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Abstract

With ever-increasing amounts of sequence data available in both the primary literature

and sequence repositories, there is a bottleneck in annotating molecular function to a se-

quence. This article describes the biocuration process and methods used in the

structure-function linkage database (SFLD) to help address some of the challenges. We

discuss how the hierarchy within the SFLD allows us to infer detailed functional proper-

ties for functionally diverse enzyme superfamilies in which all members are homolo-

gous, conserve an aspect of their chemical function and have associated conserved

structural features that enable the chemistry. Also presented is the Enzyme Structure-

Function Ontology (ESFO), which has been designed to capture the relationships be-

tween enzyme sequence, structure and function that underlie the SFLD and is used to

guide the biocuration processes within the SFLD.

Database URL: http://sfld.rbvi.ucsf.edu/

Introduction

The vast amounts of large-scale sequence and structure

data produced by sequencing projects has transformed the

ways in which biology is studied, enriching and extending

the knowledge base for proteins of known function and

allowing for better prediction of function for proteins for

which there are no ascribed function (unknowns). With the

near-exponential growth in the number of protein
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sequences available (as of October 2016, over 68 million

sequences in UniProtKB (1)), there is a wealth of data

available. Yet how these data are leveraged and utilised re-

mains an ongoing challenge. Only a tiny proportion of pro-

teins have any level of function assigned via experimental

techniques, leading to a situation where we know a lot

about a small number of systems, but practically nothing

about the vast majority of the protein universe. Thus, ob-

taining a well-annotated sequence dataset is almost impos-

sible due to the speed at which new data are being

generated. We need new strategies to divide and conquer

the sequence space of the protein universe, sorting it into

groups such as superfamilies (SFs) and families that can be

more effectively tackled. Existing resources that include

UniProtKB, Genbank (2), RefSeq (3), Pfam (4), InterPro

(5), CATH (6) and SCOP (7) cover the majority of the cur-

rently known protein space using many different annota-

tion strategies ranging from decision tree-like rules to

homology. However, there are still a non-trivial number of

proteins that do not belong to any currently assigned pro-

tein group. For example, there are over 145 thousand sig-

natures in InterPro (just under 28% of which are

integrated, release 59, 15th September 2016) and this cov-

ers approximately 82% of proteins in UniProtKB; i.e. al-

most one in five proteins in the sequenced universe have no

predicted family membership, as they are different enough

from any known proteins that their functions cannot be

predicted via homology and annotation transfer. Further, a

considerable number of proteins are assigned as domains

of unknown function (DUFs), it is thought that approxi-

mately 20% of all families in Pfam are DUFs (8), suggest-

ing that almost a third of all proteins belong to a family

with no known function.

The Structure-Function Linkage Database (9) (SFLD,

available from http://sfld.rbvi.ucsf.edu/) aims to catalogue

the specific sequence and structural attributes reflected in

SFs of enzymes, with a key focus on functionally diverse

SFs (10). Each SF represents a set of homologous enzymes

that all share conserved chemical capabilities, such as part

of the reaction mechanism. For each functionally diverse

SF, many different overall reactions have evolved from a

common ancestor to produce different reaction families,

where a family is considered to be isofunctional. SFs range

in size from a few hundred (e.g. the aromatic prenyltrans-

ferase alpha-beta-beta-alpha fold SF, 844 proteins in

InterPro release 59) to many hundreds of thousands of pro-

teins (e.g. the alpha-beta hydrolase SF (11), 626 314 pro-

teins in InterPro release 59).

The SFLD links structure, sequence and molecular func-

tion into a hierarchical classification scheme for which the

SF represents the top level. Within the SFLD, this frame-

work achieves functional annotation of SF members at

varying levels of detail depending on available informa-

tion. The SFLD is comprised of eight highly curated SFs in

the core dataset and several less-well-curated SFs (nine) in

the extended set. It is publicly available at http://sfld.rbvi.

ucsf.edu/. Its strength lies in the careful manual curation

that is performed on each SF, so whilst its coverage of the

enzyme universe is small, it provides a detailed mapping of

functional properties to the associated sequences and struc-

tures. Thus, it has been used as a Gold Standard Dataset

(12) for evaluation of annotation protocols, for example in

references (13–15).

This article describes the anatomy of an SF within the

SFLD and the framework for analysis employed in going

from a set of evolutionarily related proteins to a well-

curated SFLD SF. We discuss some of the challenges for

digitisation of the biochemical information into computer-

readable formats. We also describe the use of sequence

similarity networks (SSNs) as a primary curation tool and

the roles of networks in enhancing data utilisation and

making function prediction and dissemination to users

more efficient and information-rich.

Creation of an SFLD superfamily

Traditional enzyme classification efforts commonly take a

sequence-centric approach (e.g. Pfam (4), UniProtKB (1),

InterPro (5), TIGRFAMs (16) and PANTHER (17) to

name but a few), or a structure-centric approach [e.g.

CATH (18) and SCOP (7)] or a function-centric approach

[e.g. CSA (19), MACiE (20), EzCatDB (21)]. The SF ap-

proach integrates sequence, structure, and function as clas-

sification criteria, enhancing our abilities to discern new

connections and features that help us better understand en-

zymes and their functions.

The SFLD is split into two categories:

1. Highly curated, functionally diverse (10) SFs are repre-

sented in the manually curated Core SFLD.

2. All other SFs, including those for which all the known

members catalyse only a single reaction, comprise the

Extended SFLD.

Most of the Extended SFLD SFs have minimal manual

annotation, but all the same automatic annotations as the

Core dataset. Figure 1 shows the steps involved in creating

an SFLD SF and the decision tree used to determine to

which dataset it should belong.

The enzyme structure-function ontology
(ESFO)

In order to analyse an SF in a systematic and largely auto-

mated manner, we need to be able to represent the data in
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a computer-readable format. For the SFLD, this process is

guided by an ontology and schema, the Enzyme Structure-

Function Ontology (ESFO). Figure 2 shows a simplified

view of the ESFO schema. (The ESFO is provided in OWL

format in Supplementary Material, and available from

http://bioportal.bioontology.org/ontologies/ESFO.)

The ESFO formalises the relationships between se-

quence and function using the hierarchy of evolutionary re-

lationships (SF, Subgroup(s) and Family), which allows for

a greater level of detail than is provided by most other bio-

logical ontologies. Whilst the ESFO accurately captures the

conceptual architecture of the SFLD, a more detailed level

of functional description is provided by the MACiE data-

base (20), which uses the Enzyme Mechanism Ontology

(EMO) (19). The EMO defines the functional details of the

annotated amino acid residues and the overall chemical

transformation and mechanism of the enzymes. Many

SFLD SFs are already represented in MACiE, enabling use

of these resources together as a first step in enriching the

information available to both.

The enzyme functional domain (EFD)

The EFD is the portion of an SF sequence that is responsible

for the annotated function and includes all of the domains

required for that function. This is a critical concept for

associating functional properties with their sequences and

structures, as it accounts for the fact that not all proteins

are composed of a single domain on a single chain in a

monomer. (We estimate that as few as a third of all en-

zymes are catalytically active as a single domain (22).)

Many SFs exhibit complex multi-domain architectures; for

example, most members of the Haloacid Dehalogenase

(HAD) SF include one of several types of cap domains in-

serted into the common Rossmanoid fold of the core do-

main. These cap domains are unrelated to the core domain,

and the different cap types are thought to arise from differ-

ent evolutionary ancestries (23). Despite this complex evo-

lutionary history, cap domains are required for HAD

function in the proteins that have them. Thus, the EFD for

HAD SF members includes both the cap and core domains.

Related to the concept of the EFD, the ‘SF Domain’

(SFD) is defined as the domain that performs the conserved

chemistry using functional residue types conserved across

all members of the SF. Using a protein from the Radical

SAM SF, Figure 3 provides an example of how the EFD

and the SFD concepts are used and how they relate to the

full-length sequence.

At its simplest, a protein sequence is isofunctional with

an EFD that covers the full length of the protein sequence.

This is not always the case, as a single peptide can have

multiple functions (Figures 3 and 4). The complex

structure-function mappings represented by such proteins

are details that many ontologies fail to capture. For ex-

ample, the Gene Ontology (specifically Protein2GO) (24)

annotates the protein shown in Figure 4 with two distinct

functions (lyase and hydrolase activity), but the presence of

two functions could reflect different situations, e.g. the pro-

tein might be have multiple domains, each contributing a

single function, or the functions could arise from promiscu-

ity (25, 26) or even moonlighting (27). Automated annota-

tion transfer methods are especially prone to errors related

to such complex scenarios. For example, in a previous up-

date of the SFLD, several thousand proteins were errone-

ously added to (and subsequently removed from) the

Radical SAM SF because the domain boundaries relating to

a single multi-functional, multi-domain protein (Q8A7T2)

led to the addition of proteins that performed only one of

the two functions; i.e. Q8A7T2 has one domain that per-

forms biotin synthase (BioB) and another that performs the

adenosylmethionine-8-amino-7-oxononanoate aminotrans-

ferase (BioA) function. Due to the domain boundaries being

incorrectly set, proteins that only performed the BioA func-

tion were added to the BioB dataset.

The SFLD hierarchy

As introduced above, the enzyme structure-function rela-

tionships captured in the ESFO are based on the original

Figure 1. Steps in creation, annotation and dissemination of an SFLD

SF. Initial identification of an SF set uses information from structural

and sequence databases as well as knowledgebase data from several

sources. All SFs have at least one SSN generated from its members

which is available for download from the SFLD website.
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hierarchical classification scheme of the SFLD (Figure 5),

which describes three different levels of granularity: SF,

Subgroup(s), and Family (28, 29). The mid-level concept of

the SFLD is the subgroup. Subgrouping of SF members is

based initially on sequence similarity, with other criteria

(e.g. similarity in domain architecture) often being used for

further refinement. As members of a subgroup are more

closely related to each other than they are to members of

other subgroups, they often share more functional features

at the subgroup level than are shared at the SF level.

Multiple levels of subgrouping may be used to accommo-

date conserved variation patterns as needed, depending on

the nature of the SF. The most detailed classification level

used by the SFLD is the family level, defined as a set of SF

members that catalyse the same overall reaction using a

similar mechanism. These concepts in thse ESFO can be

mapped to similar terminologies used by other databases.

For example, the SFLD has recently been added to the

InterPro resource (30) in which several InterPro

Consortium databases use the SF and family concepts (for

example, CATH, SCOP and PANTHER), albeit with

somewhat different definitions.

As shown in Figure 5, conservation of functional fea-

tures across an SF of related enzymes can be described in

terms of the chemical capabilities at each level of the classi-

fication hierarchy. At the family level (bottom of Figure 5),

the overall chemical transformation is conserved, along

with its associated mechanism and conserved catalytic

Figure 3. Cartoon version of the domain architecture of UniProtKB Q8H8N3 (S-adenosyl-L-methionine-dependent tRNA 4-demethylwyosine syn-

thase). The full-length sequence includes three domains; the Radical Sam SF (RSS) domain in the blue box is the SFD common to all members of the

RSS. The tRNA wybutosine-synthesis domain (green box) and the RSS domain together make up the EFD, as both are required for the function of

Q8H8N3. The tRNA wybutosine-synthesis domain is not included in the SFD and is not homologous with it (i.e., the domain is from a different SF).

Although it is part of this full-length protein Q8H8N3, the flavodoxin/nitric oxide synthase domain (red box) is not required for the annotated function

of the EFD, nor is it part of the SFD common to all other members of the SF (i.e. the domain is from a third SF).

Figure 2. The key components of the ESFO Schema, the central concept of which is the enzyme functional domain (EFD) and its relationships to the

SFLD hierarchy. The blue arrows represent the ‘component_of’ relationship; green arrows represent the ‘member_of’ relationship and the magenta

arrows represent the ‘is_a’ relationship. All other arrows are labelled with the relationship type. The double-headed chemical_capability arrows repre-

sent both the ‘chemical_capability_of’ and ‘has_a_chemical_capability’ relationships, as shown in full for the ‘Reaction Scheme’ and ‘Enzyme

Functional Domain’ terms.

Page 4 of 12 Database, Vol. 2017, Article ID bax006



Figure 4. Simplified example of the data model using the ESFO. UniProtKB Q65KJ7 is a multi-functional protein where the C-terminal domain per-

forms lyase (EC 4.2.1.109, methylthioribulose 1-phosphate dehydratase) chemistry and belongs to the Class II aldolase SF and the N-terminal domain

performs hydrolase (EC 3.1.3.87, 2-hydroxy-3-keto-5-methylthiopentenyl-1-phosphate phosphatase) chemistry and belongs to the HAD SF. They per-

form two different reactions, albeit in the same metabolic pathway (the pathway that synthesizes L-methionine from S-methyl-5-thio-alpha-D-ribose

1-phosphate). The two GO terms relevant to the molecular function are shown (although they are not explicitly built into the ESFO schema, hence

shown with a dashed arrow). ‘Lyase activity’ refers to the C-terminal domain activity, and ‘hydrolase activity’ refers to the N-terminal domain activity.

In this example, the HAD SF is annotated as a core SF in SFLD; the annotation for the Class II aldolase SF, which is not in the SFLD, is taken from

UniProtKB and modelled using the ESFO. The arrow colours and relationships are the same as in Figure 2.

Figure 5. Example of the conserved chemical capabilities of the enolase SF, showing only two subgroups (enolase and mandelate racemase) and

three families, enolase (from the enolase subgroup), rhamnonate dehydratase and mandelate racemase (both from the mandelate racemase sub-

group). Conserved residues are shown as a chemical substructures when they are involved in bond changes and as three-letter codes when they are

essential to function but not directly involved in the bond changes. The structures in the dashed-line boxes represent the conserved active site fea-

tures. The top structural superimposition has the conserved metal binding ligands (and divalent metal cation) shown with a different colour for each

subgroup in the SF (PDBs: 2mnr, 2xsx, 3fyy, 4dye, 3qke, 1kcz and 2qvh). The middle image shows a superposition of residues conserved in all fami-

lies in the subgroup in available crystal structures (PDBs: 2hne, 1tzz, 2mnr, 3box and 3cb3). The SF-conserved residues are shown in cyan and the

subgroup-conserved residues in yellow. The bottom image is for the mandelate racemase family (PDB:2mnr) only and shows the family-specific resi-

dues in red, SF in cyan and subgroup in yellow.
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residues, e.g. the members of the mandelate racemase fam-

ily all utilise a catalytic histidine and lysine on either side

of the pseudosymmetric active site (31) as the general acid-

base pair. At higher levels of the SFLD hierarchy, the num-

ber of conserved residues may be fewer and their

functional features may be more general, e.g. binding of a

metal ion (Figure 5, all residues shown in the top structural

panel and cyan residues in the central panel). Only a par-

tial reaction may be common to all members of an SF, e.g.

for the enolase SF, the conserved chemical function

involves initiation of the SF reaction by abstraction of a

proton alpha to a carbonyl Group (32).

Annotation transfer using the ESFO

As illustrated in Figure 6, the first step in annotation trans-

fer is the creation of a high-quality multiple sequence align-

ment (MSA) for each level of the hierarchy. These MSAs

are then used to generate Hidden Markov Models (HMM)

for use in subsequent annotation transfer steps in the

SFLD.

Whilst it is technically possible to create an MSA of all

the many thousand (or more) sequences that make up

SFLD SFs, this level of detail is difficult for human curators

to work with or understand. Further, the larger the MSA,

the more complex the HMM may become, especially if

there are longer sequences being added, which can signifi-

cantly add to the time it takes to perform computational

analyses with the HMMs. Automated methods of produc-

ing MSAs are also not foolproof (33), and where a rela-

tively small MSA may be manually curated, a larger one

becomes much more challenging. Finally, as the MSA

grows in length, the chance of adding homologous

sequences increases; this can lead to over representation

(either in nature, or by what was sequenced). This will

tend to introduce bias in to the HMM. When we are creat-

ing our MSAs we are trying to find the balance between

breadth of coverage, accuracy and computation speed,

thus, one of the first steps in creating the MSAs is to limit

the size of the sequence set to approximately 250 se-

quences. This is done by removing significantly similar se-

quences to produce a set of limited size that samples the

entire sequence set whilst maintaining a level of similarity

sufficient for generating a high-quality MSA. The details of

the procedure the SFLD uses to generate a set of� 250 se-

quences are given in Supplementary Figure S1 and the ac-

companying text.

The gathering threshold (GA) represents the score at

which a sequence is defined as belonging to a functional

group (Figure 6). These are generally calculated automatic-

ally in the SFLD by finding a 10% or higher drop in bit

score when the UniProtKB database is tested against the

target HMM. The bit score [as calculated by BLAST (34)]

is a value that estimates the magnitude of the search space

required to find a similar (or better) score. The higher the

score, the more significant the match. We use bit score as it

Figure 6. Flowchart showing how multiple sequence alignments are generated and gathering thresholds chosen for HMM creation. The trusted cut-

off (TC) represents the highest bit score before either a large drop in the bit score (10%) or the bit score at which the entire seed set is matched. NC is

the non-trusted cut-off, i.e., the lowest bit score after a drop in score of 10% or more or the next bit score for the match following the TC cutoff that

matches the whole seed set.
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is independent of the size of the search space. In many

cases, however, there is no significant drop in score and so

we also calculate the bit scores that capture the whole seed

sequence set. When both can be calculated, the lower bit

score of the two is chosen to calculate the trusted cut-off

(TC) and noise cut-off (NC). The NC is taken as the next

score from the TC in the output file. If the only score that

is obtained is one that captures the entire seed set, then the

seed score is used for the TC and NC. In all cases, the GA

is calculated as the mid-point between the TC and NC. We

prefer to choose a lax threshold for our HMMs as more

stringent tests for the presence of group-specific conserved

catalytic residues (which are annotated in the SFLD) are

used in post-processing. Such post-processing steps add

much more specificity than the HMM score alone.

However, in some cases the information about functionally

important residues is not available. In those cases, the cur-

ator must manually decide if the GA score chosen automat-

ically is appropriate. If not, the curator will manually

determine a gathering threshold.

This approach is also useful for addressing misannota-

tion. Historically, misannotation has been a significant

issue in annotation transfer and remains a vexing challenge

for biological databases (35–38). Use of the SFLD’s hier-

archical classification scheme (Figure 5) supports curation

of SF sequences only at the level of specificity for which

good evidence exists. The ESFO formally addresses this

issue by providing an explicit framework for annotation

transfer based on this classification system, thereby im-

proving annotation precision and helping to avoid misan-

notation, especially from ‘over-annotation’ of specific

function based on similarity criteria alone (36). Formally,

family annotation is only transferred from a sequence of

experimentally characterised function to one of unknown

function based on stringent criteria that includes the match

to the family HMM, conservation of functional residues,

and other criteria as needed (such as conserved genome

context).

Using protein similarity networks (PSNs) as
a curation tool

With the continuing explosion of sequence data, SFLD SFs

now represent tens of thousands of sequences, raising sig-

nificant issues for data management and scalable curation

procedures. To meet this challenge, new methods have

been required to support in-depth curation of SFLD

structure-function relationships. We have developed PSNs

to summarize mapping of functional features in SFs to the

context of sequence similarity. A PSN is the general term

used to describe similarity networks created using protein

features, including SSNs (usually calculated using pairwise

E-values as the similarity score with BLAST) and structural

similarity networks (usually calculated using TM-Align

(39) and TM-Score as the similarity value). These can be

applied at any level of the SFLD hierarchy (40, 41).

Although they are not explicitly based on evolutionary

models and thus cannot substitute for phylogenetic recon-

struction, PSNs, in particular SSNs, complement phylogen-

etic trees owing to their ability to facilitate the integrated

visualization of many information types (including tax-

onomy) with close and remote homologies (42).

SSNs are now a primary tool for curating the SFLD, as

described elsewhere (40, 41) and tools for generating them

have been developed by other research groups as well (43–

48). More detail about how SSNs are created for the SFLD

is provided in Supplementary Material, Section S2.

SSNs offer a global view of similarity relationships

across large SFs, which, when mapped with many types of

functional and metadata curated in the SFLD or obtained

automatically from external resources, provide useful guid-

ance for curators in subgrouping SF sequence sets. These

data can be ‘painted’ onto SSNs using attribute files ac-

companying each network and visualised using the freely

available Cytoscape software (49).

The data are gathered from several different resources:

1. Literature mining. This information is manually gath-

ered by curators and takes the most time to process,

with the biggest challenges being the finding of relevant

data and deciding how to disseminate it. We also con-

sider the confidence we have in the data, especially if

there are competing and/or mutually exclusive annota-

tions reported. This type of information may include re-

action details, known functions from in vitro and

in vivo (e.g. knockout) studies, assay data, catalytic

residues, mutation studies, structure characterization or

mechanistic studies.

2. Resources external to the SFLD. Major resources in-

clude UniProtKB, Panther, Pfam, InterPro, TigrFams,

CATH and SCOP. Sequence-associated metadata and

genomic context are two main types of data obtained

from external resources. Sequence-associated metadata

include source species, molecular function (from

GenBank (50) and Swiss-Prot, the manually annotated

section of UniProtKB), and X-ray and NMR structures

(from the wwPDB (51)) that can provide insight about

mechanism. Genome context provides a useful way to

access biological function based on operon models or

co-localisation on a genome as a proxy for biological

pathways. These data come from The SEED (52), IMG

(53) and the European Nucleotide Archive (ENA) (54).

Additional information is captured from the Gene

Ontology (24).
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These data are then used by SFLD curators to refine

alignments, distinguish SF subgroupings, and identify con-

served amino acid residues. Curators may also build struc-

ture similarity networks to guide curation.

Although these external resources are easy to access using

automated tools, the annotation data that are captured from

several resources may disagree, raising challenges for its use

by SFLD curators. An aim of the SFLD is the identification

of potential misannotation in other resources. If differences

are found, SFLD curators inform the parent resource.

Network visualization provides a more intuitive under-

standing of structure-function relationships than does the

traditional tabular format. Because sequence similarity and

function may not be well correlated in functionally diverse

enzyme SFs (different families of proteins within an SF can

evolve at different rates), a single optimal clustering solu-

tion often does not track with the complex structure-

function relationships. Thus, the primary method used in

curation of the Core SFLD SFs is manual and involves

examining the network of the SF at increasingly stringent

E-values (as computed by BLAST) until a level of clustering

deemed appropriate for separating subgroups with relevant

shared features is obtained (Figure 7).

Every SF is different with respect to the E-value thresh-

old at which similarity clusters track with functional pat-

terns. For some, an E-value threshold cut-off at which

separation is informative may be related to the complex

multi-domain architecture of its members, while for others,

that same significance threshold may distinguish different

chemical reactions or patterns of speciation. Curators use

several different types of annotation information

(including function, domain architecture, and structural in-

formation) together in order to best define subgroups and

families. For example, in the case of the Radical SAM SF

(http://sfld.rbvi.ucsf.edu/django/superfamily/29/), the opti-

mal separation for the first-level subgroups was determined

primarily by the multi-domain architectures present, and

chosen by sampling different E-value threshold cut-offs to

identify the level of similarity at which enzymes of a spe-

cific domain architecture could be visually distinguished

from other architectures.

Another important type of information provided by

SFLD SSNs that is not readily accessible from other cur-

ation tools is the coverage of the sequence space represent-

ing an SF and its constituent subgroups and families with

respect to known functions and structures. This is a key

curation step for most SFs in the SFLD, as it indicates

which subgroups have enough experimental information

to support electronic annotation transfer and which do

not. It also provides guidance as to whether additional lev-

els of subgrouping (sub-subgroups, etc.) are warranted or

supported by the data. Reflecting the importance of this in-

formation for curators, our results indicate that the huge

majority of SF sequences in the SFLD are experimentally

uncharacterized and often have very limited automated an-

notation associated with them (see the SSNs provided in

the SFLD for Core SFs and publications describing the

Nucleophilic Attack 6-Bladed Beta-Propeller (55), Isoprene

Synthase 1 (56), and Glutathione Transferase (57) SFs).

Likewise, Gene Ontology statistics report 3.3 million an-

notations by inference compared to fewer than 620 000 ob-

tained from some type of experimental data.

Figure 7. Example of an SSN (node colour represents UniProtKB annotated EC number: brown is EC 1.16.1.9, pink is EC 1.16.1.7, red is 1.16.1.-, blue is

1.6.3.- and cyan is 1.11.1.-) at three different E-value threshold cut-offs for drawing edges. Each node in the SSN represents one full–length sequence

from the Ferric Reductase Domain SF (http://sfld.rbvi.ucsf.edu/django/superfamily/52/). (A) E-value threshold¼ 1e-6, (B) E-value threshold¼ 1E-20,

(C) E-value threshold¼ 1E-30. At each successively more stringent threshold, the number of edges decreases and the different functions start to sep-

arate relative to (A).
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Data dissemination

One of the key issues for protein information databases is

how to most effectively disseminate their data and results

to users. The SFLD accomplishes this primarily through an

interactive website described previously (9). This website

allows users to perform a variety of searches, including

using identifiers from external databases (such as

UniProtKB). Many users search the SFLD for information

about single sequences and the SFs to which they belong.

Contextual information relevant to a user’s query se-

quence is provided in two main ways, shown in Figure 8:

1) Through the HMM search option, in which the SFs,

subgroups, and families that the query protein hits are

shown with their respective scores. Next to each classifica-

tion level listed, a link is provided allowing the user to ob-

tain an alignment with the query sequence included. 2) A

similar search option is available allowing a user to BLAST

a sequence of interest against the SFLD, with a summary

provided of the number of sequences returned at each level

of the hierarchy.

At each level, (SF, subgroup, and family), the following

information is available for download:

• A tab-separated values (tsv) file containing all the anno-

tations available in the SFLD for each sequence at that

level in the hierarchy.

• A multiple sequence alignment (MSA) in Stockholm for-

mat (upon which the HMMs are based) with the func-

tional (catalytic) residues highlighted. When a user

queries the database with a sequence, or is looking at a

specific level of the hierarchy with a sequence in mind,

there is also an option to align the sequence to the MSA.

With or without a query sequence included, the MSAs

can be viewed at the website (as in Figure 8), saved as

plain text, or opened directly in UCSF Chimera (58), a

freely available program for structure (and sequence)

visualisation.

• Representative and one-sequence-per node SSNs with

the associated attributes annotated onto nodes in the net-

works, containing information and metadata like that

used in the curation process described in Section 3. The

annotations include all the data provided in the tsv file;

in the case of the representative networks, these data are

provided as a summary, typically as a list and (where ap-

propriate) a dominant annotation value. Currently, SSNs

Figure 8. Screenshots of a query using a mandelate racemase subgroup sequence that is in the SFLD but not yet placed into a family

(UniProtKB:Q6L1T2). Showing the results for the HMM search (top) and BLAST search (bottom) with the alignment of the query sequence to the high-

est-scoring family (middle) with the conserved family residues highlighted with a white background; the query sequence is at the bottom of the align-

ment panel.
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are packaged into a .zip file that contains the network in

XGMML format along with an explanatory README

file and a length distribution histogram for each SSN.

At the family level only, the SFLD includes an active

site image (if a 3-D structure is available), and the corres-

ponding Chimera session can be downloaded for inter-

active manipulation. Together, this information is intended

to help users ask the key question, ‘What is the function of

my protein?’

Conclusions, challenges and future
directions

The SF concept, as defined by the SFLD, addresses annota-

tion challenges through identification of conserved features

of enzyme function (catalytic residues, chemical reaction

and mechanism) at different levels of grouping. Mapping

these features to sequence and structural similarities at the

SF, subgroup, and family levels offers both a broad context

for functional inference of unknowns as well as detailed in-

formation about experimentally characterized proteins

most similar to unknowns of interest. In particular, the use

of PSNs offers a powerful and intuitive framework for

both biocuration and designing experiments to elucidate

the functions of unknowns.

At the same time, although much progress has been

made in the development of tools and methods for biocura-

tion, significant challenges remain for biocurators, data-

base providers, and experimental communities alike. In

particular, detailed and high-confidence annotation cannot

keep up with the increasing rate of data generation and dis-

covery of unknowns. With the necessary development of

automated annotation to address the scale at which un-

knowns are discovered by sequencing projects, misannota-

tion is likely to remain a significant and confounding issue

(36). Further, our understanding of the concept of function

is constantly evolving, broadening our understanding of

enzyme function to accommodate more fully the concepts

of enzyme promiscuity (25, 26) and moonlighting func-

tions (27), while complicating annotation efforts. Even for

enzymes whose mechanisms have been highly studied, new

work changes our conclusions (for example, catalysis by

lysozyme was presumed to go via a dissociative mechan-

ism, but is now known to proceed via a covalent mechan-

ism (59)). Even our fundamental understanding of how

proteins relate to one another can change as more data are

produced and new and more distant evolutionary connec-

tions can be made.

Whilst it is clear that experimentally guided annotation

will continue to fall further and further behind and that we

can no longer expect to achieve detailed and high-

confidence annotation of a significant proportion of the

protein universe, sampling of the data through the use of

reference proteomes, and the coordination of resources in

consortia such as InterPro (5) offer positive directions to-

ward scaling into the future. The combined efforts of the

biocuration community through the growth of the

International Society for Biocuration (ISB) (http://biocura

tion.org) and other interactions among specialized protein

resources (60, 61) will continue to contribute to improved

solutions as well.
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