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ABSTRACT: The linear vibronic coupling (LVC) model is an approach for
approximating how a molecular Hamiltonian changes in response to small changes in
molecular geometry. The LVC framework thus has the ability to approximate molecular
Hamiltonians at low computational expense but with quality approaching multi-
configurational ab initio calculations, when the change in geometry compared to the
reference calculation used to parametrize it is small. Here, we show how the LVC
approach can be used to project approximate spin Hamiltonians of a solvated lanthanide
complex along a room-temperature molecular dynamics trajectory. As expected, the
LVC approximation is less accurate as the geometry diverges from that at which the
model was parametrized. We examine the accuracy of the predicted Hamiltonians by
performing time-dependent quantum simulations of the spin dynamics of the molecule,
with reference to the dynamics obtained using spin Hamiltonians projected from ab initio calculations at each step. We find that
quantitatively accurate behavior is obtained when LVC parametrizations are performed at least every 10 fs during the trajectory.

1. INTRODUCTION
Knowledge of a chemical system’s Hamiltonian operator is
essential for describing both static properties and its evolution
through time.1 The complete electronic Hamiltonian for a
general molecule, where significant orbital degeneracies and
spin−orbit coupling (SOC) may be present, can often be well
approximated using multiconfigurational methods such as
complete active space self-consistent field spin−orbit
(CASSCF-SO) calculations, but these approaches require
significant computational resources. While performing such
calculations on static structures is commonplace, problems that
require evaluation of the molecular Hamiltonian at this level of
theory for many nuclear configurations remain challenging.
These include excited-state dynamics, in which the energies of
and couplings between multiple states must be considered.2−4

Ground-state spin dynamics in metal complexes can also be
simulated using knowledge of the Hamiltonian at many
molecular dynamics (MD) timesteps.5,6 In principle, the
prediction of a great variety of properties can be improved if
the Hamiltonian and its eigenstates are known at many
molecular geometries, by computing a weighted average.7

In a previous study,7 ab initio MD (AIMD) simulations of a
lanthanide complex ([GdL1], Figure 1) in solution were
performed. [LnL1] is a frequently studied7−12 member of the
PARASHIFT family of magnetic resonance imaging agents,
complexes with the ability to reveal information on temper-
ature and pH in vivo.13,14 [DyL1] in particular has attracted
attention due to its unusual pseudocontact shift behavior. The
equatorial crystal field potential due to the pyridyl donor atoms
approximately cancels the axial potential arising due to the
amine donor atoms, leading to a crystal field that is dominated

by, and extremely sensitive to the positions of, the carboxylate
oxygen atoms. In the molecular structure, these oxygen atoms
happen to sit extremely close to the magic angle (where the
leading crystal field parameter B20 changes sign in simple point-
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Figure 1. Molecular structure of [LnL1].
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charge crystal field theory, corresponding to a change from an
axial to an equatorial type crystal field potential), such that
even very small movements can change the sign of the
magnetic anisotropy, and hence also the signs of the
pseudocontact shifts of nuclei in the ligands. This leads to
wildly different pseudocontact shifts for seemingly indistin-
guishable structures found by different optimization methods,
and generally poor agreement with experimental NMR shifts
when using static structures.11 Time-averaged 1H NMR shifts,
determined on the basis of Gd3+ AIMD trajectories with the
metal replaced by Dy3+, were in much closer agreement with
experiment but had to be obtained from CASSCF-SO
calculations performed at regular intervals throughout the
trajectories. Even the solvent-dependence of the paramagnetic
shifts observed experimentally was captured using this AIMD +
CASSCF-SO approach.
The function of PARASHIFT agents relies on the

acceleration of nuclear spin relaxation for signal enhancement,
which occurs due to the interaction with the electron spin
dynamics−understanding these dynamics is thus key to the
design and use of such imaging agents. Our AIMD simulations
offer an opportunity to simulate the electron spin dynamics in
a PARASHIFT agent from first principles. However, describing
spin dynamics in solution-state metal complexes with
significant spin−orbit coupling is a challenging and long-
standing problem. It is difficult primarily because anisotropic
lanthanide ions have a strong ligand field contribution to their
molecular Hamiltonian that dominates the spin quantization,
and thus the time-varying ligand field due to the internal
motions of the complex is the main driver of the electron spin
dynamics. To make matters worse, the high-field and motional-
narrowing assumptions are invalid for electron spin dynamics
in such systems.15−17 Hence, explicit time-domain dynamics
must be simulated using a time-ordered series of Hamiltonians,
but, as described above, generating such a set of Hamiltonians
is a daunting computational task. Previous approaches have
either relied on simplified phenomenological models18,19 or
incurred errors due to the computational expense of perform-
ing electronic structure calculations at frequent enough
intervals throughout an MD trajectory.5,6,20,21 Thus, an
approach that is computationally cheaper than a full stack of
ab initio CASSCF-SO calculations but can still capture the fs-
scale detail inherent to an MD trajectory is desirable. Recent
literature has focused on machine learning as a computation-
ally approachable means of generating high-accuracy molecular
dynamics trajectories,22−24 obtaining spin Hamiltonian param-
eters25−27 and even performing spin dynamics simulations
themselves,28 on long time scales. However, the field is not yet
mature to the point of accessible, highly transferable
implementations being available for spin dynamics applica-
tions. We thus turn our attention to the possibility of a
computationally cheap MD-driven spin dynamics methodology
rooted in established electronic structure methods, specifically
the linear vibronic coupling (LVC) model.
The LVC approach uses an ab initio electronic structure

calculation at a particular geometry to parametrize a model
that can be used to approximate the molecular Hamiltonian at
a nearby geometry.2,29 It takes a diabatic view, with couplings
between states taken into account, and is compatible with
SOC. The LVC methodology has been successfully applied in
the domain of excited-state dynamics, allowing qualitative
agreement with population dynamics from models 3 orders of
magnitude more expensive,2 as well as with experimental

absorption and electronic circular dichroism spectra by explicit
wavepacket propagation, for molecules with significant vibra-
tionally mediated interstate couplings.30 It is also in
competition with machine learning for excited-state dynamics
simulations.31,32 It has also been successfully applied to
electron spin relaxation in single-molecule magnets, where it
is employed to obtain analytical functional derivatives of the
molecular Hamiltonian, or of spin Hamiltonian parame-
ters.29,33 A single parametrization can in principle be used to
generate approximate Hamiltonians at many points along an
MD trajectory, allowing spin dynamics simulations to be
carried out at potentially lower cost than with an electronic
structure calculation at each time step. However, the error in
an LVC-generated Hamiltonian is expected to increase as the
geometry it is evaluated at diverges from the geometry the
model was parametrized at−an investigation of this error and
its effects on the simulated spin dynamics is required before
practical applications are possible.

2. METHODS
2.1. Linear Vibronic Coupling. The full molecular

Hamiltonian, as computed during a CASSCF-SO calculation,
can be divided into two components:

= +H H HMCH SOC (1)

where ĤMCH is the molecular Coulomb Hamiltonian (MCH),
containing only spin-free operators, and ĤSOC is the SOC
Hamiltonian. In the diabatic picture, the (diagonalized) matrix
form of ĤMCH can be expanded to first order in the molecule’s
nuclear coordinates R. This permits a linear approximation of
the MCH from the reference geometry R = 0 to another
similar geometry R = ΔR
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where ψmMCH are the eigenstates of ĤMCH at R = 0. The indices
m and n run over all spin-free states for a given spin multiplicity
considered in ĤMCH, i runs over all nuclei and α ∈ {x, y, z}.
κ(m) and λ(mn) are the gradients and nonadiabatic coupling
(NAC) coefficients, respectively, which can be found following
a multiconfigurational electronic structure calculation.34,35

The molecular Coulomb Hamiltonian at distorted geometry
HMCH(ΔR) can be diagonalized, yielding energies and
expressions for the new eigenstates in terms of the eigenstates
of HMCH(0) (i.e., the mixing of states caused by the change in
geometry). The same unitary transformation that diagonalizes
HMCH(ΔR) can be applied to the matrix representation of any
operator evaluated in the eigenbasis of HMCH(0), generating
the equivalent operator in the eigenbasis of HMCH(ΔR).
The atomic mean-field integral (AMFI) method36 approx-

imates the SOC Hamiltonian as

= ·H V SSOC AMFI (3)
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where V̂AMFI is a spin-free operator evaluated in its matrix form
from integrals over atomic basis functions, and Ŝ is the electron
spin operator. VAMFI(0) can be transformed into the eigenbasis
of HMCH(ΔR) as previously described, allowing HSOC(ΔR) to
be constructed via the Wigner-Eckart theorem as it would be
during a standard CASSCF-SO calculation.29 We are thus
assuming that ĤSOC is not itself inherently geometry
dependent−this approximation has recently been reported to
break down for a Dy3+ complex37 but appears to be reasonable
for [LnL1] (see Supporting Information (SI), Figure S2). Such
geometry dependence could in principle be taken into account
via derivatives of the AMFI integrals. All terms present in
H(ΔR), the full molecular Hamiltonian at distorted geometry,
are now known.

2.2. Electronic Structure. Prior to AIMD simulations,
molecular mechanics-driven MD was performed to equilibrate
a simulation box with sides of 20 Å containing only CD3OD
molecules. A deuterated, geometry-optimized [GdL1] complex
was then inserted into the center. This was followed by
optimization of both atomic positions and the periodic box’s
volume. AIMD simulations were then carried out using VASP
6.2.0.38 The NVT ensemble was employed with a time step of
1 fs and a temperature of 300 K. Forces were found using
density functional theory, specifically the PBE39 exchange-
correlation functional with Grimme’s D3 dispersion correc-
tion40 and an f-in-core potential for Gd3+. For full details of the
MD methodology see the original study.7

Dysprosium-based PARASHIFT agents are of interest due
to their large pseudocontact shifts−these maximize separation
of the complex’s proton resonances from those of water and fat
in the body. The acceleration of nuclear relaxation in Dy3+
complexes is also often more significant than that of other
viable lanthanide ions, improving signal intensity.13,17 Accord-
ingly, state-averaged CASSCF-SO calculations and LVC
parametrizations were performed on snapshots from these
AIMD simulations using OpenMolcas 23.02,41 with Gd3+
replaced by Dy3+. The active space was nine electrons in the
seven 4f orbitals, and the 18 lowest roots of the ground 5/2
spin state, corresponding to the 6H and 6F terms, were
considered with equal weighting. The ANO-RCC-VTZP basis
set was employed for dysprosium, the ANO-RCC-VDZP basis
set for the ligand atoms directly adjacent to the metal and the
ANO-RCC-VDZ basis set for the other ligand atoms.42 Two-
electron integrals were decomposed using the atomic compact
Cholesky method.43 SOC was taken into account via the AMFI
approximation.36 Scalar relativistic effects were treated with the
second order Douglas-Kroll Hamiltonian.42,44

The explicit solvent molecules present in the MD simulation
were included in each CASSCF-SO calculation as point
charges. This allowed the motion of the solvent to be
considered by the LVC model. These charges were found from
a DFT geometry optimization (PBE39 functional and cc-pVDZ
basis set45) and CHELPG decomposition46 of a single
methanol molecule in vacuum using Gaussian 16.47 As the
solvent molecules consisted only of point charges, those split
across the AIMD simulation’s periodic boundary were not
made whole. When applying the LVC model, solvent atoms
that had crossed the boundary since the parametrization had
the potential to lead to significant errors due to this large
change in geometry. Any boundary-crossing atoms were
translated to their position in an adjacent periodic image,
such that their displacement from the parametrization
geometry was minimized. The Kirkwood continuum model48

was also employed during CASSCF-SO calculations to factor
in long-range solvent effects (truncated at first order, using the
experimentally measured dielectric constant for methanol of
33.349). This places the system within a spherical cavity
surrounded by a dielectric; the dielectric is polarized by the
system, generating multipoles (in this case no terms beyond
dipole are included) that effect the system in turn. The radius
of this sphere was chosen to be large enough to include the
entire simulation box.
Within the spin Hamiltonian formalism, the electron spin

states of a lanthanide complex in the absence of an external
magnetic field can be described with SOC and ligand field
terms,17 the latter of which is expressed here as an effective
crystal field in the Stevens formalism50,51
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where L̂ is the electron orbital angular momentum operator, λ
is the SOC parameter, Ôkq are linear combinations of orbital
angular momentum operators, θk are constants specific to an
electron configuration and Bkq are the crystal field parameters. λ
and Bkq can be projected so that the matrix elements of the spin
Hamiltonian replicate those of the full molecular Hamiltonian
in the same basis. The LVC method thus offers on opportunity
to generate spin Hamiltonian parameters at many geometries
(MD timesteps) with relatively few ab initio calculations,
potentially reducing the computational cost of acquiring a
series of Hamiltonians for electron spin dynamics simulations.
It is also possible to use LVC to perform these simulations
without projection, using the molecular Hamiltonian in the
relevant angular momentum basis directly, however the spin
Hamiltonian parameters lend themselves to a more intuitive
analysis (vide inf ra) and their use is standard in this field.5,6

Spin Hamiltonian parameters for use in electron spin dynamics
simulations were projected for the 6H term in the |LSMLMS⟩
basis.

2.3. Spin Dynamics. Spin dynamics simulations utilized
the vectorised density matrix |ρ(t)⟩.52 This propagates through
time according to the vectorised Liouville-von Neumann
equation
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where ⊗ denotes a Kronecker product and the identity matrix
1 has the same dimensions as H. In this work we have a
piecewise-constant series of Hamiltonians found at MD
timesteps separated by δt = 1 fs. This allows the vectorised
density matrix to be propagated in discrete steps

| + = |t t e t( ) ( ) .t t( ) / (6)

This propagation made use of the matrix exponential-times-
vector algorithm described in a recent monograph.52 This
calculates |ρ(t + δt)⟩ from eq 6 by expanding the matrix
exponential as a Taylor series
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Higher order terms, each found by applying t t n( ) / to
the previous term, are successively added to |ρ(t)⟩ until the
next term would not change any element by more than an
arbitrarily small cutoff. Monotonic convergence of the Taylor
series is guaranteed by dividing each time step into a series of
equal-length substeps, each featuring evolution under the same
Hamiltonian. The number of substeps is equal to the infinity-
norm of the exponent, rounded to the next largest whole
number; this algorithm reliably maintained Tr(ρ(t)) = 1
during spin dynamics trajectories (Figure S4).
While the Hamiltonian operators were initially evaluated in

the |LSMLMS⟩ basis, the dynamics themselves were performed
in the eigenbasis of the initial spin Hamiltonian at t = 0. This
allowed simulations to start from a thermal density matrix
ρ(0), with off-diagonal elements set to zero and populations
taken from a Boltzmann distribution over the initial
Hamiltonian’s eigenvalues. Despite the use of an initially
thermalized density matrix, the dynamics calculated here do
not give a realistic representation of the ensemble of systems
observed during a magnetic resonance experiment, as they are
entirely unitary and do not feature relaxation or inhomoge-
neous broadening. This makes the use of a vectorised density
matrix strictly unnecessary when compared to a simpler wave
function-based approach. The density matrix formalism has
been applied nevertheless, as it leaves this methodology open
to potential dissipative dynamics simulations in the future.

3. RESULTS AND DISCUSSION
Equation 2 is simply a Taylor series truncated at first order,
and as such the LVC model incurs a truncation error that is
expected to increase as the geometries R = 0 and R = ΔR
diverge. The error in an LVC-generated spin Hamiltonian can
be assessed by comparison to that from an explicit CASSCF-
SO calculation at the same geometry

= H H
H

error
LVC ab initio

F
ab initio

F (8)

where ∥∥F denotes the Frobenius norm. We picked a set of five
starting points along the trajectory at which we parametrized
an LVC model, and then we evaluated the error as a function
of the distance between the timesteps used for parametrization
and evaluation of HLVC (Figure 2). As expected, the error

increases for larger time differences between parametrization
and evaluation, reflecting an increasing divergence in molecular
geometry. The behavior of this error is similar throughout an
MD simulation, and similar regardless of whether the
evaluation is before or after the parametrization. These results
justify the use of a series of LVC parametrizations performed at
regular intervals throughout an MD simulation for the
approximation of molecular Hamiltonians. The question
hence becomes what is the largest acceptable interval between
subsequent LVC parametrizations (i.e., what is the largest
acceptable error) such that computational expense can be
minimized?
First, we must quantify the error incurred as a function of

time using LVC models in a time-ordered geometry sequence.
To do so, we generated spin Hamiltonians at every time step
from 100 to 200 fs in the MD trajectory, using both explicit
CASSCF-SO calculations and the LVC model with para-
metrizations carried out at different intervals, and quantified
the error (Figure 3); we also made an LVC parametrization

using the geometry at 14000 fs in order to estimate the largest
possible error. As expected, the maximum error in HLVC

increases as the LVC parametrizations become further apart.
Using only a single parametrization of the LVC model at the
beginning of this window, henceforth referred to as 0 fs, the
error reaches that for a very distant LVC model by 100 fs; at
this limit, the error fluctuates between 6 and 9%.
The projection of spin Hamiltonian parameters allows

Hamiltonians containing only one of the terms in eq 4 to be
constructed, and their individual errors computed with eq 8
(see SI, Figures S1−S3). The SOC term leads to no significant
error, even at large geometric deviation, as it varies so little
over time that even the constant value of λ obtained from a
single LVC parametrization remains accurate (this may not be
the case if ĤSOC in eq 1 changes significantly with geometry37).
The crystal field term contributes less to the magnitude of H
but varies much more. It becomes extremely inaccurate and is
almost wholly responsible for the error seen in the total spin
Hamiltonian. This is equivalent to the energy gaps between
separate spin−orbit coupled multiplets remaining constant and
being well reproduced, while those between the individual spin
states within each multiplet vary and become increasingly
inaccurate. It is exactly these variations that drive the electron
spin dynamics of solution-state lanthanide complexes.5,16,19

Figure 2. Error in an LVC-generated spin Hamiltonian as a function
of the separation between the parametrization (relative time 0 fs) and
the time at which the spin Hamiltonian is evaluated. This is plotted
with the LVC parametrization carried out at a range of different times
throughout an MD trajectory, and as an average taking into both
account both positive and negative relative time.

Figure 3. Error in an LVC-generated spin Hamiltonian over 100 fs
with LVC parametrizations carried out at different intervals. 0 fs is the
beginning of the error trajectory and the point at which the LVC
model is first parametrized. In one case a single LVC parametrization
is carried out at 13900 fs.
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The error can be reduced by parametrizing a new LVC
model at intermediate points along the trajectory, and,
following from the results above (Figure 2), we can use the
new LVC model to move forward and backward. Hence, a
reparameterisation at 100 fs can be used to predict
Hamiltonians between 50 and 99 fs equally well as those for
101−150 fs; note, however, that in this particular case it
appears the prediction based on the parametrization at 0 fs is
better between 50 and 55 fs than that based on the
parametrization at 100 fs. Thus, performing LVC para-
metrizations at increasingly dense bisections of the time-
domain leads to an approximate halving in the maximum error
as a function of time (Figure 3), although this becomes
unreliable when the time between parametrizations is large.
We note that the use of a series of different LVC models

leads to discontinuities in the error traces (Figure 3), which
implies there must be discontinuities in the LVC-approximated
Hamiltonians and spin Hamiltonian parameters (Figures S2
and S3), when one LVC parametrization is replaced by
another. This is concerning, as it could lead to incorrect
behavior during spin dynamics simulations. However, we show
that Tr(ρ(t)) = 1 is maintained during simulations that feature
these discontinuities (Figure S4), showing that such
discontinuities do not prevent accurate spin dynamics
simulations using the LVC model.
With knowledge of the error-scales due to the LVC model in

hand, we turn now to explicit quantum simulations of the time-
dependence of the electron spin using these series of
Hamiltonians. As but one metric of these dynamics, we
examine the time-dependent population of one of the states
belonging to the ground Kramer’s doublet (Figure 4). The

trajectory with the LVC model parametrized every 10 fs (H10
LVC,

corresponding to an error not exceeding 1%, Figure 3) behaves
almost identically to that using only ab initio-calculated spin
Hamiltonians, confirming that the LVC model can indeed be
used to simulate spin dynamics with quantitative accuracy on
this time scale. The approximate trajectory will eventually
diverge, but as the dynamics of interest occur on the 100 fs
time scale this is unlikely to have a significant effect. While
moving to LVC parametrizations taken every 20 fs (H20

LVC)
might be acceptable in some cases, the population appears to
diverge increasingly over 100 fs−hence, it may fail to give
quantitatively accurate results for key properties such as
spectral density functions.

H40
LVC clearly diverges from the exact result quite early in the

simulation, around 30 fs, however, interestingly, models
parametrized at longer intervals (e.g., H100

LVC and H200
LVC) are

able to maintain accuracy with the exact result for much longer,
diverging only at around 70 or 60 fs, respectively. To explore
this curiosity, we can compare all elements of the density
matrix rather than just a single population; this can be achieved
with the complex analogue of the dot product to quantify the
similarity of an approximately propagated vectorised density
matrix |ρLVC⟩ to one propagated using CASSCF-SO Hamil-
tonians |ρab initio⟩
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The decay of the similarity metric from 1 is a measure of how
rapidly an approximate trajectory diverges from the ab initio
case, considering the phase of off-diagonal elements as well as
their magnitude. Deviations in the population dynamics are
first observed for H100

LVC and H40
LVC when their similarity to the

ideal trajectory falls below 0.998 (Figure 5), suggesting that the

apparent better performance of H100
LVC and H200

LVC is simply an
artifact of the random nature of the truncation error, which
leads to some populations being more affected than others.
The performance of the LVC method will vary when

different terms dominate the molecular Hamiltonian, as well as
when the rate at which geometry changes during an MD

Figure 4. Population trajectories for one of the ground eigenstates of
the initial spin Hamiltonian, found using spin Hamiltonians from ab
initio calculations and the LVC model parametrized at different
intervals. In one case a single LVC parametrization, carried out at
13900 fs, is used.

Figure 5. Similarity between the exactly propagated density matrix
and those propagated using spin Hamiltonians from LVC models
parametrized at different intervals. In one case a single LVC
parametrization, carried out at 13,900 fs, is used. The lower image
has been scaled to demonstrate the divergence of even the most
accurate LVC-propagated trajectories.
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trajectory varies. A similar methodology should thus be applied
to benchmark the method for any given system, and we suggest
that maintaining errors <1% is a good starting point; significant
deviations in the spin dynamics appear when the errors reach
∼2%.
While the Hamiltonians generated by the LVC method have

been shown to be usable for spin dynamics simulations, its
viability as a cost saving measure depends on its computational
expense relative to an approach based on many electronic
structure calculations. Unfortunately, in the present context,
the LVC parametrization itself is expensive enough that
quantitatively accurate electron spin dynamics can be
simulated more cheaply using a CASSCF-SO calculation at
each MD time step. That is, one LVC parametrization is more
expensive than 10 explicit CASSCF-SO calculations in this
particular example. There are two components that hence limit
this approach: the first is the calculation of the gradients and
NACs at the CASSCF level, which makes the computational
effort greater. However, this may not be the case for every
system−the number of gradients and NACs to be computed
scales quadratically at leading order with the number of
relevant spin-free states. In this case Dy3+ requires the
consideration of 18 states for a reasonable description of its
electronic structure, where other compounds can require far
fewer. For example, the same molecular structure but
examining Ce3+ or Yb3+ would require only seven states. To
quantify this difference, we performed an LVC parametrization
for [YbL1] and found it required only 13% of the core hours
needed for the average [DyL1] parametrization, where a
CASSCF-SO calculation for the Yb3+ compound, using an
active space of 13 electrons in the seven 4f orbitals, was 64% as
expensive as the average equivalent calculation for Dy3+. The
LVC approach is still too expensive to be used for the
quantitative spin dynamics of [YbL1], but for the qualitatively
accurate dynamics achieved with H40

LVC it would break even.
The second component that makes the present example

difficult is the need to parametrize a new LVC model every 10
fs: perhaps other molecules may not be so sensitive to changes
in structure. Indeed, [DyL1] has been shown to feature an
electronic structure that is exquisitely sensitive to molecular
geometry7,11,12 − as such, it is possible that similarly high
truncation errors are reached more slowly for generic
lanthanide complexes. The values of gradients and NACs
varied from −0.133 to 0.196 Eha0−1 during the 100 fs
investigated here, while those for an optimized53 structure of
[DyDOTA]− have a range of only −0.0364 to 0.0356 Eha0−1

(see SI for details). However, a similarly optimized structure of
[DyL1] had a range of −0.0421 to 0.0472 Eha0−1, suggesting
that this effect may be exaggerated by the optimized structure
being close to a minimum on the potential energy surfaces of
at least some states. While the behavior of higher order
derivatives is not known, they are likely to also be larger for
[DyL1]. For a system without such unusual geometry
dependence and with a more computationally facile metal,
such as the Tb3+ PARASHIFT agent proposed by Finney and
co-workers13 (Scheme 1 of that study), it may well be possible
to perform comparatively inexpensive electron spin dynamics
using an LVC-based approach.
Other problems may also exhibit changes in geometry that

occur less rapidly relative to the time scale of spin dynamics, in
which case LVC parametrizations would be expected to remain
more accurate for longer. The use of LVC parametrizations at
regular intervals is questionable in these cases, where errors

may be low but not reliably similar at relatively large geometric
deviations−some kind of adjustable interval size may be
necessary to achieve the smallest number of parametrizations
for a given maximum error. The obvious metric to use for this
would be root-mean-square deviation (RMSD) of atomic
positions, calculated following Kabsch rotation,54 which indeed
appears to be linearly correlated with the truncation error until
RMSD exceeds 0.15 Å (Figure 6). A more approximate linear

relation may be applicable until RMSD is over 0.25 Å. We
investigated a variable interval approach for our 100 fs window,
whereby the current parametrization would be discarded when
RMSD relative to the parametrization geometry exceeds a set
threshold. A new parametrization was then performed at the
new geometry, and subsequent RMSD calculations performed
against the new reference. Reparameterisation is necessary only
at every other incident of the RMSD threshold being exceeded
because the LVC model can approximate Hamiltonians
backward through an MD trajectory as effectively as it can
forward. If the threshold is set to 0.1 Å, approximately
corresponding to the 1% error reached under H10

LVC, the
timesteps chosen for parametrization are identical other than
61 fs being used instead of 60 fs. If a threshold of 0.25 Å is
used, however, parametrizations are required at 0, 28, 59, and
88 fs, demonstrating that this approach has a more significant
impact if larger geometric deviations are acceptable. It is likely
to be effective within the regime of linear correlation between
truncation error and RMSD, as long as the resulting
distribution of maximum errors due to different parametriza-
tions can be tolerated. In fact, a similar distribution of
maximum errors is also present when using a fixed interval.
Finally, although requiring computation of second deriva-

tives, a quadratic vibronic coupling model has the potential to
expand the range of geometries accurate Hamiltonians can be
computed for to cover all or most of an MD trajectory. This
would have to use expensive numerical differentiation schemes,
but could be made feasible by considering a subset of second
derivatives, for example only those involving the motion of two
donor atoms, or of two atoms with first derivatives above a
certain threshold.

4. CONCLUSIONS
The LVC model has been demonstrated to be a viable source
of approximate Hamiltonians along an MD trajectory. We have
shown that these are accurate enough in the present case study

Figure 6. Root-mean-square deviation between the geometry an LVC
model was parametrized at and that at which it is used to generate a
spin Hamiltonian (found after alignment using the Kabsch algorithm)
against the truncation error present in that spin Hamiltonian.
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to achieve quantitative agreement for electron spin dynamics
simulations when LVC models are parametrized every 10 fs.
Alternatively, if only qualitative accuracy is needed, computa-
tional effort can be significantly reduced (e.g., perhaps by a
factor of 2 to four, depending on the application domain) by
increasing the interval between parametrizations. A bench-
marking process has been developed, and should be considered
when applying the model to new systems. The computational
expense of parametrizing the LVC model is a major
consideration when evaluating its usefulness in a given case;
it is most appropriate for those with relatively few relevant
spin-free states, slow changes in geometry and potentially with
limited dependence of electronic structure on geometry. The
LVC model is a promising tool for approximating molecular
Hamiltonians at different molecular geometries, and should be
considered wherever such information is required, for instance
when performing chemically detailed electron spin dynamics
simulations.
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