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A B S T R A C T   

In anticipation of potential future pandemics, we examined the challenges and opportunities presented by the 
COVID-19 outbreak. This analysis highlights how artificial intelligence (AI) and predictive models can support 
both patients and clinicians in managing subsequent infectious diseases, and how legislators and policymakers 
could support these efforts, to bring learning healthcare system (LHS) from guidelines to real-world imple
mentation. This report chronicles the trajectory of the COVID-19 pandemic, emphasizing the diverse data sets 
generated throughout its course. We propose strategies for harnessing this data via AI and predictive modelling 
to enhance the functioning of LHS. The challenges faced by patients and healthcare systems around the world 
during this unprecedented crisis could have been mitigated with an informed and timely adoption of the three 
pillars of the LHS: Knowledge, Data and Practice. By harnessing AI and predictive analytics, we can develop tools 
that not only detect potential pandemic-prone diseases early on but also assist in patient management, provide 
decision support, offer treatment recommendations, deliver patient outcome triage, predict post-recovery long- 
term disease impacts, monitor viral mutations and variant emergence, and assess vaccine and treatment efficacy 
in real-time. A patient-centric approach remains paramount, ensuring patients are both informed and actively 
involved in disease mitigation strategies.   

Summary Box 

The COVID-19 pandemic exposed weaknesses in health care systems 
around the world in the prevention and response to large-scale epi
demics and pandemics. Challenges included shortages of medical 
supplies, overwhelmed healthcare systems, along with lack of evidence- 
based decision making and misinformation. 

A learning healthcare system (LHS) that leverages big data and arti
ficial intelligence (AI) could be crucial for effective future pandemic 
management. To achieve a fully integrated LHS, data standardization, 
harmonization and sharing is fundamental. Distributed learning along 
with data harmonization represent a viable solution to these challenges. 

AI techniques like machine learning (ML) and natural language pro
cessing could be instrumental in unlocking knowledge from data. AI 
can aid in diagnosis, risk stratification, and prediction of outcomes. 
Effective communication with stakeholders is essential for translating 
knowledge into action. 

Healthcare systems must be ready to implement AI-driven insights, and 
also be able to access fast-track regulatory approvals for medical de
vices and guidelines. Building trust in AI through explainable AI (XAI) 
is crucial for widespread adoption. 

Overall, integrating data, knowledge, and practice through AI and an 
LHS can greatly improve pandemic management, but challenges like 
data standardization, trust in AI, and regulatory processes need to be 
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addressed.   

1. Introduction 

Since the first report of the then-unknown illness in December 2019, 
the coronavirus disease (COVID-19) pandemic has presented the world 
with unprecedented challenges and exposed many weaknesses in the 
way we are able to detect potential pandemics early on, identify new 
pathogens and learn from the events as they transpire [1,2]. Some of the 
biggest challenges were shortages of medical supplies and healthcare 
systems that were quickly overwhelmed, a lack of data on the spread of 
COVID-19 and its impact on healthcare systems which made it difficult 
for healthcare providers and policymakers to respond effectively, along 
with a lack of accurate information for the general public [3,4]. 

This paper emerges from the collective efforts of DRAGON (RapiD 
and SecuRe AI enhAnced DiaGnosis, Precision Medicine and Patient 
EmpOwerment Centered Decision Support System for Coronavirus 
PaNdemics), a collaborative project bringing together researchers, cli
nicians, technology developers, patients, and patient representatives to 
harness artificial intelligence (AI) in creating a more responsive and 
adaptive healthcare system. The DRAGON consortium has focused on 
conceptualizing and implementing AI-driven strategies to navigate the 
complex landscape of pandemic data, extract meaningful insights, and 
translate these into actionable policies and practices. Our findings dur
ing the COVID-19 pandemic suggest that the future of healthcare lies in 
the ability to learn and rapidly adapt using AI and predictive modeling. 

In this review, we aim to present a consolidated view of the lessons 
learned from the COVID-19 pandemic, underscored by the DRAGON 
consortium’s findings and other pivotal research, culminating in a set of 
forward-looking recommendations. We advocate for a Learning 
Healthcare System (LHS) that not only capitalizes on the vast quantities 
of clinical and surveillance data generated during such crises but also 
prioritizes patient-centric approaches in preparing for and managing 
future pandemics. 

While the COVID-19 pandemic was not the first to affect the world in 
such magnitude, it was the first to occur in the modern world, where 
long and short-distance travel is more accessible than ever, making it 
extremely difficult to contain the virus. Moreover, during this pandemic, 
an amount of data never seen before was generated, including clinical 
data (patient demographics, medical history, lab results, symptoms, 
imaging) and surveillance data (confirmed cases, hospitalizations, 
deaths) [5]. The cornerstone of a new approach to healthcare manage
ment and patient-centric medicine should leverage this vast amount of 
information and data, which should be gathered, harmonized, shared 
and holistically combined in a learning healthcare system [6]. 

Through the lens of the DRAGON consortium’s endeavors, this paper 
reviews the complexities of integrating AI into healthcare frameworks. 
To be able to do this, we look in retrospect at the acute phase of the 
COVID-19 pandemic and analyse both negative and positive aspects and 
outcomes of its management and control. We chart a path forward, 
outlining how these advanced technologies can be harnessed not just to 
manage the current pandemic’s aftermath but to proactively shape a 
robust response to future health crises. 

2. Methodology 

This narrative review synthesizes diverse insights to assess the role of 
AI and predictive modeling in pandemic preparedness. Insights were 
derived from a comprehensive review of literature and expert discus
sions, although not through a systematic review process. Key sources 
included academic databases, reports from health organizations, and 
discussions from the DRAGON consortium’s workshops which included 
researchers, patients, and professionals across the healthcare and tech
nological spectrum. 

2.1. Data sources and selection 

Peer-reviewed literature was sourced from academic databases 
including PubMed, Scopus, and Google Scholar. The selection priori
tized articles detailing AI applications in healthcare, particularly those 
related to pandemic contexts. Additional sources included authoritative 
reports from health organizations such as the World Health Organiza
tion (WHO), which provided contextual understanding of the pan
demic’s scope and the healthcare system’s response. The literature was 
chosen based on relevance to AI’s role in healthcare during the COVID- 
19 pandemic, with an emphasis on contributions that could inform 
strategies for future health crises. 

2.2. Contribution of the DRAGON consortium 

Discussions and findings from the DRAGON consortium’s workshops 
significantly contributed to the thematic development of this review. 
The consortium’s focus on integrating AI into practice for improved 
pandemic response, as well as the experiences of various partners, 
provided critical insights and a practical framework for analyzing the 
literature. These discussions aided in identifying both the potential and 
the challenges of employing AI and predictive modeling in real-time 
health crisis management and in retrospective analyses. 

2.3. Choice of framework 

We chose the Learning Healthcare System (LHS) as a guiding model 
to structure our narrative review. The LHS originated from the Institute 
of Medicine’s seminal report and describes a healthcare system that 
continuously learns from patient data and experiences to improve pa
tient outcomes, increase efficiency, and reduce costs [7,8,9]. It in
tegrates data from multiple sources, including electronic health records 
(EHR), clinical trials, and patient-generated data, to inform clinical 
decision-making and guide continuous improvement. 

Our choice of the LHS over other potential frameworks such as the 
eHealth framework and the WHO Health Systems Resilience framework 
is because the LHS is predicated on the notion that data from patient care 
experiences and research should be systematically integrated to inform 
and improve future healthcare decisions and outcomes. It emphasizes a 
cycle of continuous learning, facilitated by advancements in AI and 
predictive analytics, both of which are particularly relevant in the 
rapidly evolving context of a pandemic. In contrast, while the eHealth 
framework underscores the role of information and communication 
technologies in health, and the WHO framework addresses systemic 
resilience, the LHS framework uniquely aligns with the aim of this 
review—to critically evaluate and recommend strategies for real-time, 
data-driven pandemic preparedness and response. This focus on dy
namic learning and adaptability makes it most suitable for exploring 
how AI can be harnessed to create a proactive and learning-oriented 
healthcare ecosystem. 

2.4. Data analysis 

The literature was synthesized to highlight the three key pillars of 
LHS—Data, Knowledge, and Practice. Fig. 1, which will be referenced 
and described in detail in the subsequent section, illustrates the LHS 
framework operationalized within the context of our review. This 
framework visualizes the cyclical and dynamic nature of the LHS, where 
the key pillars are the drivers of a continuous learning process, centered 
around community engagement. In the figure, ’Data’ represents the 
empirical foundation, consisting of raw and processed patient-related 
information. In the medical domain, such data are characterized by 
their volume, velocity, variety, and the need for veracity—collectively 
known as the ’four Vs’ of big data [10]. This dimension emphasizes the 
importance of data standardization and interoperability necessary for 
integrating diverse data sets. ’Knowledge’ in the diagram is depicted as 
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the insights derived from data through the application of AI and ana
lytics and represents the transformation of data into a format that 
healthcare professionals and policymakers can use for evidence-based 
decisions. Finally, ’Practice’ represents the implementation of this 
knowledge into the healthcare delivery system, encompassing the 
development and application of clinical guidelines, patient care pro
tocols, and health policies. At the core of the model, community 
engagement signifies the partnership between patients, healthcare 
providers, and the public, which is vital for the success of an LHS. 

Data gathering, literature analysis and synthesis were collaboratively 
executed by AA, LE, and FB. To minimize the inherent biases of narrative 
reviews, each researcher conducted independent evaluations of sources 
to ensure a thorough cross-validation of the findings. Regular critical 
discussions were held to reconcile findings and consolidate consensus 
viewpoints, in order to mitigate selection and confirmation biases. IP 
oversaw the structured approach and helped maintain methodological 
integrity throughout the review process. Specialized insights were in
tegrated from KH and RB on data standardization, as well as from YN, 
XX, GY, and SLFW. on federated learning and predictive analytics to 
ensure a multidisciplinary approach and reducing the risk of individual 
biases skewing the review. This collective effort, incorporating feedback 
from multiple disciplines, served to mitigate individual bias and reflect a 
consensus view within the consortium. 

3. COVID-19 pandemic overview – challenges and opportunities 
in the management of COVID-19 pandemic 

The COVID-19 pandemic started in late 2019 in Wuhan, China, with 
the first cases of pneumonia of unknown cause reported to the World 
Health Organization. The novel coronavirus, later named SARS-CoV-2, 
was identified as the source of these infections. The virus continued to 
spread, and by March 2020, the WHO declared COVID-19 a pandemic 
[11]. Healthcare systems globally were operating at maximum capacity 
with resources being redirected away from the standard of care pro
cedures. During the initial stages of the outbreak, two primary variants 
of SARS-CoV-2, lineage A and lineage B, were identified. As the virus 
evolved, it accumulated key mutations, notably D614G in the spike 
protein and P323L in NSP12 by March 2020. These mutations led to the 
emergence of the B1 lineage, which saw widespread global dominance. 
While there was a drop in infection rates during the summer of 2020, a 
resurgence, often referred to as the "second wave", was observed in late 
summer/early fall, during which other notable variants started to be 
reported [12]. In November 2020, data from vaccine clinical trials were 
released, showcasing the safety and efficacy of several vaccine candi
dates. Among these were two mRNA vaccines, COMIRNATY and Spi
kevax, as well as the AstraZeneca’s viral vector vaccine, Vaxzervia. The 

latter, in particular, played a pivotal role in the UK’s vaccination 
campaign, substantially aiding in mitigating the pandemic’s impact in 
the region [13]. Emergency use authorization by the U.S. Food and Drug 
Administration (FDA), European Medicines Agency (EMA), Medicines 
and Healthcare products Regulatory Agency (MHRA), WHO and other 
regulatory agencies followed shortly after vaccine campaigns globally 
progressed, and by April 2021, 1 billion doses were administered. 
Concurrently, long-lasting symptoms, the so-called “long-COVID” 
emerged as a challenge to patients and doctors, for which there is no 
known cure [14]. Many different therapeutics were evaluated for the 
treatment of acute COVID-19, including repurposing of existing drugs, 
and some have shown promise in early studies, while others showed no 
clinical benefit. The major landmarks of the pandemic up to the end of 
2021 are depicted in Fig. 2. 

As outlined above there were many challenges in the management of 
the global COVID pandemic. The main issues faced by patients and 
healthcare providers around the world can be summed up following the 
three main pillars of the LHS: Knowledge, Data and Practice (see  
Table 1.). 

Despite the enthusiasm for the conceptual idea and early examples of 
successful LHSs, the synergy between healthcare practice and research, 
as was envisioned over a decade ago, is still far from reality [7]. A 
possible explanation for this gap between literature and practice is that 
the LHS policy proposals in the literature are very heterogeneous and the 
conceptual, legal, and practical aspects differ sensibly between countries 
and healthcare systems. Moreover, there are several levels of possible 
LHS implementation, which would require in turn more or less sub
stantial interventions in terms of infrastructures, personnel training and 
mindset shift from clinicians, patients and authorities alike [6]. Another 
important issue to take into consideration is the current lack of inter
operable FAIR (Findable, Accessible, Interoperable, and Reusable) data 
[15]. All these shortcomings are evident in a normal healthcare situation 
and even more so in an emergency like the COVID-19 pandemic. The use 
of predictive modelling based on AI could represent a viable approach to 
streamline the implementation of LHS practices in the healthcare sys
tems, both on a national and international level and set the groundwork 
for a fully integrated LHS system that could support the management of 
future pandemics. Along with the shortcomings in the current pandemic 
management evidenced below, there have been also very positive as
pects regarding for example the fast-track regulatory approval of new 
vaccines, off-label use of existing drugs and, at least in the US and 
Canada, emergency use authorization for medical devices [16,17]. 
During the development of new drugs and vaccines during the 
pandemic, we witnessed, probably for the first time on such a large scale, 
the continuous integration of real-world data and clinical trial data, 
complementing each other in “real-time” [18,19]. The proposed 
framework for the integration of AI and predictive modelling, based on 
clinical and imaging data, explores each pillar of the LHS and proposes 
some approaches to tackle future pandemics outbreaks. 

4. Data – harmonization and standardization of clinical and 
imaging data 

The foundation of an LHS lies in collecting and integrating data from 
diverse sources, such as EHRs, public health data, patient-generated 
data such as patient-reported outcome measures (PROMs), and 
research findings. This data would provide a comprehensive view of 
patient health, serving as a basis for generating actionable insights for 
individual patients and contributing to innovative and efficient 
research. During the pandemic, challenges hampered the realization of 
this potential: lack of data standardization and slow data sharing [20]. 

Data standardization refers to the implementation of a set of defined 
data elements, their characteristics and relationships, rules for creating, 
managing, and using the data elements, and a design that enables 
consistent collection and representation of these elements. Implement
ing such standards makes it easier to aggregate information and take 

Fig. 1. : The Learning Healthcare system cycle.  
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advantage of the wealth of information for both research and manage
ment, which is also of utmost importance for an LHS to work effectively. 
To ensure that data are consistent, comparable, and can be integrated 
seamlessly across different sources, it is important to establish common 
data standards and practices such as common data models, controlled 
terminologies, and data exchange formats. Adopting FAIR data princi
ples and Clinical Data Interchange Standards Consortium (CDISC) 
standardization can further facilitate the efficient collection, manage
ment, analysis, and reporting of clinical research data [21,22]. By 
combining technical and organizational measures and through 
cross-sector collaboration, data standardization on a large scale can be 
achieved, thus enabling the development of a more effective LHS. 

Nonetheless, sharing data during a pandemic can be slowed down 
due to legal and ethical aspects, such as the General Data Protection 
Regulation (GDPR) and the Health Insurance Portability and Account
ability Act (HIPAA), which prioritize the protection of patient privacy. 
This can delay the development of state-of-the-art models during the 
early stages of a pandemic when much is still unknown [23]. To over
come these challenges, distributed learning systems are being increas
ingly implemented [24,25]. Distributed learning is a general approach 
to developing machine learning (ML) models without the need to 
centralize the data and the model computations in a centralized server. 
This allows for respect of user privacy and brings ML to fields where data 
cannot be shared for different reasons. Among the different distributed 
learning approaches, federated learning allows each user to train part of 
the model locally. Each part of the model is then sent to the central 
server where the federated learning framework aggregates the different 
parts into a consistent model. This way, the data used to train the model 
never leaves the partner organization. 

Federated learning has demonstrated significant promise in health
care, particularly in synthesizing insights from Electronic Health Re
cords (EHR) across various medical institutions. It enables the 
collaborative training of predictive models, addressing the challenge of 
limited patient data within individual hospitals and preserving patient 
privacy [26]. Notable applications include tensor factorization for 

phenotyping analysis, differentially private learning for EHR, and 
mortality rate prediction for heart disease patients without transmitting 
sensitive data [27,28,29]. Additionally, federated learning has been 
applied to natural language processing (NLP) tasks for processing clin
ical notes and biomedical imaging analysis, allowing for the extraction 
of features from data such as MRI scans while maintaining the confi
dentiality of patient information [29,30,31]. 

Moreover, federated learning has been applied to enhance COVID-19 
screening using chest X-ray images. In a study by Feki et al., a federated 
learning framework enabled multiple medical institutions to collabo
ratively train deep learning models for detecting COVID-19 without 
centralizing sensitive patient data [32]. The framework effectively 
managed the innate challenges of unbalanced and non-independent and 
identically distributed (non-IID) data distributions, which are common 
in healthcare settings. The study demonstrated that models trained using 
federated learning could achieve comparable results to those trained in 
centralized settings, underlining the approach’s viability for 
privacy-sensitive medical applications. This application is particularly 
salient, considering the urgent need for rapid and accurate diagnostics 
during a pandemic, and highlights federated learning as a tool for global 
collaborative efforts in public health crises. 

However, it is crucial to acknowledge the limitations inherent in 
federated learning, particularly when applied to medical imaging. Var
iabilities in image acquisition protocols from different devices or sites, 
such as spatial resolution and slice thickness, pose challenges for model 
training, as federated learning relies on a degree of consistency among 
data sources [33]. These discrepancies pose challenges for model 
training, as federated learning assumes a level of consistency among the 
data sources. To address these challenges, computational data harmo
nization methods have been used to transform, standardise, aggregate, 
and match the multi-source data and match multi-source data, making it 
more amenable to federated learning systems [22]. Yet, even with these 
efforts, challenges in data quality, model convergence, and bias from 
non-representative local datasets remain. The non-independent and 
identically distributed (non-IID) nature of data across federation 

Fig. 2. : COVID-19 pandemic timeline.  
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participants can further complicate model training, necessitating 
advanced algorithmic solutions to mitigate data distribution skew [34]. 

It would be beneficial to establish protocols and procedures for col
lecting data in a standardized and harmonized way on a continuous 
basis, ideally before a pandemic strike. By doing so, the resulting stan
dardized data can be used to develop predictive models also in the early 
phases of the pandemic. This would also allow organisations to set up 
agreements in accordance with regulations such as GDPR and HIPAA, 
ensuring that the necessary legal and ethical protocols are already in 
place when a pandemic occurs. 

5. Knowledge – Stakeholders communication and awareness 

As high-quality data is collected and integrated, it must be trans
formed into actionable knowledge to inform clinical practice, allocation 
of medical resources, and public health interventions. The creation, 
dissemination, and application of evidence-based knowledge are critical 
in enabling effective and timely responses to disease outbreaks such as 
COVID-19. AI plays a pivotal role in supporting the knowledge pillar of 
LHS by unlocking valuable insights from vast amounts of data by 
enabling rapid analysis through techniques such as ML and NLP [35,36, 
37]. These techniques were instrumental in the accurate identification 
of COVID-19 cases and informing treatment decisions during COVID-19. 

Models using imaging-based techniques can provide suggestive 
findings that aid in the clinical assessment of patients presenting with 
respiratory symptoms, helping to differentiate patterns often associated 

with various types of pneumonia, such as influenza, COVID-19, MERS, 
and "new" pneumonias. While definitive diagnosis of specific infections 
relies on molecular techniques, starting with metagenomic sequencing 
for novel pathogens, followed by bespoke nucleic acid tests for known 
pathogens, using ML algorithms and advanced image analysis tech
niques can help extract relevant features from medical images and 
classify them based on specific disease patterns. This can assist clinicians 
in prioritizing patients for further diagnostic testing and treatment. For 
example, deep learning methods were used to analyse chest CT scans to 
classify patients with COVID-19 [38]. In another study from the 
DRAGON consortium, an AI-based tool named CAD4COVID-CT was 
developed to detect COVID severity based on CT scans, enabling better 
prognosis and prediction of patient outcomes [39]. Another study 
developed a radiomics signature using ML techniques to automatically 
distinguish COVID-19 cases from other types of pneumonia based on CT 
scans [40]. The advantages of this approach are that it reduces the 
burden on clinicians and facilitates faster and more accurate diagnosis, 
both of which are crucial for an effective LHS in a pandemic. 

Aside from diagnosis, AI/ML techniques also played a role in pre
dicting mortality in COVID-19 patients. One study by Chatterjee et al. 
demonstrated the potential of AI in predicting COVID-19 mortality using 
demographic and comorbidity data, surpassing age-based predictions 
[35]. Such ML models, when integrated into an AI-enabled LHS, can 
contribute to more accurate risk stratification, allowing clinicians to 
prioritize resources and provide targeted care during a pandemic. 
Furthermore, the external validation of the models supports the gener
alizability of the authors’ findings, emphasizing the importance of 
data-driven approaches in clinical decision-making. 

Furthermore, the integration of AI with geographic information 
systems (GIS) has provided significant advancements in the monitoring 
and management of infectious diseases. For example, one study used GIS 
alongside ML models to map the vulnerability of regions to COVID-19, 
taking into account factors such as population density, the percentage 
of older people, temperature, and humidity [41]. Their study applied 
multi-scale geographically weighted regression (MGWR) and an adap
tive neuro-fuzzy inference system (ANFIS) to create predictive maps that 
can assist health officials in prioritizing interventions and resources. 
Such models demonstrate the potential of combining spatial analysis 
with AI to identify hotspots and forecast the spread of diseases, leading 
to informed and swift public health responses. These tools could help to 
visualize a pandemic’s progression and support decision-making in 
real-time by enabling the correlation of reported symptoms with specific 
locations. 

In addition, NLP holds significant potential in an LHS in a pandemic 
setting. NLP involves automatically processing and analysing large 
amounts of unstructured textual data, such as electronic health records 
(EHR), scientific literature, and social media posts, which can help 
rapidly identify emerging trends, early detection of outbreaks, and real- 
time monitoring of the pandemic. NLP techniques were applied to 
address various challenges during the COVID-19 pandemic, including 
identifying potential therapeutic candidates, tracking misinformation, 
and monitoring public sentiment [42]. 

These studies exemplify the potential of AI-driven models and tools 
to transform data into valuable knowledge. However, it is also crucial to 
keep in mind the perspectives and needs of end-users such as clinicians, 
patients, policymakers, and members of the public when building the 
Knowledge pillar. The actionable knowledge generated from AI/ML- 
based data analysis must be communicated effectively to these stake
holders so that they can collaborate and make informed decisions based 
on the latest insights. 

6. Practice – procedures and guidelines 

The added value of predictive models and AI in the management of 
pandemics might be greatly reduced if the healthcare system is not ready 
to receive and implement the insights gained with these novel 

Table 1 
Challenges and opportunities in the management of the COVID-19 pandemic.  

LHS pillars Challenge Source of challenge Opportunities 

Data No data 
standardization 

Lack of awareness of 
available standards. 
Difficulties (real and 
perceived) in the 
implementation of 
standards. 

Large open-source 
databases 
Funding bodies 
requesting data 
standard and data 
sharing 
Rapid progression 
from foundational 
vaccine research to 
clinical application - 
Leveraging years of 
prior work on mRNA 
and viral vector 
vaccines, the first 
clinical trial for the 
COVID-19 vaccine 
started in mid- 
March 2020. 

Data in different 
language 

Translation issue and 
lack of common 
terminology 

Little data 
sharing, privacy 
issues 

Strict GDPRa/HIPAAb 

rules, government and 
hospital policies 
hampering data 
sharing, long process 
for DTAc approvals 

Knowledge Slow recognition 
of a novel 
pathogen 

Lack of coordination 
between the different 
hospitals, open 
communication and 
information sharing 

Lack of 
recognition of 
community spread 
Lack of uniform 
global response 
Poor 
communication 
with patients 

Lack of evidence- 
based materials 
targeted to patients, 
lack of patient 
empowerment 

Practice Lack of treatment 
selection 
guidelines 

Little or no 
information on the 
possible treatment 
options and tools to 
assess novel therapies’ 
efficacy and safety 

Quick emergency 
use authorization 
FDA/EMA/WHO 

Lack of patient 
involvement in 
decision 

Mistrust or 
disinformation 
regarding quarantine 
measures, effective 
therapies and vaccines 

Principle of patient 
engagement and 
healthcare 
citizenship  

a GDPR: General Data Protection Regulation 
b HIPAA: Health Insurance Portability and Accountability Act 
c DTA: Data Transfer Agreement 
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approaches. A fully integrated LHS also needs the support of taxpayers, 
the government, services providers and regulatory agencies. The 
healthcare ecosystem needs to be ready to apply and accept the use of 
routine care and patient monitoring of these innovative AI tools. 

During a global pandemic such as COVID-19, an LHS could have 
played a pivotal role in delivering personalized care by predicting in
dividual patient outcomes and triaging patients according to their risk 
levels. This requires the establishment of clear protocols, the identifi
cation of potential obstacles, and harmonization of efforts towards 
better leveraging ’big data’ in healthcare. Open-source predictive and 
prognostic models based on AI/ML, such as those available at covi
d19risk.ai exemplify the type of innovation that can drive such an 
approach to managing pandemics and epidemics [43]. 

Authorities and policymakers must consider more agile regulatory 
processes that accommodate fast-track approvals for not just new drugs 
or vaccines but also medical devices, guidelines, and reimbursement 
strategies. The FDA, for instance, has an Emergency Use Authorization 
(EUA) pathway for medical devices, which saw extensive utilization 
during the COVID-19 pandemic [44]. Furthermore, the FDA has released 
draft guidance for continuous learning systems based on AI to be 
recognized as medical devices, underscoring the importance of AI and 
predictive modeling in a pandemic context [45,46]. 

Another major roadblock to the implementation of these tools is the 
lack of trust among clinicians and patients. Trust in AI technologies is a 
significant barrier to their widespread acceptance in healthcare. In 
response to this challenge, the concept of Explainable AI (XAI) is gaining 
traction [47]. XAI aims to produce results understandable by humans, 
with processes that can be logically explained, in contrast to the ’black 
box’ nature of some ML and AI systems. XAI algorithms must adhere to 
principles of transparency, interoperability, and explainability [48]. 
Clear regulatory guidelines and the advancement of XAI may help 
overcome some of the major hurdles to the broad adoption of predictive 
modeling in managing future pandemics, as outlined in Table 2. 

7. Recommendation on pandemic management and 
implementation of predictive modelling in future pandemics per 
stage of pandemic 

The added value of AI and predictive models can be leveraged at 
each stage of a possible future pandemic, from the early detection phase 
up until the new therapeutic options monitoring. A virtuous cycle could 
be established with information gathered in previous steps, feeding 
development and validation of additional predictive models and ap
proaches. Both the WHO and the Centers for Disease Control and Pre
vention (CDC) identified several influenza pandemic stages or phases 
and, while the guidelines have been developed before the COVID-19 
pandemic, both recognize the need for continuous vigilance and cyclic 
evaluation of early pandemic signs, which fits in the concept and 
implementation strategy for LHS [49,50]. In Table 3, we outlined the 
possible contribution of AI and predictive modelling with clear exam
ples, along with the essential requirements in terms of data and pro
cesses that are necessary to implement and streamline these approaches. 
Far from being exhaustive, the summary would represent a starting 
point for discussion and for considering pandemic management with AI 
as a continuous and concerted effort more than a surge of activities in 
times of crisis. 

8. Conclusions 

Despite the promise of AI and predictive modelling in pandemic 
management, the road ahead is still long. Authorities and policymakers 
need to implement strategies to promote the application of the LHS 
principles on a national and supra-national level. Acknowledging the 
strides made by exemplary healthcare systems can be a promising start. 
Certifying and accrediting medical centers, as well as regional and na
tional healthcare systems, as "LHS compliant" may serve as a pivotal 
initial move to increase visibility and acceptance. 

In the specific field of AI and predictive modelling, the main issue 
remains data sharing and access: building infrastructures and protocols, 
both technical and legal, to promote a “federated by design” approach 
could motivate clinical centres in putting effort to organize, standardize 
and share data, in a privacy preserving fashion. 

Lastly, the current LHS model should move forward towards its 
central theme of community engagement, to become learning healthcare 
networks (LHN) [51,52]. In this way, the LHN could focus on the pro
vision of health care from the perspective of patients and communities. 
Supported by AI and predictive modeling, this approach can comple
ment the healthcare system, truly equipping it for impending 
pandemics. 
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