussian state with
CM Γ in Equation (1). Then ρAB is unsteerable by the system A’s all GPOVMs if and only if

Γ + 0A ⊕ i JB ≥ 0, (2)

where JB = ⊕n

(
0 1
−1 0

)
.

Remark 1. By Theorem 1, under the restriction of GPOVMs, Equation (2) is a necessary and
sufficient condition for detecting the steering of Gaussian states. However, Equation (2) may not
be sufficient for unsteerability of non-Gaussian bipartite states in continuous-variable systems.
Recent works also revealed that there exist Gaussian states which are only steerable by suitable
non-GPOVMs. In [25], the authors considered pseudospin measurements instead of GPOVMs
for any two-mode Gaussian states and found that these observables are always less sensitive than
conventional Gaussian observables for steering detection. Note that GPOVMs are accessible in
laboratory by means of homodyne detections and Gaussian transformations. So in this paper, we
restrict to GPOVMs when discussing the steering of Gaussian states.

3. Steering Witness for Gaussian States and Their Comparability

In this section, we will first give a definition of steering witness for Gaussian states,
and then discuss some properties of steering witness.

Denote by Sym(2N,R) the set of all real symmetric 2N× 2N matrices. Note that a CM
Γ can describe a physical quantum state if and only if it satisfies the bona fide uncertainty
principle relation Γ + i J ≥ 0. Let CM(2(m + n),R) stand for the set of all CMs satisfying
uncertainty principle relations in (m + n)-mode continuous-variable systems, that is,

CM(2(m + n),R) = {Γ ∈ Sym(2(m + n),R) : Γ± i J ≥ 0 with J = ⊕m+n

(
0 1
−1 0

)
}. (3)
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For the convenience, write N = m + n. Let

USA|B(2N,R) (4)

= {Γ ∈ CM(2N,R) : Γ + 0A ⊕ i JB ≥ 0, 0A ∈ M2m(R), JB = ⊕n

(
0 1
−1 0

)
}.

We call the elements in USA|B(2N,R) unsteerable CMs from A to B as Theorem 1. It is
easily checked that USA|B(2N,R) is a closed and convex set. The following result gives
another property of USA|B(2N,R).

Proposition 1. Assume that Γ ∈ USA|B(2N,R). Then for any positive matrix P ∈ Sym(2N,R)
and any scalar α > 1, we have Γ + P ∈ USA|B(2N,R) and αΓ ∈ USA|B(2N,R).

Proof. For any positive matrix P ∈ Sym(2N,R), by Equation (3), it is obvious that Γ + P ∈
USA|B(2N,R). For any α > 1, as

αΓ + i J = (α− 1)Γ + Γ + i J > Γ + i J ≥ 0

and
αΓ + 0A ⊕ i JB = (α− 1)Γ + Γ + 0A ⊕ i JB > Γ + 0A ⊕ i JB ≥ 0,

we get αΓ ∈ USA|B(2N,R).

Next, write

WA|B(2N,R) = {W ∈ Sym(2N,R) : Tr(WΓ) ≥ 1 holds for all Γ ∈ USA|B(2N,R)}. (5)

We call any element W inWA|B(2N,R) the steering witness from A to B in (m + n)-mode
bipartite continuous-variable systems with subsystems A and B, where N = m + n.

The following theorem gives a criterion of detecting steerability of any (m + n)-mode
Gaussian states by steering witnesses.

Theorem 2. (Steering witness criterion) Assume that ρAB ∈ S(HA ⊗ HB) is any (m + n)-mode
Gaussian state with CM Γ defined by Equation (1). Then ρAB is unsteerable from A to B if and only
if Tr(WΓ) ≥ 1 holds for all W ∈ WA|B(2(m + n),R).

Proof. For the “only if” part, if Tr(WΓ) ≥ 1 holds for all W ∈ WA|B(2(m + n),R), by
Equation (5), Γ ∈ USA|B(2(m + n),R). It follows from Theorem 1 that ρAB is unsteerable
from A to B.

For the “if” part, on the contrary, suppose that ρAB is steerable from A to B. Then Γ is
steerable from A to B as Theorem 1, that is, Γ 6∈ USA|B(2N,R) with N = m + n. Since the
set USA|B(2N,R) is convex and closed, by the Hahn-Banach theorem, there exists some
W1 ∈ Sym(2N,R) such that

Tr(W1Γ′) ≥ m = inf
Γ′∈ USA|B(2N,R)

Tr(W1Γ′) > Tr(W1Γ) for all Γ′ ∈ USA|B(2N,R). (6)

We claim m > 0. Otherwise, assume m ≤ 0. If W1 is not positive, there is a negative
eigenvalue λ0 < 0 of W1 with the corresponding eigenvector |φ〉. Take any η > 0, any
Γ′ ∈ USA|B(2N,R) and let Γ0 = Γ′ + η|φ〉〈φ|. By Proposition 1, Γ0 ∈ USA|B(2N,R).
Note that

Tr(W1Γ0) = Tr(W1Γ′) + ηTr(W1|φ〉〈φ|) = Tr(W1Γ′) + λ0η‖|φ〉‖2 → −∞ whenever η → +∞.

This means that, for sufficient large η > 0, we have Tr(W1Γ0) ≤ Tr(W1Γ), which yields
a contradiction to Equation (6). Thus, W1 is positive, and so Tr(W1Γ′) ≥ 0. Further,
we can conclude Tr(W1Γ′) > 0. In fact, by Williamson normal form Theorem, for any
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CM Γ′ ∈ USA|B(2N,R), there exists a symplectic matrix S ∈ Sym(2N,R) such that

SΓ′ST = Γ′′ = ⊕N
i=1

(
vi 0
0 vi

)
with vi ≥ 1. So

Tr(W1Γ′) = Tr(W1S−1Γ′′(ST)−1) = Tr[(ST)−1W1S−1Γ′′]
= Tr((ST)−1W1S−1(Γ′′ − I)) + Tr((ST)−1W1S−1) > 0.

However, this leads to a contradiction with m ≤ 0.
Hence m > 0. By letting W0 = W1

m in Equation (6) yields

Tr(W0Γ′) ≥ 1 > Tr(W0Γ) for all Γ′ ∈ USA|B(2N,R),

which implies W0 ∈ WA|B(2N,R) with Tr(W0Γ) < 1, a contradiction. Therefore, Γ is
unsteerable from A to B, and thus ρAB is unsteerable from A to B.

Remark 2. By Theorem 2, we see that, for any (m + n)-mode Gaussian state ρAB ∈ S(HA ⊗ HB)
with CM Γ, ρAB is steerable from A to B if and only if there exists some W0 ∈ WA|B(2(m + n),R)
such that Tr(W0Γ) < 1.

In the rest part, we will discuss the properties of steering witnesses. Given a steering
witness W ∈ WA|B(2(m + n),R), denote the set of CMs detected by W by

DW = {Γ ∈ CM(2(m + n),R) : Tr(WΓ) < 1}.

It is obvious that any two steering witnesses W1 and W2 have one of the following
three relations:

(1) DW1 ⊆ DW2 or DW2 ⊆ DW1 ;
(2) DW1

⋂
DW2 = ∅;

(3) DW1

⋂
DW2 6= ∅ and DWi * DWj , i 6= j ∈ {1, 2}.

Definition 1. For any two steering witnesses W1 and W2, we say that W2 is finer than W1, denote
by W1 ≺W2, if DW1 ⊆ DW2 ; and W1 = W2 if DW1 = DW2 . Furthermore, we say that W1 and W2
are comparable if W1 ≺W2 or W2 ≺W1; otherwise, W1 and W2 are incomparable.

Particularly, for a steering witness W, we say that W is optimal if there is no other steering
witness finer than W.

The following result gives the relation of two comparable steering witnesses.

Theorem 3. Suppose that W1, W2 ∈ WA|B(2(m + n),R) are two steering witnesses with W1 ≺
W2, and λ = inf

Γ1∈DW1

1−Tr(W2Γ1)
1−Tr(W1Γ1)

. Then λ > 1 and for any Γ ∈ CM(2(m + n),R), we have

(i) Tr(W2Γ) 6 1 if Tr(W1Γ) = 1;
(ii) Tr(W2Γ) 6 Tr(W1Γ) if Tr(W1Γ) < 1;
(iii) Tr(W2Γ) 6 λTr(W1Γ) if Tr(W1Γ) > 1.

Proof. Assume that W1, W2 ∈ WA|B(2(m + n),R) are two steering witnesses with W1 ≺
W2 and Γ ∈ CM(2(m + n),R).

(i) Assume that Tr(W1Γ) = 1, but Tr(W2Γ) > 1. Take any Γ1 ∈ DW1 and any positive
number x > 0. Write

Γ̃x =
1

1 + x
Γ1 +

x
1 + x

Γ.
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Then Γ̃x ∈ CM(2(m + n),R) and

Tr(W1Γ̃x) =
1

1 + x
Tr(W1Γ1) +

x
1 + x

Tr(W1Γ)

<
1

1 + x
+

x
1 + x

= 1.

So Γ̃x ∈ DW1 ⊆ DW2 for all x > 0.
On the other hand, note that Tr(W2Γ1) < 1 as Γ1 ∈ DW1 ⊆ DW2 . Take any x > 0 with

x > 1−Tr(W2Γ1)
Tr(W2Γ)−1 > 0. Then xTr(W2Γ)− x > 1− Tr(W2Γ1) and so

Tr(W2Γ̃x) =
1

1 + x
Tr(W2Γ1) +

x
1 + x

Tr(W2Γ) =
Tr(W2Γ1) + xTr(W2Γ)

1 + x
> 1.

This implies Γ̃x /∈ DW2 for such x, a contradiction.
(ii) Assume that Tr(W1Γ) < 1. Letting Γ̃ = 1

Tr(W1Γ)Γ, then Γ̃ ∈ CM(2(m + n),R) and

Tr(W1Γ̃) =
Tr(W1Γ)
Tr(W1Γ)

= 1.

By (i), we have Tr(W2Γ̃) 6 1, and so Tr(W2Γ) 6 Tr(W1Γ).
(iii) If Tr(W1Γ) > 1, by taking a = Tr(W1Γ)−1

Tr(W1Γ)−Tr(W1Γ1)
and b = 1−Tr(W1Γ1)

Tr(W1Γ)−Tr(W1Γ1)
with

Γ1 ∈ DW1 , we have 0 < a, b < 1 and a + b = 1. Write Γ̃ = aΓ1 + bΓ. It is obvious that
Γ̃ ∈ CM(2(m + n),R) and

Tr(W1Γ̃) = aTr(W1Γ1) + bTr(W1Γ) = 1.

By (i), one gets Tr(W2Γ̃) 6 1, that is, aTr(W2Γ1) + bTr(W2Γ) 6 1. So

Tr(W2Γ) 6
1− aTr(W2Γ1)

b

=
1− Tr(W1Γ)−1

Tr(W1Γ)−Tr(W1Γ1)
· Tr(W2Γ1)

1−Tr(W1Γ1)
Tr(W1Γ)−Tr(W1Γ1)

=
Tr(W1Γ)− Tr(W1Γ1)− Tr(W1Γ) · Tr(W2Γ1) + Tr(W2Γ1)

1− Tr(W1Γ1)

=
Tr(W1Γ)[1− Tr(W2Γ1)]− [Tr(W1Γ1)− Tr(W2Γ1)]

1− Tr(W1Γ1)

6
Tr(W1Γ)[1− Tr(W2Γ1)]

1− Tr(W1Γ1)
. (7)

Note that the last inequality is due to (ii). Thus, Equation (7) implies

Tr(W2Γ)
Tr(W1Γ)

6
1− Tr(W2Γ1)

1− Tr(W1Γ1)
,

and hence
Tr(W2Γ)
Tr(W1Γ)

6 inf
Γ1∈DW1

1− Tr(W2Γ1)

1− Tr(W1Γ1)
= λ.

Finally, we will show λ ≥ 1. In fact, for any Γ1 ∈ DW1 , we have Tr(W1Γ1) < 1, and by
(ii), Tr(W2Γ1) 6 Tr(W1Γ1). Thus, 1− Tr(W2Γ1) > 1− Tr(W1Γ1), and so λ ≥ 1.

In the following theorem, we give a necessary and sufficient condition for two steering
witnesses to be comparable.
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Theorem 4. Suppose that W1, W2 ∈ WA|B(2(m + n),R) are two steering witnesses. Then W1 ≺
W2 if and only if there exists some 0 < a 6 1 and some positive matrix X ∈ Sym(2(m + n),R)
satisfying Tr(XΓ) > 1− a for all Γ ∈ DW1 such that

W1 = aW2 + X.

Proof. Assume that W1, W2 ∈ WA|B(2(m + n),R) are two steering witnesses. If there exists
some 0 < a 6 1 and some positive matrix X ∈ Sym(2(m + n),R) with Tr(XΓ) > 1− a for
all Γ ∈ DW1 such that W1 = aW2 + X, then, for any Γ ∈ DW1 , we have

1 > Tr(W1Γ) = aTr(W2Γ) + Tr(XΓ) ≥ aTr(W2Γ) + 1− a.

It follows that Tr(W2Γ) < 1. So Γ ∈ DW2 . By Definition 1, one obtains W1 ≺W2.

Conversely, if W1 ≺W2, by taking λ = inf
Γ1∈DW1

1−Tr(W2Γ1)
1−Tr(W1Γ1)

and by Theorem 3, we have

1−Tr(W2Γ1)
1−Tr(W1Γ1)

> λ ≥ 1 for all Γ1 ∈ DW1 , that is,

Tr[(λW1 −W2)Γ1] > λ− 1 for all Γ1 ∈ DW1 . (8)

On the other hand, for any Γ ∈ CM(2(m + n),R)\DW1 , by Theorem 3 (iii), one has
Tr(W2Γ) 6 λTr(W1Γ), that is,

Tr[(λW1 −W2)Γ] > 0 for all Γ ∈ CM(2(m + n),R)\DW1 . (9)

Combining Equations (8) and (9) gives

Tr[(λW1 −W2)Γ] > 0 for all Γ ∈ CM(2(m + n),R). (10)

Now, let X = W1 − aW2 with a = 1
λ . Obviously, 0 < a 6 1 and Tr(XΓ) > 1− a holds

for all Γ ∈ DW1 by Equation (8).
Finally, if X is not positive, then there is a negative eigenvalue µ0 < 0 of X with

the corresponding eigenvector |ζ〉. Take any η > 0, any Γ ∈ CM(2(m + n),R) and let
Γ0 = Γ + η|ζ〉〈ζ|. Obviously, Γ0 ∈ CM(2(m + n),R). Note that

Tr(XΓ0) = Tr(XΓ) + ηTr(X|ζ〉〈ζ|) = Tr(XΓ) + µ0η‖|ζ〉‖2 → −∞ whenever η → +∞.

Also note that
Tr(XΓ) ≥ 0 for all Γ ∈ CM(2(m + n),R)

by Equation (10). These yield a contradiction. So X is positive.
The proof of the theorem is finished.

For the optimality of steering witnesses, we have

Theorem 5. Suppose that W ∈ WA|B(2(m + n),R) is a steering witness. Then W is optimal if
and only if for any λ > 1 and any positive matrix X ∈ Sym(2(m + n),R) satisfying Tr(XΓ) >
λ− 1 for all Γ ∈ DW , W ′ = λW − X is not a steering witness.

Proof. The “if” part is obvious by Theorem 4.
For the “only if” part, assume that there is some λ0 > 1 and some positive matrix

X0 ∈ Sym(2(m + n),R) satisfying Tr(X0Γ) > λ0 − 1 for all Γ ∈ DW such that W ′ =
λ0W − X0 is a steering witness. Then W = 1

λ0
W ′ + 1

λ0
X0, where 1

λ0
≤ 1 and 1

λ0
X0 ≥ 0 with

Tr( 1
λ0

X0Γ) > 1− 1
λ0

for all Γ ∈ DW . By Theorem 4 again, W ≺W ′. A contradiction.

Finally, we discuss the question when different steering witnesses can detect some
common steering CMs.
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Theorem 6. For any two steering witnesses W1, W2 ∈ WA|B(2(m + n),R), we have DW1 ∩
DW2 = ∅ if and only if there exists some 0 < λ < 1 such that λW1 + (1− λ)W2 /∈ WA|B
(2(m + n),R).

To prove the theorem, two lemmas are needed.

Lemma 1. Suppose that W1, W2 ∈ WA|B(2(m + n),R) are steering witnesses with W1 ≺W2. If
W(a, b) = aW1 + bW2 with a, b > 0 and a + b = 1, then W1 ≺W(a, b) ≺W2.

Proof. For two steering witnesses W1, W2 ∈ WA|B(2(m + n),R) with W1 ≺ W2, we
have Tr(W1Γ) < 1 for all Γ ∈ DW1 . By Theorem 3(ii), Tr(W2Γ) 6 Tr(W1Γ), and so
Tr((aW1 + bW2)Γ) < a + b = 1. This means Γ ∈ DW(a,b), that is, W1 ≺W(a, b).

In addition, if Γ /∈ DW2 , then Tr(W2Γ) ≥ 1 and Tr(W1Γ) ≥ 1 as W1 ≺W2. Thus

Tr(W(a, b)Γ) = aTr(W1Γ) + bTr(W2Γ) ≥ 1.

This implies Γ /∈ DW(a,b). So W(a, b) ≺W2.

Lemma 2. Assume that W, W1, W2 ∈ WA|B(2(m + n),R) are steering witnesses. If DW1 ∩
DW2 = ∅ and DW ⊆ DW1 ∪ DW2 , then either DW ⊆ DW1 or DW ⊆ DW2 .

Proof. Assume, on the contrary, that DW ∩ DW1 6= ∅ and DW ∩ DW2 6= ∅. Take Γi ∈
DW ∩ DWi for i = 1, 2. Write

[Γ1, Γ2] = {Γt = tΓ1 + (1− t)Γ2, 0 ≤ t ≤ 1}.

Note that DW is a convex set. So [Γ1, Γ2] ⊆ DW ⊆ DW1 ∪ DW2 and thus [Γ1, Γ2] ⊆ (DW ∩
DW1)∪ (DW ∩DW2). Hence there exists some 0 < t0 < 1 such that {Γt : 0 ≤ t < t0} ⊆ DW2

and {Γt : t0 < t ≤ 1} ⊆ DW1 . If Γt0 ∈ DW2 , then Tr(W2Γt0) < 1, and for sufficiently small
ε > 0, we have

1 ≤ Tr(W2Γt0+ε) = Tr(W2Γt0) + ε(Tr((W2Γ1)− Tr(W2Γ2)) < 1.

A contradiction. Similarly, if Γt0 ∈ DW1 , by considering Γt0−ε for sufficiently small ε > 0,
one can also obtain a contradiction.

Therefore, DW ⊆ DW1 or DW ⊆ DW2 . The proof is completed.

Proof of Theorem 6 . Take any two steering witnesses W1, W2 ∈ WA|B(2(m + n),R). If
there exists some 0 < λ < 1 such that W = λW1 + (1− λ)W2 is not a steering witness, then
DW1 ∩ DW2 ⊆ DW = ∅, that is, DW1 ∩ DW2 = ∅.

For the “only if” part, assume that DW1 ∩ DW2 = ∅ and Wλ = λW1 + (1− λ)W2 ∈
WA|B(2(m + n),R) for all 0 < λ < 1. Then DWλ

⊆ DW1 ∪ DW2 . Since DW1 ∩ DW2 = ∅,
by Lemma 2, we have either DWλ

⊆ DW1 or DWλ
⊆ DW2 . When λ varies from 0 to 1

continuously, DWλ
varies from DW2 to DW1 continuously. Denote λ0 = sup{λ ∈ (0, 1) :

DWλ
⊆ DW2}. If DWλ0

⊆ DW2 , then there must be exist some ε with 0 < ε < 1 − λ0

such that Wλ0+ε is not a steering witness, that is, DWλ0+ε
= ∅. Otherwise, for all ε with

0 < ε < 1− λ0, we have DWλ0+ε
6= ∅. Since DWλ0

⊆ DW2 and DWλ0+ε
⊆ DW1 , for all

γ ∈ DWλ0
, one has Tr(Wλ0 γ) < 1 and

1 ≤ Tr(Wλ0+εγ) = Tr(Wλ0 γ) + ε(Tr(W1γ)− Tr(W2γ)) < 1

for sufficiently small ε > 0, a contradiction. Hence DWλ0
6⊆ DW2 .

Similarly, one can show DWλ0
6⊆ DW1 . So there exists some 0 < λ < 1, such that

λW1 + (1− λ)W2 is not a steering witness. The proof is finished.
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4. Conclusions

Quantum EPR steering is an important quantum resource. It is a fundamental and
important question of how to detect steerability of quantum states. In this paper, we
investigated steering witnesses of Gaussian states in continuous-variable systems. We
give a definition of steering witnesses by covariance matrices of quantum states, and then
present a steering witness criterion of any (m+ n)-mode Gaussian state to be unsteerable by
the Hahn-Banach theorem. In addition, the conditions for any two steering witnesses to be
comparable and the optimality of steering witnesses are also discussed. Our investigations
may highlight further researches on steering witnesses.
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