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Abstract

Background: DNA methylation is a major epigenetic modification involved in regulating gene expression. The
effects of DNA methylation on gene expression differ by genomic location and vary across kingdoms, species and
environmental conditions. To identify the functional regulatory roles of DNA methylation, the correlation between
DNA methylation changes and alterations in gene expression is crucial. With the advance of next-generation
sequencing, genome-wide methylation and gene expression profiling have become feasible. Current bioinformatics
tools for investigating such correlation are designed to the assessment of DNA methylation at CG sites. The
correlation of non-CG methylation and gene expression is very limited. Some bioinformatics databases allow
correlation analysis, but they are limited to specific genomes such as that of humans and do not allow user-
provided data.

Results: Here, we developed a bioinformatics web tool, MethGET (Methylation and Gene Expression Teller), that is
specialized to analyse the association between genome-wide DNA methylation and gene expression. MethGET is
the first web tool to which users can supply their own data from any genome. It is also the tool that correlates
gene expression with CG, CHG, and CHH methylation based on whole-genome bisulfite sequencing data. MethGET
not only reveals the correlation within an individual sample (single-methylome) but also performs comparisons
between two groups of samples (multiple-methylomes). For single-methylome analyses, MethGET provides Pearson
correlations and ordinal associations to investigate the relationship between DNA methylation and gene expression.
It also groups genes with different gene expression levels to view the methylation distribution at specific genomic
regions. Multiple-methylome analyses include comparative analyses and heatmap representations between two
groups. These functions enable the detailed investigation of the role of DNA methylation in gene regulation.
Additionally, we applied MethGET to rice regeneration data and discovered that CHH methylation in the gene body
region may play a role in the tissue culture process, which demonstrates the capability of MethGET for use in
epigenomic research.

Conclusions: MethGET is a Python software that correlates DNA methylation and gene expression. Its web interface
is publicly available at https://paoyang.ipmb.sinica.edu.tw/Software.html. The stand-alone version and source codes
are available on GitHub at https://github.com/Jason-Teng/MethGET.
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Background

Epigenetics is the study of heritable changes in gene ex-
pression that do not involve changes in DNA sequences
[1]. DNA methylation is one of the best-studied epigen-
etic mechanisms and refers to a process by which a me-
thyl group is added to a cytosine [2]. In plants, DNA
methylation is found in three sequence contexts: CG,
CHG, and CHH (H represents A, T or C), whereas in
animals, it is mostly observed at CG sites [3]. CG, CHG
and CHH methylation is established and maintained by
different methyltransferases to achieve different bio-
logical outcomes, such as the silencing of transposable
elements [4], genomic imprinting [5], and, most import-
antly, gene regulation [6]. DNA methylation at different
genomic locations may have different impacts on regu-
lating the expression of genes and transposable elements
(TEs) [7]. Typically, DNA methylation in the promoter
region may repress gene expression [8]. In the gene
body, CG methylation is weakly positively correlated
with gene expression in humans, while in Arabidopsis,
modest CG methylation is related to higher gene expres-
sion [9, 10]. Although the global trends of the correl-
ation described above have been reported, variability
exists for individual genes, and more recent research has
shown that the correlation between promoter methyla-
tion and gene expression is not always negative [11-13].

Dynamic changes in DNA methylation in the genome-
wide profile (i.e., methylome) often affect gene expres-
sion with specific functional outcomes [14]. For instance,
methylation changes play a role in gene regulation dur-
ing sexual reproduction in both plants and animals [15].
In plants, DNA methylation can shape the transcriptome
of the plant during seed germination and under biotic
and abiotic stresses [15, 16]. In mammals, alterations of
DNA methylation have been shown to be associated
with altered gene expression in the development of can-
cer and cardiovascular diseases [17]. The relationship
between methylation changes and gene expression
changes under different biological conditions and at dif-
ferent timepoints is important, but the effects of DNA
methylation on gene expression remain unclear and
complicated [18]. Therefore, the measurement of their
correlation is of significance to aid in the understanding
of epigenetic regulatory networks.

Whole-genome bisulfite sequencing (WGBS) enables
genome-wide analyses of cytosine methylation at single-
nucleotide resolution [19], whereas RNA-sequencing
(RNA-seq) can quantify gene expression by counting the
reads mapped to the transcriptome [20]. There are sev-
eral bioinformatics tools for DNA methylation analyses,
but only a few can correlate DNA methylation and gene
expression for customized analyses, such as COHCAP
[21], PiiL. [22], and ViewBS [23]. COHCAP and PiiL. can
integrate DNA methylation with gene expression, but
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they are restricted to CpG methylation analyses. ViewBS
can correlate between non-CG methylation and gene ex-
pression, but the users need to process the data first to
allow correlation analyses. MethHC [24] and iMETHYL
[25] are databases of methylation and gene expression.
They do not allow users to provide their own data, and
they can only be applied to specific species. Therefore,
bioinformatics tools specialized for evaluating the correl-
ation between DNA methylation and gene expression
could help facilitate epigenomic research.

In this research, we developed MethGET, web-based
bioinformatics software for analyzing the correlation be-
tween genome-wide DNA methylation and gene expres-
sion. MethGET allows users to upload their own DNA
methylation and gene expression data for any species.
MethGET includes single-methylome analyses for view-
ing the correlation within a single sample and multiple-
methylome analyses for detecting the correlations be-
tween DNA methylation changes and gene expression
changes between two groups of samples. It also deter-
mines DNA methylation in different contexts (CG,
CHG, and CHH) and across different genomic regions
(gene body, promoter, exon, and intron) to explore the
different roles of methylation mechanisms in gene ex-
pression. We demonstrated the capability of MethGET
with Japonica rice data, and MethGET revealed a de-
crease in both CHH methylation and gene expression in
most genes in the gene body region as the embryo devel-
oped into a regenerated callus, which was not reported
in the original paper [26] and warrants further investiga-
tion. Thus, MethGET serves as a useful tool for scien-
tists to unveil the role of DNA methylation in regulating
gene expression.

Methods

MethGET is a Python software that performs various ana-
lyses, including single-methylome analyses and multiple-
methylome analyses (Fig. 1). MethGET uses DNA methy-
lation, gene expression, and gene annotation data as the
input for data preprocessing. In single-methylome ana-
lyses, the correlations within a single sample are detected;
these analyses include the following: 1) correlation ana-
lyses of genome-wide DNA methylation and gene expres-
sion (correlation); 2) ordinal association analyses with
genes ranked by gene expression level (ordinal associ-
ation); 3) distribution of DNA methylation by groups of
genes with different expression levels (grouping statistics);
and 4) average methylation level profiling according to dif-
ferent expression groups around genes (metagene). In
multiple-methylome analyses, two groups of samples
(Group A vs. Group B) are compared; these analyses in-
clude the following: 1) gene-level associations between
DNA methylation changes and gene expression changes
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(comparison) and 2) visualization of DNA methylation
and gene expression data together (heatmap).

Data preprocessing

The inputs of MethGET are DNA methylation (CGmap
file as methylation calls), gene expression (tab-delimited
text file), and gene annotation (GTF file) data. The quality
control of DNA methylation (WGBS) and gene expression
data (RNA-seq) is usually performed before or during
alignment. The quality control methods such as FastQC
and NGS QC Toolkit in the read alignment step would
help provide good inputs for MethGET to improve the ac-
curacy of subsequent analyses [27, 28]. CGmap files in-
cluding the DNA methylation levels, read counts and
methylation context of each cytosine are the output of the
bisulfite specific aligners such as BS-Seeker and its vari-
ants [29-31]. Other methylation calling files can be

converted to CGmap format by MethGET, including CX
report files generated by Bismark, the methylation calls
generated by methratio.py in BSMAP (v2.73), the allc files
by methylpy, and the TSV files exported from the methy-
lation calling status with METHimpute [32-35]. To accel-
erate the retrieval of methylation information, MethGET
converts CGmap data into three contexts (CG, CHG,
CHH) in binary compressed format files (bigwig format)
[36]. Gene expression values represent quantitative mea-
surements of gene expression. The gene expression input
of MethGET is a tab-delimited txt file containing gene
names and gene expression values such as RPKM (reads
per kilobase per million mapped reads) and FPKM (frag-
ments per kilobase of transcript per million), and CPM
(counts per million). The gene annotation GTF file con-
tains gene names and the transcript annotation of the gen-
ome available from the Ensembl FTP server (https://asia.
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ensembl.org/info/data/ftp/index.html). MethGET parses
the GTF file into four BED formats for different genomic
locations: gene bodies, promoters, exons, and introns. The
gene body is defined as the region from the transcription
start site (TSS) to the transcription end site (TES), and the
promoter is defined as the region two kilobases upstream
of the gene body. Finally, MethGET averages the methyla-
tion levels at different genomic locations for downstream
analysis and methylome visualization. MethGET can also
preprocess TE GTF to BED format and allow the correl-
ation between TE methylation and TE expression in the
downstream analyses (Additional file 2: Figure S1).

Single-methylome analyses

Single-methylome analyses investigate the association
between the methylome and transcriptome within a sin-
gle sample. We demonstrate the following single-
methylome analyses using the data from human cancer-
associated fibroblasts [37] and Arabidopsis thaliana eco-
type Columbia [38].

Correlation analyses of genome-wide DNA methylation and
gene expression (correlation)

To display the correlation between genome-wide DNA
methylation and gene expression, MethGET generates scat-
terplots and 2D kernel density plots. The values of Pear-
son’s and Spearman’s correlation coefficients (R) are
provided, as well as the accompanying p-values from Stu-
dent’s t-test. Typically, promoter methylation tends to
present a negative correlation (R < 0) in which an increased
methylation level correlates with decreased gene expression
values (Fig. 2a). Since over-plotting often occurs in the scat-
terplot, a 2D kernel density plot is also provided to
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represent the density distribution. Groups of genes can be
identified on the basis of deeper coloration; for example, it
can be seen in Fig. 2b that genes with lower expression are
enriched in both high and low DNA methylation levels.

Ordinal association analyses with genes ranked by gene
expression level (ordinal association)

To investigate the methylation pattern associated with
relative gene expression, MethGET provides scatterplots
with genes ranked by gene expression level from low ex-
pression levels to high expression levels. Additionally,
MethGET can generate fitting curves for the scatterplot
via the moving average method to smooth out noise and
highlight trends of methylation. In Fig. 3, the promoter
methylation trend decreases with increasing gene expres-
sion values, but the gene body methylation trend increases
slightly with increasing gene expression; suggesting a dif-
ferential association or usage between DNA methylation
and gene expression at different genomic regions.

Distribution of DNA methylation by groups of genes with
different expression levels (grouping statistics)

To better reveal the complex regulation of methylation, in
MethGET both boxplots and violin plots are provided to
visualize the central tendency and dispersion of DNA methy-
lation levels according to groups with different gene expres-
sion levels (Fig. 4). Genes are grouped as non-expressed
genes and 5 quantiles of expressed genes according to the
gene expression level groups from low to high; the 1st quin-
tile is the lowest, and the 5th is the highest. In addition, the
correlation coefficient of DNA methylation and gene expres-
sion in each group as well as descriptive statistics (such as
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the mean and standard deviation) are available in the pro-
vided spreadsheet (Additional file 2: Table S1).

Average methylation level profiling according to different
expression groups around genes (metagene)

To profile DNA methylation around genes across different
expression groups, MethGET provides two kinds of meta-
gene plots: “region” and “site” plots (Fig. 5). For a “region”
plot, gene body regions are divided into 30 windows based
on the region’s length, and the average methylation level is
calculated for each window. The methylation patterns both
upstream and downstream of genes are shown for half of
the gene body (i.e., 15 windows). On the other hand, a “site”

plot allows the methylation adjacent to a specific reference
point (transcription start site or transcription end site) to
be visualised. This can help to elucidate the mechanisms of
DNA methylation at certain bases around a specific point.
The regions two kilobases upstream and downstream of
the reference point are divided into 10 windows, and the
average methylation level is calculated in each window. A
single-base resolution is possible in a “site” plot when the
number of windows is equal to the number of bases. In this
analysis, users can define the number of groups for separat-
ing genes by gene expression levels, and they can also de-
fine the number of windows in “region” and “site” plots for
averaging DNA methylation levels.
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Multiple-methylome analyses (Group A) and wild type (Group B) of Arabidopsis
Multiple-methylome analyses investigate the correl- (GEO accession: GSE81407) [38].

ation between alterations in methylomes and the dif-

ferences in transcriptomes between two groups of  Gene-level associations between DNA methylation changes
samples (e.g., mutant vs. wild type or cancer vs. nor- and gene expression changes (comparison)

mal). Moreover, the correlation can be explored at the ~DNA methylation changes between two groups of sam-
gene level to understand the DNA methylation regula-  ples may exert a specific functional impact on gene ex-
tory network associated with gene expression changes. pression between them (e.g, mutants, treatments,
To demonstrate the multiple-methylome analysis stresses). To calculate the changes between two groups
process, we applied MethGET to the ofu5 mutant (Group A vs. Group B), MethGET first averages DNA
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methylation levels and gene expression within an indi-
vidual group. The correlation between methylation level
changes (Group A — Group B) and gene expression
changes (log2 (Group A/Group B)) can be shown
throughout the genome (Fig. 6a). The overall correlation
can be measured by using Pearson’s correlation coeffi-
cient and the accompanying p-value.

To identify the genes with clear changes of DNA
methylation and gene expression (i.e., differential genes),
we incorporated the Gaussian Mixture Model (Gaussian-
Mixture module from the scikit-learn package in py-
thon) in the bi-variate correlation plot [39]. As the
default setting, a data point will be defined as differential
genes if p-value <10™° in GMM. They are marked in
red color in the scatterplot, and the users can choose to
show the number of differential genes in the four quad-
rants of the plots. These genes with different DNA
methylation statuses associated with gene expression
changes are important because their expression may po-
tentially be regulated by differences in DNA methylation
between the two groups. The information for the differ-
ential genes (gene names, methylation levels, and gene
expression values) in the output table allows for down-
stream analyses such as KEGG pathway analysis or Gene
Ontology functional analysis [40, 41].

Visualization of DNA methylation and gene expression data
together (heatmap)

MethGET provides a heatmap representation for the
visualisation of both WGBS data and RNA-seq data be-
tween two groups (Fig. 6b). Each row represents a gene,
and the DNA methylation level and gene expression are
averaged within each group in the columns. Hierarchical
clustering of similar methylation and gene expression
patterns can also be performed, and the resulting den-
drogram is presented at the left margin of the heatmap.
This is useful for identifying genes that are commonly
regulated, and the order of the clustered genes will be
listed in the output table.

Table 1 The processing time of Arabidopsis, human, rice, and
wheat in MethGET

Arabidopsis  Rice Human  Wheat
Genome size (Mb) 135 380 3200 14,500
Gene number 27,655 39,045 20,805 107,891
Processing time without  00:32:51 01:20:42 034711 06:38:14
metagene analyses
(hrs:mins:secs)
Processing time with 04:21:15 07:50:36 094752 1831:14

metagene analyses
(hrs:mins:secs)

The tests are on Intel Xeon E5-2650 processor (384GB RAM; clock
speed 2.0GHz)
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Results and discussion

MethGET is available through both the web application
and the stand-alone version for command-line usage.
On the web platform, users can directly upload their
datasets and download all output figures with a high
resolution of 300 dpi in one click. In the stand-alone
version, MethGET can be executed in a local Unix/
Linux environment. The web tutorial is provided in
Additional file 1, and guidance regarding the stand-alone
version is provided at the GitHub repository. MethGET
also provides example Arabidopsis data for users to ex-
plore the tool’s functions. We evaluated the performance
of MethGET on the Intel Xeon E5-2650 processor
(384GB RAM,; clock speed 2.0GHz). The processing time
with and without metagene analyses for Arabidopsis,
rice, human, and wheat are in Table 1. The processing
time is not ultra-fast and will be multiplied by the num-
ber of samples. MethGET can cover most genomes from
Arabidopsis (135 Mb), rice (350 Mb), human (3.2 Gb) to
Wheat (14.5 Gb). The processing time without metagene
analyses for smaller genomes such as Arabidopsis (135
MB) can be available in approximately 30 min. After
processing, the figures are available within minutes.

Demonstration of MethGET with rice data

To test the utility of MethGET for other species, we
downloaded Japonica rice data (cv. TNG67) from the
embryonic stage and successfully regenerated calli (GEO
accession: GSE82138) [26]. We first investigated the
relationship between DNA methylation and gene expres-
sion in the rice methylome via single-methylome analyses.
In the ordinal association analyses presented in Fig. 7a,
the CHH methylation level at the promoter region was
found to increase with the gene expression. This result is
in line with a recent study showing a positive correlation
between CHH promoter methylation and gene expression
in rice [42].

In addition, we utilized MethGET to examine whether
the gene expression changes observed during the tissue
culture process were associated with DNA methylation.
We conducted multiple-methylome analyses to compare
the embryonic stage with successfully regenerated calli
in rice (regenerated callus vs. embryonic stage). Figure 7b
shows that most genes showing a significantly changes
of the CHH gene body methylation and gene expression
(bi-variate Gaussian mixture model; p-value < 10™°) are
enriched in the third quadrant. This demonstrated that
the embryonic stage is characterized by lower methyla-
tion levels and lower gene expression compared to the
regenerated calli. The results suggested that most genes
exhibit decreases in both CHH methylation and gene ex-
pression in gene body regions as the embryo develops
into a regenerated callus, which was not reported in the
original paper [26]. We further performed the analyses
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again with non-TE-related genes and found that the re-  requires users to provide different gene region files that are
sults still hold in the absence of TE-related genes (Add-  separated and sorted by gene expression level in advance.
itional file 2: Figure S2). Therefore, MethGET is not The method is not designed for genome wide correlation
only a useful tool for investigating the effects of DNA  and the users need to process the expression data first.

methylation on gene expression but also able to reveal Several methylation databases can be used to visualize
novel results. DNA methylation and gene expression on a web platform.

MethHC is a database of DNA methylation and mRNA/
Feature comparison with other bioinformatic software microRNA expression data from 18 human cancers from

We compared MethGET with different methylation TCGA (The Cancer Genome Atlas). It provides a web-
pipelines (COHCAP, PiiL, and ViewBS) and methylation  based interface for the profiling of methylation patterns in
databases (MethHC, and iMETHYL), and their features normal and tumour tissues and the analysis of the correl-
are listed in Table 2. Only a few tools can integrate ation between the methylation and expression of genes re-
DNA methylation with gene expression. COHCAP is an  lated to certain cancers [24]. iIMETHYL is an integrative
integrative pipeline for CG methylation data produced database of human DNA methylation, gene expression,
either from an Illumina methylation array or by targeted and genomic variation data. It provides cell-type-specific
bisulfite sequencing. It provides differential methylation = browser tracks (e.g., CD4T, monocytes, and neutrophils)
analyses and the correlations between DNA methylation  for examining DNA methylation variation, gene expres-
and gene expression [21]. The PiiL tool is an integrated sion and single-nucleotide variants in any region of the
DNA methylation and gene expression pathway browser.  human genome [25]. These tools are convenient because
It allows the visualization of CpG methylation and gene they provide an interface for representing the results of in-
expression related to pathways in a single sample or tegrative analyses of methylation and expression data dir-
groups of samples [22]. Both COHCAP and PiiL are re- ectly from databases. However, they do not allow the
stricted to the analysis of CG methylation. In addition, analysis of user-provided data and are limited to CG
for the annotation of a species, COHCAP users need to  methylation in the human genome.

create custom CpG island annotations for the species on MethGET provides comprehensive analyses correlat-
the basis of targeted bisulfite sequencing data, and Piil.  ing WGBS data and RNA-seq data. It is the only tool
can only be applied to organisms in which pathway and  that correlates gene expression with CG, CHG, and
network data are available. ViewBS is a toolkit for visualiz- CHH methylation. Furthermore, it has a user-friendly
ing bisulfite sequencing data [23]. For correlating between ~ web interface for customized analyses of all species
DNA methylation and gene expression, ViewBS provides for which annotations are available. We believe that
metagene plots in the MethOverRegion function. ViewBS  researchers can easily use MethGET to investigate the



Teng et al. BMC Genomics

(2020) 21:375

Table 2 Feature comparison of MethGET with other tools
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MethGET COHCAP PiiL ViewBS MethHC IMETHYL
Inputs with methylation o o o X (Using gene region No input No input
and expression data files with different

expression values)

Customized analyses o o o o X X
Web interface o X X X o o
Multiple-methylome o o o o o X
analyses
Supported species Any species Species with Species with Species with Homo sapiens Homo sapiens

with annotated  CpG island pathway region file

genome annotation annotation
Sequence context CG, CHG, CHH CG CG CG, CHG, CHH CG CG

of cytosine methylation

Target regions Genome-wide  Selected CpG Genes in the Genome-wide
islands pathway

Genomic locations Gene body, CpG islands Annotated Regions in
promoter, exon, CpG sites region files
intron, TE

Correlation analyses 6 analyses 1 (Scatterplot) Visualization 1 (Metagene plot)

Citation Teng et al. Warden et al. (2013) Moghadam Huang et al.
(2020) [21] et al. (2017) [22] (2018) [23]

Selected genes

8 Gene regions+, 5
CpG Island regions

1 (Scatterplot)

Huang et al.
(2015) [24]

Selected genes
or regions

Only selected
cytosines

Visualization

Komaki et al.
(2018) [25]

epigenetic regulation of gene
methylation.

expression by DNA

Conclusions

MethGET was developed for the correlation of genome-
wide DNA methylation and gene expression data. The
comprehensive analyses that can be performed at the web
interface provide customized analyses that allow users to
explore epigenetic regulation in an efficient way. The ad-
dress of the MethGET website is https://paoyang.ipmb.
sinica.edu.tw/Software.html, and a step-by-step manual is
provided in Additional file 1. Guidance regarding the use
of MethGET and its module requirements can be found
at Github (https://github.com/Jason-Teng/MethGET).

Availability and requirements
Project Name: MethGET
Project Home Page: https://paoyang.ipmb.sinica.edu.
tw/Software. html
Operating system: Platform independent.
Programming Language: Python/Django.
Other requirements: web browsers, internet connectivity
License: None
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-6722-x.

[ Additional file 1. Step-by-step tutorial of the MethGET web interface. ]

Additional file 2: Table S1. The output spreadsheet of Fig. 4b from
grouping statistics. Figure S1. The correlation between TE methylation
and TE expression from MethGET (Arabidopsis). Figure S2. The
correlation between genic CHH methylation and gene expression in all
genes and non-TE-related genes.
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