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Aging is associated with disruptions in the resting-state functional architecture of the
brain. Previous studies have primarily focused on age-related declines in the default
mode network (DMN) and its implications in Alzheimer’s disease. However, due to mixed
findings, it is unclear if changes in resting-state network functional connectivity are
linked to cognitive decline in healthy older adults. In the present study, we evaluated
the influence of intra-network coherence for four higher-order cognitive resting-state
networks on a sensitive measure of cognitive aging (i.e., NIH Toolbox Fluid Cognition
Battery) in 154 healthy older adults with a mean age of 71 and education ranging
between 12 years and 21 years (mean = 16). Only coherence within the cingulo-
opercular network (CON) was significantly related to Fluid Cognition Composite scores,
explaining more variance in scores than age and education. Furthermore, we mapped
CON connectivity onto fluid cognitive subdomains that typically decline in advanced age.
Greater CON connectivity was associated with better performance on episodic memory,
attention, and executive function tasks. Overall, the present study provides evidence
to propose CON coherence as a potential novel neural marker for nonpathological
cognitive aging.
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INTRODUCTION

By the year 2050, the number of adults over the age of 65 in the United States population
is expected to double, signifying one of the fastest-growing age cohorts. With advanced age,
crystallized cognitive abilities, such as accumulated knowledge and vocabulary, are maintained and
can even improve over time. Conversely, even in the absence of pathology, older adults experience
declines in fluid cognitive abilities such as thinking abstractly, reasoning, and decision-making
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(Salthouse, 2010; Murman, 2015). Declines in these capacities
are linked to underlying age-related deficits in processing speed,
attention, memory, and executive function (i.e., cognitive aging;
Salthouse, 1994, 2000, 2010; Glisky, 2007). Cognitive aging in
later life is associated with functional impairments in managing
new information, manipulating the environment, and solving
problems (Salthouse, 1994, 2000, 2010; Buckner, 2004; Wecker
et al., 2005; Harada et al., 2013). These impairments can affect
older adults’ ability to function independently within society
and the home. Also, extensive evidence reveals that cognitive
decline and associated functional decline in older adults has been
related to changes in the structure and function of the brain
(Salat et al., 1999; Raz, 2000; Reuter-Lorenz et al., 2000; Cabeza,
2002; Raz et al., 2005; Andrews-Hanna et al., 2007; Kennedy and
Raz, 2009). Therefore, it is imperative to identify what brain-
based factors significantly contribute to cognitive aging. A more
comprehensive understanding of age-related neural alterations
within cognitive aging may facilitate better differentiation of
nonpathological aging from disease states and the identification
of target brain areas for intervention.

One of the increasingly popular methods used to study
age and pathology-related changes in the brain is resting-state
functional magnetic resonance imaging (rs-fMRI). rs-fMRI is
used to identify coherent fluctuations in brain activity when
a person is not actively engaging in a cognitive task (i.e., at
rest; Biswal et al., 2010; Biswal, 2012). rs-fMRI is particularly
advantageous when studying aging populations because it allows
for the examination of functional connectivity while removing
the demand of a task that may be confounded by potential
cognitive or motor impairments. Additionally, scan times are
relatively short (5–15min), benefitting older adults thatmay have
difficulties lying on one’s back for long periods or those with
psychological concerns regarding a novel scanning environment.

Across the lifespan, rs-fMRI has identified low-frequency
resting-state networks that depict the functional architecture
of the brain. Resting-state networks have been characterized
for aspects of attention (Fox et al., 2006), memory (Vincent
et al., 2006), cognitive control (Dosenbach et al., 2007; Vincent
et al., 2008; Cole et al., 2010), default mode (Raichle et al.,
2001; Buckner et al., 2008), motor (Biswal et al., 1995), and
sensory systems (De Luca et al., 2005; Damoiseaux et al., 2006).
Yeo et al. (2011) published a parcellation of the brain into
seven major resting-state networks: the default mode network
(DMN), the dorsal attention network (DAN), the frontoparietal
control network (FPCN), the cingulo-opercular network (CON)
[commonly referred to as the salience (Seeley et al., 2007) or
ventral attention network (Fox et al., 2006)], the limbic network,
the visual network, and the somatomotor network.

Investigators have used rs-fMRI techniques to examine
how patterns of resting-state network functional connectivity
change with age (Andrews-Hanna et al., 2007; Chan et al.,
2014; Damoiseaux, 2017; Siman-Tov et al., 2017; Spreng and
Turner, 2019). While previous studies have primarily focused on
age-related declines in the connectivity of the DMN (Andrews-
Hanna et al., 2007; Damoiseaux et al., 2007; Ferreira and
Busatto, 2013), recent research has uncovered several additional
‘‘higher-order cognitive’’ networks vulnerable to the aging

process (e.g., FPCN, CON, DAN; Geerligs et al., 2015a; Siman-
Tov et al., 2017). While it is clear that resting-state network
connectivity is disrupted in healthy older adults, it is unclear
whether these age-related changes in resting-state functional
connectivity contribute to the cognitive aging process. Studies
examining the relationship between network connectivity and
cognition in older adults have used a variety of cognitive tasks
and resting-state methods, producing inconsistent results (see
Ferreira and Busatto, 2013 for review). For example, some
studies have shown DMN, FPCN, and CON connectivity in
older adults to be associated with performance on specific
executive functioning, memory, and processing speed tasks
(Andrews-Hanna et al., 2007; Damoiseaux et al., 2007; Shaw
et al., 2015). However, Onoda et al. (2012) only found an
association between CON connectivity and executive functioning
(i.e., the Frontal Assessment Battery and Kohs’ Block Design)
and did not replicate a relationship between the other higher-
order cognitive networks and cognitive performance in older
adults. Lastly, Geerligs et al. (2015a) did not find a significant
relationship between any of the seven major resting-state
networks and cognitive performance in older adults. These
inconsistent findings are surprising given the emphasis in the
literature on DMN connectivity in aging (Ferreira and Busatto,
2013), suggesting future research should include other networks
in analyses and incorporate sensitive cognitive measures that
model the cognitive aging process. Importantly, a majority of
previous studies compared resting-state connectivity patterns
and cognitive performance between younger and older adults.
This type of experimental design can be problematic for
characterizing connectivity, as it is confounded by cohort effects
and age differences in head motion, heart rate variability, and
cerebrovascular function (D’Esposito et al., 1999; Geerligs et al.,
2015b, 2017; Prins and Scheltens, 2015). Additionally, a majority
of these studies had small sample sizes, potentially contributing
to null findings. Consequently, there is a need for a study with a
large sample of older adults to evaluate the association between
sensitive measures of cognitive aging and inter-individual
differences in resting-state network functional connectivity.

To comprehensively assess cognitive aging, we used the NIH
Toolbox Cognition Battery (Weintraub et al., 2013)1. The NIH
Toolbox yields a Fluid Cognition Composite, which consists
of measures categorized as skills that decline as a function of
advanced age: the Dimensional Change Card Sort (executive
function), Flanker (executive function and attention), Picture
Sequence Memory (episodic memory), List Sorting (working
memory), and Pattern Comparison tasks (processing speed). The
primary aim was to identify a relationship between resting-state
network connectivity and the overall cognitive aging process. As
such, this study analyzed the contribution of the four higher-
order cognitive networks (DMN, DAN, FPCN, CON) on Fluid
Cognition Composite scores in a large sample of healthy older
adults. Although the prior literature has been highly variable
regarding which networks relate to cognition in older adults,
the DMN, FPCN, and CON networks are the most common
networks implicated (Andrews-Hanna et al., 2007; Onoda et al.,

1www.nihtoolbox.org
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2012; Shaw et al., 2015) with little evidence for the DAN,
which may be less sensitive to the effects of age compared to
the other higher-order cognitive networks (Chan et al., 2014;
Grady et al., 2016). Therefore, we predicted that older adults
with greater within-network resting-state functional connectivity
of the DMN, FPCN, and CON networks would have higher
Fluid Cognition Composite scores. In secondary analyses, we
mapped networks significantly related to the Fluid Cognition
Composite onto the subtests to identify which specific domains
characterized the relationship between network connectivity and
cognitive aging. Our results provide important new insights into
age-related cognitive declines and inter-individual variability in
resting-state network connectivity, identifying a potential neural
marker for nonpathological cognitive aging.

MATERIALS AND METHODS

Participants
Data were collected at baseline from participants recruited for
the Stimulated Brain (K01AG050707) and the Augmenting
Cognitive Training in Older Adults (ACT, R01AG054077)
studies (Woods et al., 2018). Our sample included 159 healthy
older adults ranging from 65 to 87 years old (mean
age = 71.4 ± 5.1; 92 females; mean education = 16.2 ± 2.4,
education range = 12–21 years; Table 1) recruited at the
University of Florida (n = 110) and the University of Arizona
(n = 49). Woods et al. (2018) detail the inclusion and exclusion
criteria. In brief, participants were between the ages of 65–89, had
no history of major psychiatric illness, no history of brain or head
injury resulting in loss of consciousness greater than 20 min, and
no formal diagnosis or evidence of mild cognitive impairment
(MCI), dementia, or neurological brain disease. The Unified
Data Set (UDS) of the National Alzheimer’s Coordinating Center
(NACC) was used to screen for individuals with possible MCI or
dementia (Weintraub et al., 2009). Possible MCI was defined by
1.5 standard deviations below the mean in any of the following
domains: general cognition, memory, visuospatial, executive
functioning/working memory, or language. All participants were
right-handed and had no contraindications for MRI scanning.
Before beginning all study procedures, participants signed a
consent form approved by the Institutional Review Boards at
the University of Florida and the University of Arizona. At
the baseline visit, participants completed a variety of cognitive
assessments, medical history and mood questionnaires, and an
MRI scan. In this study, we used the NIH Toolbox Cognition
battery and the rs-fMRI data for our analyses. Three participants
were excluded due to incomplete or extreme scores (greater than
three standard deviations from the mean) on the NIH toolbox.
Additionally, two participants were excluded as outliers due to
extreme network connectivity values resulting in a total sample
size of 154 older adults.

NIH Toolbox
The NIH Toolbox Cognition Battery is a brief set of sensitive
measures used to assess a range of cognitive domains (Weintraub
et al., 2013). In the present study, we used the unadjusted
standard scores for the Fluid Cognition Composite and its five

TABLE 1 | Participant demographics and NIH toolbox scores.

Demographics Mean/SD

Age 71.4 ± 5.1
Education (Number of years) 16.2 ± 2.4

Gender N
Males 65
Females 94

NIH toolbox Mean/SD

Fluid cognition composite 93.1 ± 8.6
List sorting 98.2 ± 8.9
Pattern comparison 90.6 ± 14.0
Picture sequence memory 95.7 ± 10.2
Flanker 93.9 ± 6.7
Dimensional change card sort 100.9 ± 7.3

Notes: NIH toolbox scores are unadjusted standard scores.

subtests that measure cognitive abilities shown to decline with
advanced age. These subtests measure components of executive
function, attention, episodic memory, working memory, and
processing speed. For instance, the Dimensional Change Card
Sort task assesses the set-shifting component of executive
function (i.e., the ability to switch among multiple task strategies
and rules). Here, a participant must match a target stimulus to a
choice stimulus according to the shifting criterion of either shape
or color. The Flanker task is a visuospatial attention task that also
requires inhibitory control over automatic responses. The goal
of this task is to determine the direction of a central target arrow
that is flanked by similar stimuli on the left and right. The Picture
Sequence Memory task targets episodic memory, a cognitive
process involved in the retrieval of learned information. In this
task, thematically related pictures are displayed in a sequence,
and participants must remember and move the pictures into the
sequence demonstrated. The List Sorting task is a measure of
working memory, the ability to temporarily hold and manipulate
a limited capacity of information. This requires participants to
sequence and sort a list of visual and auditory stimuli from
smallest to largest increasing in the number of categories and
items. Lastly, the Pattern Comparison task is a measure of
processing speed, where participants quickly identify whether or
not two visual patterns are the same.

Imaging Acquisition
rs-fMRI data were collected using a 3-Tesla Siemens Magnetom
Prisma scanner with a 64-channel head coil at the Center
for Cognitive Aging and Memory at the University of Florida
and using a 3-Tesla Siemens Magnetom Skyra scanner with a
32-channel head coil at the University of Arizona. Scanner type
was included as a covariate in our statistical analyses to control
for potential differences in the quality and acquisition of MRI
data. Both study sites followed the same scanning procedures
and used identical sequences. Participant head motion was
constrained by foam padding, and participants were provided
with earplugs to reduce the adverse effects of scanner noise.
For acquiring resting-state data, participants were asked to rest
for about 6 min while keeping their eyes open, as a blood-
oxygen-level-dependent (BOLD) scan was acquired with an
echo-planar functional protocol [number of volumes = 120,
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repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms; flip
angle = 70◦, 3.0 × 3.0 × 3.0 mm3 voxels; 44 slices, field of
view (FOV) = 240 × 240 mm]. To assist the normalization of
the resting-state functional images in the preprocessing stage,
high-resolution T1-weighted 3D magnetization prepared rapid
acquisition gradient echo (MPRAGE) images were collected
(TR = 1,800 ms; TE = 2.26 ms; 1.0 × 1.0 × 1.0 mm3 voxels;
176 slices; FOV = 256 × 256 mm; FA = 8◦; time = 3 min and 3 s).

rs-fMRI Preprocessing
Structural and functional images were preprocessed and analyzed
using the MATLAB R2016b based functional connectivity
toolbox ‘‘Conn toolbox’’ version 18b and SPM 12 (Penny
et al., 2007; Whitfield-Gabrieli and Nieto-Castanon, 2012). We
followed a preprocessing pipeline which included the functional
realignment and unwarping, functional centering of the image
to (0, 0, 0) coordinates, slice-timing correction, structural
centering to (0, 0, 0) coordinates, structural segmentation
and normalization to MNI space, functional normalization to
MNI space, and spatial smoothing with a smoothing kernel
of 8 mm FWHM. During preprocessing, the Conn toolbox
implements an anatomical, component-based, noise correction
strategy (aCompCor) for spatial and temporal processing to
remove physiological noise factors from the data (Behzadi et al.,
2007). The implementation of aCompCor combined with the
quantification of participant motion and the identification of
outlier scans through the Artifact Rejection Toolbox (ART)2

allows for better interpretation of functional connectivity results
(Behzadi et al., 2007; Whitfield-Gabrieli and Nieto-Castanon,
2012; Shirer et al., 2015). The ART was set to the 97th percentile
setting with the mean global-signal deviation threshold set at
z = ±5 and the participant-motion threshold set at 0.9 mm.
Due to potential confounding effects, the resulting motion
information and frame-wise outliers were included as covariates
in our first-level analyses (Behzadi et al., 2007; Power et al., 2012;
van Dijk et al., 2012). Applying linear regression and using a
band-pass filter of 0.008–0.09 Hz, data were denoised to exclude
signal frequencies outside of the range of expected BOLD signals
(such as low-frequency scanner drift), minimize participant
motion, extract white matter and cerebral spinal fluid noise
components, and control for within-participant realignment and
scrubbing covariates.

Within-Network Connectivity and
Cognitive Performance Analyses
For the rs-fMRI analyses, we used a publicly available network
parcellation of the brain defined by Yeo et al. (2011) that has
been commonly used in the resting-state literature (Betzel et al.,
2014; Fjell et al., 2017; Khasawinah et al., 2017; Dixon et al., 2018;
Dubois et al., 2018; Ruiz-Rizzo et al., 2019). The resting-state
networks were projected into MNI152 space, and we specifically
defined four of the networks (DMN, DAN, FPCN, and CON) as
regions of interests (ROIs) for ROI-ROI functional connectivity
analyses. ROI-ROI analyses are Fisher z-transformed bivariate
correlations between brain regions’ BOLD time-series that

2www.nitrc.org/projects/artifact_detect

quantify associations in the activation at rest and serve as
a proxy for connectivity. Using the CONN toolbox, every
participant’s average within-network connectivity was calculated
by computing the mean of the pairwise correlations between the
specified (Yeo et al., 2011) ROIs that comprised each of the four
higher-order cognitive networks (Figure 1).

First, to assess how the four networks contribute to the general
domain of cognitive aging, we ran a multiple linear regression
evaluating the unique effect of within-network connectivity
on Fluid Cognition Composite scores. For secondary analyses,
linear regressions were conducted to characterize the resting-
state networks’ domain-specific influence in cognitive aging
by regressing within-network connectivity onto the cognitive
subtests: Dimensional Change Card Sort, Flanker, Picture
Sequence Memory, List Sorting, and Pattern Comparison. In the
secondary analyses, we only evaluated networks that significantly
contributed to Fluid Cognition Composite scores, since our
primary question concerns identifying important resting-state
networks in the cognitive aging process overall. We controlled
for age, education, sex, and scanner type in all of our models. All
statistical analyses were performed using SPSS version 25.

RESULTS

Primary Analyses: Within-Network
Connectivity and Composite Scores
First, we regressed within-network connectivity values for DMN,
DAN, FPCN, and CON simultaneously on Fluid Cognition
Composite scores to evaluate which network has the greatest
influence in the general cognitive aging process. In these primary
analyses, age and education were significantly associated with
Fluid Cognition Composite scores (p-values < 0.01), such
that older age was associated with lower composite scores
and more years of education was associated with higher
composite scores. Conversely, sex and scanner type were not
significantly associated with Fluid Cognition Composite scores.
Out of the four high-order cognitive networks, only CON
within-network connectivity had a significant relationship with
Fluid Cognition Composite scores, such that greater CON
connectivity was associated with better performance (R2 = 0.20,
β = 0.33, p < 0.001). The overall model explained 20% of
the variance in Fluid Cognition Composite scores, and notably,
CON connectivity explained 7.4% of the variance, while age
and education explained 3.8% and 5.7%, respectively (Table 2;
Figures 2, 3).

Within-Network Connectivity and NIH
Toolbox Subtests
To better characterize the relationship between CON
connectivity and cognitive aging, we ran secondary analyses to
identify which specific fluid cognitive subtests were associated
with the CON network. The distribution of scores on the
Flanker subtest was positively skewed; therefore, we performed
a square root transformation to meet normality assumptions
before analyses. Notably, CON within-network connectivity
was related to better performance across three of the five fluid
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FIGURE 1 | Visualization of the regions of interest (ROI)-ROI connections in each of four higher-order cognitive networks (Yeo et al., 2011) in our sample of healthy
older adults from (A) anterior (B) superior and (C) right hemisphere views. Each network is color-coded; however, the colors do not depict different levels of
correlation strength.

TABLE 2 | Within-network connectivity and fluid composite score results.

Predictors β t p Model R2

Age −0.21 −2.64 0.01∗ 0.20
Education 0.25 3.22 0.002∗

Sex 0.05 0.70 0.49
Scanner −0.001 −0.02 0.98
CON 0.33 3.66 <0.001∗

FPCN −0.01 −0.06 0.96
DMN −0.06 0.78 0.61
DAN −0.03 0.36 0.78

Notes: CON, cingulo-opercular network; FPCN, frontoparietal control network; DMN,
default mode network; DAN, dorsal attention network. ∗Significant result p < 0.01.

cognition subtests, suggesting the network has a relatively broad
relationship with cognitive aging rather than a relationship-
driven by a specific domain. Greater CON within-network
connectivity was associated with higher scores on Dimensional
Change Card Sort (R2 = 0.15, β = 0.26, p = 0.001), Flanker
(R2 = 0.17, β = 0.29, p < 0.001), and Picture Sequence Memory
tasks (R2 = 0.17, β = 0.25, p = 0.001). CON connectivity was not
significantly related to performance on List Sorting (R2 = 0.07,
β = 0.10, p = 0.20) or Pattern Comparison (R2 = 0.09, β = 0.12,
p = 0.13; Table 3; Figure 4).

In these subtest analyses, age was significantly related to
performance on the Pattern Comparison task, such that older
age was associated with worse performance (β = −0.22,

FIGURE 2 | A scatterplot depicting the primary regression analysis with the
standardized predicted values (X-axis) resulting from regressing age, sex,
education, scanner, and within-network connectivity values of the
cingulo-opercular network (CON), frontoparietal control network (FPCN),
default mode network (DMN), and dorsal attention network (DAN) on the Fluid
Cognition Composite unadjusted standard scores (Y-axis).

p = 0.008). Sex was significantly related to performance on
Picture Sequence Memory, such that females performed better
than males (β = 0.28, p < 0.001). Lastly, those with higher
education performed significantly better on the List Sorting
(β = 0.21, p = 0.01), Pattern Comparison (β = 0.15, p = 0.05),
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FIGURE 3 | Scatterplots depicting the unique relationships between each network and the Fluid Cognition Composite controlling for the rest of the predictors in the
regression. The X and Y axes represent the standardized residuals for the independent and dependent variables, partialling out the effects of the remaining
predictors. As such, the slopes reflect partial correlations.

TABLE 3 | CON within-network connectivity and NIH toolbox subtest results.

Fluid tasks Model R2 β t p sr2

Flanker 0.17 0.29 3.74 <0.001∗ 0.08
Picture sequence 0.17 0.25 3.27 0.001∗ 0.06
DCCS 0.15 0.26 3.33 0.001∗ 0.06
List sorting 0.07 0.10 1.28 0.20 0.01
Pattern comparison 0.09 0.12 1.54 0.13 0.01

Notes: CON, cingulo-opercular network; DCCS, Dimensional Change Card Sort.
∗Significant result p < 0.01.

Flanker (β = 0.23, p = 0.004), and Dimensional Change Card Sort
(β = 0.26, p = 0.001) tasks.

DISCUSSION

Aging is associated with disruptions in the functional
architecture of the brain. However, due to previously mixed
findings, it is unclear if age-related changes in resting-state
network functional connectivity are linked to the cognitive
aging process. The present study offers important new insights
by uncovering a specific relationship between resting-state
network functional connectivity and cognitive performance
in a large sample of healthy older adults. Here, we identified
a resting-state network involved in general fluid cognition.
Additionally, we outlined the cognitive scope of this network
by mapping connectivity onto processing speed, episodic
memory, working memory, attention, and executive function
subdomains. By linking resting-state network connectivity to

various aspects of the cognitive aging process, we hope to create
a foundation for future targeted intervention strategies. While
the literature has focused on the DMN and its implications
in Alzheimer’s disease (Buckner et al., 2008; Ferreira and
Busatto, 2013; Sullivan et al., 2019), our findings suggest further
examination of the CON in the context of nonpathological
cognitive aging (Onoda et al., 2012; Geerligs et al., 2015a;
Siman-Tov et al., 2017).

Cognitive Control in Cognitive Aging:
Cingulo-Opercular Network
The CON is commonly referred to as one of the cognitive
control networks (Cole and Schneider, 2007; Dosenbach et al.,
2008). Cognitive control is necessary for flexibly allocating
mental resources to produce goal-directed behavior. Examples
of control processes include attending to stimuli, preparing
and initiating a response, and adapting to feedback (Cole and
Schneider, 2007). These components of cognition are necessary
for the successful completion of a variety of tasks in daily life.
In the present study, CON was the only network that was
significantly associated with the NIH Toolbox Fluid Cognition
Composite. Beyond the matter of significance, CON intra-
network coherence explained more of the variance in composite
scores than both age and education. These results suggest
that CON connectivity is an important factor that influences
fluid cognition and may be a compelling target for novel
interventions (e.g., transcranial direct current stimulation) to
enhance overall cognitive function in older adults. Additionally,
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FIGURE 4 | Scatterplots showing the significant relationships between (A)
Picture Sequence Memory (B) Flanker and (C) Dimensional Change Card
Sort subtest scores and CON within-network resting-state connectivity
controlling for age, education, sex, and scanner covariates. The Y-axes reflect
the unadjusted standard scores for Picture Sequence Memory and
Dimensional Change Card Sort and the square root transformed scores for
the Flanker task.

CON within-network connectivity was positively associated with
performance on three out of the five subtest domains typically
vulnerable to the aging process: episodic memory, attention,
and executive function. This pattern of findings suggests the
CON network has a relatively global relationship with the
cognitive aging process rather than a relationship driven by a
specific domain. These results support the notion of the general
widespread involvement of the CON network in cognitive
control (Dosenbach et al., 2007; Sestieri et al., 2014). Broadly,
CON is involved in the implementation and maintenance of
the perceptual and attentional information in a task (Dosenbach
et al., 2006, 2007, 2008). This is evident through CON’s
sustained activation during trial initiation, target detection, task
maintenance, and response (Dosenbach et al., 2007, 2008; Sestieri
et al., 2014; Han et al., 2018). CON’s expansive functional

responsibility is necessary for the brain’s moment-to-moment
information processing, a general proficiency greatly affected
by age (Salthouse, 2000, 2010). Therefore, our findings suggest
that greater functional connectivity within CON at rest may
reflect a better ability to properly activate this important
network during the execution of fluid cognitive tasks in
older adults.

Additionally, CON consists of brain regions important for
fluid cognitive abilities like decision-making, planning, target
and error detection, updating, and switching (i.e., frontal
operculum, medial superior frontal cortex, dorsal anterior
cingulate cortex, and anterior insula; Gehring and Knight, 2000;
Jung and Haier, 2007; Han et al., 2018). These regions are
susceptible to gray matter atrophy and white matter disruptions
with age, which contribute to functional activation alterations
and declines in cognitive performance (Salat et al., 1999; Raz,
2000; Reuter-Lorenz et al., 2000; Cabeza, 2002; Raz et al., 2005;
Andrews-Hanna et al., 2007; Kennedy and Raz, 2009). He et al.
(2014) showed that graymatter volume of the insular cortices and
the dorsal anterior cingulate, major hubs in the CON network, as
well as the functional connectivity of the left insula cortex were
associated with scores on the Mini-Mental Status Examination
in their sample of older adults. The resting-state functional
connectivity of the left insula specifically has also been shown
to mediate the association between age and visual processing
speed in healthy older adults (Ruiz-Rizzo et al., 2019). Greater
CON resting-state connectivity may signify greater maintenance
of structural integrity in these regions involved in fluid cognition.
Future research should utilize multimodal imaging to further
assess the relationship between age-related structural changes
and resting-state network functional connectivity.

Higher-Order Cognitive Networks in
Cognitive Aging: Default Mode, Dorsal
Attention, Frontoparietal Control,
Cingulo-Opercular
CON is a part of a larger group of networks referred to as
the higher-order cognitive networks (i.e., CON, FPCN, DMN,
DAN). Functional connectivity within these networks typically
decreases with age along the same trajectory of age-related
structural deterioration and cognitive decline (Park and Reuter-
Lorenz, 2009; Giorgio et al., 2010; Geerligs et al., 2015a;
Siman-Tov et al., 2017). Conversely, connectivity within sensory
and motor resting-state networks remains relatively stable in
advanced age. Together, these patterns of age-related alterations
in connectivity support the ‘‘last in, first out’’ hypothesis which
suggests that brain regions that are the last to develop are the
first to be affected by the aging process (Raz, 2000). In addition
to CON, we also expected to find a relationship with DMN and
FPCN connectivity and cognitive performance in our sample of
healthy older adults.

In the present study, functional connectivity within DMN,
FPCN, and DAN were not significantly related to the Fluid
Cognition Composite. These results are surprising given the
historic focus on the DMN as an individual network and
its interactions with DAN and FPCN (Fox et al., 2005;
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Buckner et al., 2008; Ferreira and Busatto, 2013; Spreng
et al., 2013). The most common finding in the resting-state
and aging literature is that there are disruptions in resting-
state functional connectivity within the DMN present in
nonpathological aging and Alzheimer’s disease (Greicius et al.,
2004; Buckner et al., 2008; Ferreira and Busatto, 2013; Ferreira
et al., 2016). However, relating resting-state characteristics of
the DMN and other networks to actual cognitive performance
in older adults has resulted in mixed findings (Andrews-Hanna
et al., 2007; Damoiseaux et al., 2007; Geerligs et al., 2015a;
Ferreira et al., 2016). While disruptions in DMN resting-
state connectivity may be a marker for memory deficits and
Alzheimer’s disease pathology (Buckner, 2004; Buckner et al.,
2008), our findings suggest that CON resting-state connectivity
is a more robust marker for declines in attention-demanding
cognitive domains present in nonpathological cognitive aging.
This distinction between the roles of DMN and CON in the
cognitive aging process may help facilitate better differentiation
of nonpathological aging from disease states.

Limitations and Future Directions
The present study is not without limitations regarding cohort
characteristics and methodology. First, the age range of our older
adult sample is relatively restricted (65–87). Therefore, we may
only be representing connectivity and cognition relationships
for a specific subset of older adults. Additionally, while our
sample of older adults had an education range of 12–21 years,
67.5% of the sample obtained a bachelor’s degree or higher.
Future work should examine this research question with a wider
age range and a higher representation of older adults with
education below 16 years to broaden the generalizability of
these results. We conducted an ROI-ROI analysis to mitigate
multiple comparisons and to limit our analyses to regions
involved in established resting-state networks. Future studies
should also examine voxel-wise approaches and whole-brain
metrics to further explore the relationships found in the current
study. Finally, we associated resting-state functional connectivity
and cognitive performance in healthy older adults at one
point in time. Therefore, we cannot make any conclusions
about within-participant changes in connectivity and cognitive
performance over time. In the course of neurodegenerative
diseases, disrupted connectivity is apparent long before the
presence of cognitive decline (Chen et al., 2016). As such,
our findings may offer specific networks central to the early
stages of cognitive aging. Future work should longitudinally
assess changes in CON connectivity to see if disruptions in
these networks are associated with the progression to MCI and
Alzheimer’s disease.

CONCLUSION

This study provides important new insights on inter-individual
differences in resting-state network connectivity and the
cognitive aging process. Notably, we provide evidence to
suggest CON coherence as a potential new marker for fluid
cognitive performance capacity in nonpathological aging. Out
of the four higher-order cognitive networks, connectivity within

the CON network exhibited the strongest relationship with
a sensitive measure of general fluid cognitive ability in our
large sample of healthy older adults. Furthermore, CON
connectivity explained a greater percentage of the variance
in fluid cognitive performance than both age and education.
CON connectivity mapped onto three out of the five fluid
cognitive subtests, reflecting a global rather than domain-specific
influence on the cognitive aging process. Collectively, these
results suggest that CON connectivity may be a central facet
of the cognitive aging process and deserves increased focus in
future research investigating the neural substrates of age-related
cognitive decline.
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