Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,5-Dibromo-3,6-dimethoxycyclohexa-2,5-diene-1,4-dione

Ersin Orhan, Amine Garci and Bruno Therrien*

Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
Correspondence e-mail: bruno.therrien@unine.ch

Received 20 May 2014; accepted 21 May 2014

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.028 ; w R$ factor $=0.067 ;$ data-to-parameter ratio $=19.8$.

In the structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4}$, the complete molecule is generated by the application of a centre of inversion. The molecule is planar (r.m.s. deviation for all non- H atoms but methyl $\mathrm{C}=0.0358 \AA$), with only the methyl groups being deviated from the plane [by ± 0.321 (4) \AA]. In the crystal packing, $\mathrm{Br} \cdots \mathrm{O}$ (methoxy) halogen bonds [3.2407 (19) Å] connect molecules into supramolecular layers parallel to (101).

Related literature

For the synthesis of the title compound, see: Viault et al. (2011). For the structure of bromanilic acid, see: Robl (1987). For similar structures with a 2,5-cyclohexadiene-1,4-dione core, see: Nakatsuji et al. (2009). For an article dealing with the biological relevance of this type of compound, see: Viault et al. (2013). For papers using the title compound as a synthetic precursor, see: Khan \& Driscoll (1976); Tatsuta et al. (2001); Kasahara \& Kondo (2006); Gan et al. (2009). For metallaassemblies obtained with analogous building blocks, see: Gupta et al. (2014); Therrien (2009).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4}$
$M_{r}=325.95$
Monoclinic, $P 2_{\mathrm{h}} / n$
$a=9.4456$ (9) А
$b=5.4877$ (3) \AA
$c=10.0341$ (9) \AA
$\beta=113.846$ (7) ${ }^{\circ}$

$$
\begin{aligned}
& V=475.71(7) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=8.50 \mathrm{~mm}^{-1} \\
& T=173 \mathrm{~K} \\
& 0.23 \times 0.21 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS diffractometer
Absorption correction: part of the refinement model (ΔF)
(DIFABS; Walker \& Stuart,
1983)
$T_{\min }=0.246, T_{\max }=0.704$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad 65$ parameters
$w R\left(F^{2}\right)=0.067 \quad$ H-atom parameters constrained
$S=1.04$
1284 reflections

H-atom parameters
$\Delta \rho_{\text {max }}=0.86$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.98 \mathrm{e}^{-3}$

Data collection: EXPOSE (Stoe \& Cie, 2000); cell refinement: CELL (Stoe \& Cie, 2000); data reduction: INTEGRATE (Stoe \& Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 200020_140212).

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5317).

References

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gan, X., Jiang, W., Wang, W. \& Hu, L. (2009). Org. Lett. 11, 589-592.
Gupta, G., Kumar, J. M., Garci, A., Rangaraj, N., Nagesh, N. \& Therrien, B. (2014). ChemPlusChem, 79, 610-618.

Kasahara, T. \& Kondo, Y. (2006). Chem. Commun. pp. 891-893.
Khan, A. H. \& Driscoll, J. S. (1976). J. Med. Chem. 19, 313-317.
Nakatsuji, S., Nobusawa, M., Suzuki, H., Akutsu, H., Yamada, J. (2009). J. Org. Chem. 74, 9345-9350.
Robl, C. (1987). Z. Kristallogr. 180, 249-253.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Tatsuta, K., Mukai, H. \& Mitsumoto, K. (2001). J. Antibiot. 54, 105-108.
Therrien, B. (2009). Eur. J. Inorg. Chem. pp. 2445-2453.
Viault, G., Babu, K. S., Gautier, F., Barillé-Nion, S., Juin, P., Tasseau, O. \& Grée, R. (2013). Med. Chem. 9, 1028-1034.
Viault, G., Grée, D., Das, S., Yadav, J. S. \& Grée, R. (2011). Eur. J. Org. Chem. pp. 1233-1241.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

supplementary materials

Acta Cryst. (2014). E70, o715 [doi:10.1107/S1600536814011787]

2,5-Dibromo-3,6-dimethoxycyclohexa-2,5-diene-1,4-dione

Ersin Orhan, Amine Garci and Bruno Therrien

1. Chemical context

2. Structural commentary

Embelin (2,5-dihydroxy-3-undecylcyclohexa-2,5-diene-1,4-dione) and its derivatives possess great biological potential (Viault et al., 2013). Over the years, several synthetic strategies have been developed to prepare analogues of Embelin (Khan \& Driscoll, 1976; Tatsuta et al., 2001; Kasahara \& Kondo, 2006; Gan et al., 2009; Viault et al., 2011), and among the precursors used to synthesize these Embelin derivatives, 2,5-dibromo-3,6-dimethoxycyclohexa-2,5-diene-1,4-dione $\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4}\right)$ is often encountered. Moreover, such 2,5-dihydroxy-1,4-benzoquinones are commonly used as building blocks to generate metalla-assemblies (Therrien, 2009; Gupta et al., 2014), which explains our interest in the title compound. The molecular structure is presented in Fig. 1.
In the solid-state, the molecule, which sits about an inversion centre, is planar with the methyl groups being only ± 0.321
(4) \AA out of this plane (the plane defined by the dibromobenzoquinone unit including the two O atoms of the methoxy groups has a r.m.s. deviation of $0.0358 \AA$). The electron delocalization within the cyclohexadiene core is reflected in the $\mathrm{C}-\mathrm{C}$ bonds, which show intermediate values instead of the typical $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ bond distances. A similar pattern of C-C bond distances was observed in the analogous compound bromanilic acid (Robl, 1987) and other substituted 2,5-cyclohexadiene-1,4-dione derivatives (Nakatsuji et al., 2009).

3. Supramolecular features

In the crystal packing $\mathrm{Br} \cdots \mathrm{O}$ (methoxy) halogen bonds [3.2407 (19) \AA] connect molecules into supramolecular layers parallel to (101).

4. Database survey

5. Synthesis and crystallization

2,5-Dibromo-3,6-dimethoxycyclohexa-2,5-diene-1,4-dione was prepared according to a published method (Viault et al., 2011). Crystals were obtained by slow evaporation of an ethyl acetate solution containing the title compound.

6. Refinement

Hydrogen atoms were included in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Figure 1

The molecular structure of 2,5-dibromo-3,6-dimethoxy-2,5-cyclohexadiene-1,4-dione (symmetry operation $\mathrm{i}=-x, 1-y, 2$ $-z$). Displacement ellipsoids are drawn at the 50% probability level.

2,5-Dibromo-3,6-dimethoxycyclohexa-2,5-diene-1,4-dione

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{Br}_{2} \mathrm{O}_{4}$
$M_{r}=325.95$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2 yn
$a=9.4456$ (9) Å
$b=5.4877$ (3) \AA
$c=10.0341(9) \AA$
$\beta=113.846(7)^{\circ}$
$V=475.71(7) \AA^{3}$
$Z=2$

Data collection

Stoe IPDS

diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Detector resolution: 0 pixels mm^{-1}
φ oscillation scans
$F(000)=312$
$D_{\mathrm{x}}=2.276 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7998 reflections
$\theta=2.4-25.9^{\circ}$
$\mu=8.50 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, red
$0.23 \times 0.21 \times 0.20 \mathrm{~mm}$

Absorption correction: part of the refinement
model (ΔF)
$(D I F A B S$; Walker \& Stuart, 1983)
$T_{\min }=0.246, T_{\max }=0.704$
8772 measured reflections
1284 independent reflections
1144 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=29.2^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.067$
$S=1.04$
1284 reflections
65 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$k=-7 \rightarrow 7$
$l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0431 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.86$ e \AA^{-3}
$\Delta \rho_{\min }=-0.98$ e \AA^{-3}

Special details

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe \& Cie, 2000) using Mo $K \alpha$ graphite monochromated radiation. Image plate distance $100 \mathrm{~mm}, \varphi$ oscillation scans $0-180^{\circ}$, step $\Delta \varphi=1.2^{\circ}, 3$ minutes per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Br1	$0.14128(3)$	$0.21073(5)$	$0.79296(3)$	$0.02303(10)$
C 2	$-0.0827(3)$	$0.2940(4)$	$0.9112(3)$	$0.0197(4)$
C 4	$-0.3943(3)$	$0.2112(5)$	$0.9080(3)$	$0.0253(5)$
H4A	-0.4045	0.2467	0.8109	0.038^{*}
H4B	-0.4925	0.2333	0.9138	0.038^{*}
H4C	-0.3608	0.0457	0.9320	0.038^{*}
O2	$-0.2815(2)$	$0.3740(4)$	$1.00971(19)$	$0.0262(4)$
O1	$-0.1483(2)$	$0.1143(4)$	$0.8426(2)$	$0.0332(4)$
C1	$0.0654(3)$	$0.3806(4)$	$0.9134(2)$	$0.0176(4)$
C3	$-0.1485(2)$	$0.4344(4)$	$1.0024(2)$	$0.0174(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.02309(14)$	$0.02542(15)$	$0.02416(15)$	$0.00012(9)$	$0.01326(10)$	$-0.00545(8)$
C 2	$0.0212(11)$	$0.0197(10)$	$0.0193(11)$	$-0.0009(8)$	$0.0093(9)$	$-0.0011(8)$
C 4	$0.0178(10)$	$0.0290(12)$	$0.0266(12)$	$-0.0072(9)$	$0.0064(9)$	$-0.0016(9)$
O 2	$0.0216(8)$	$0.0326(9)$	$0.0283(9)$	$-0.0113(7)$	$0.0143(7)$	$-0.0098(8)$
O 1	$0.0311(10)$	$0.0297(10)$	$0.0443(11)$	$-0.0119(8)$	$0.0209(9)$	$-0.0171(9)$
C 1	$0.0185(10)$	$0.0190(10)$	$0.0169(9)$	$0.0013(8)$	$0.0090(8)$	$-0.0011(8)$

supplementary materials

C 3	$0.0176(9)$	$0.0184(10)$	$0.0177(9)$	$-0.0004(8)$	$0.0086(8)$	$0.0012(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	1.882 (2)	C4-H4B	0.9600
C2-O1	1.219 (3)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
C2-C1	1.469 (3)	O2-C3	1.330 (3)
C2-C3	1.509 (3)	$\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	1.351 (3)
$\mathrm{C} 4-\mathrm{O} 2$	1.448 (3)	C3-C1 ${ }^{\text {i }}$	1.351 (3)
C4-H4A	0.9600		
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	122.3 (2)	H4B-C4-H4C	109.5
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	121.0 (2)	C3-O2-C4	123.90 (19)
C1-C2-C3	116.68 (19)	$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2$	124.14 (19)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5	$\mathrm{C} 3-\mathrm{C} 1-\mathrm{Br} 1$	119.87 (16)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	115.96 (16)
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.5	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	118.4 (2)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	122.4 (2)
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2$	119.05 (19)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3{ }^{\text {i }}$	-174.0 (2)	$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 2$	-15.5 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3^{\text {i }}$	4.2 (4)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	-1.7 (4)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	4.2 (3)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$	-179.9 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	-177.59 (16)	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl}^{\text {i }}$	174.3 (2)
$\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 3-\mathrm{C1}{ }^{\mathrm{i}}$	168.5 (2)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 1^{\text {i }}$	-4.0 (4)

Symmetry code: (i) $-x,-y+1,-z+2$.

