
materials

Article

Probabilistic Approach to Limit States of a Steel Dome

Paweł Zabojszcza * , Urszula Radoń and Waldemar Szaniec
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Abstract: In this paper, Numpress Explore software, developed at the Institute of Fundamental
Technological Research of the Polish Academy of Sciences (IPPT PAN), was used to conduct reliability
analyses. For static-strength calculations, the MES3D module, designed by the authors, was employed.
Ultimate limit state was defined as condition of non-exceedance of the capacity value, resulting from
the stability criterion of the bent and compressed element. The serviceability limit state was defined as
the condition of non-exceedance of allowable vertical displacement. The above conditions constitute
implicit forms of random variable functions; therefore, it was necessary to build an interface between
the Numpress Explore and MES3D programs. In the study, a comparative analysis of two cases was
carried out. As regards the first case, all adopted random variables had a normal distribution. The
second case involved a more accurate description of the quantities mentioned. A normal distribution
can be adopted for the description of, e.g., the randomness in the location of the structure nodes,
and also the randomness of the multiplier of permanent loads. In actual systems, the distribution
of certain loads deviates substantially from the Gaussian distribution. Consequently, adopting the
assumption that the loads have a normal distribution can lead to gross errors in the assessment of
structural safety. The distribution of loads resulting from atmospheric conditions is decidedly non-
Gaussian in character. The Gumbel distribution was used in this study to describe snow and wind
loads. The modulus of elasticity and cross-sectional area were described by means of a log-normal
distribution. The adopted random variables were independent. Additionally, based on an analysis of
the elasticity index, the random variables most affect the failure probability in the ultimate limit state
and serviceability limit state were estimated.

Keywords: steel dome; reliability analysis; ultimate limit states; serviceability limit state; reliability
index; elasticity index

1. Introduction

In accordance with guidelines [1–4], a check of structural reliability is based on an ide-
alized concept of limit states and their verification by means of a semi-probabilistic method
of partial safety factors. A building structure is characterized by two excluding states,
namely a fitness state, in which the object meets the set requirements, and an unfitness state,
when it does not satisfy those requirements. The conditions that separate the fitness state
from the unfitness state are termed limit states. The method mentioned above involves
an analysis of the bearing capacity mobilization of members or sections (ULS—ultimate
limit state) and of serviceability criteria (SLS—serviceability limit state). Uncertainties
in materials parameters and loads are taken into account solely in the form of related,
representative values that are called partial safety factors. Those factors are understood to
be related quantiles of probability distributions that describe random variables. The role of
partial safety factors is to ensure the required level of reliability of the structure. The fully
probabilistic methods are extensions of semi-probabilistic method of limit states. These
methods are divided on two groups: approximated and simulated methods. The first order
reliability method (FORM) [5–7] and the second order reliability method (SORM) [8–11]
are approximated approaches. Importance sampling [12–14], artificial intelligence [15,16],
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and the Monte Carlo method [17–19] are simulation approaches. A probabilistic approach
makes it possible to provide a description that is more accurate and closer to the actual
reality with respect to structure materials, geometric parameters, and loads. This is done
by giving the type of probability distribution and distribution parameters.

In this paper, the first order reliability method was used to assess the limit states
of the structure. The measure of structural reliability was the Hasofer-Lind reliability
index [5]. The previously defined Cornell index [6] had a significant disadvantage—no
invariance and it resulted from the position of the point for linearization as average values.
This made the reliability measure difficult to use when comparing the safety of different
structures. In 1978, the design point approximation algorithm was proposed by Rackwitz
and Fiessler [7]. In [20], Hohenbichler and Rackwitz came up with an idea to apply the
Rosenblatt transformation [21] to transform dependent random variables into a standard
space. Der Kiureghian and Liu [22] employed the Nataf transformation to that end. The
use of first- or second-order functions to approximate the limit state function at the design
point leads to the first order reliability method (FORM) or the second order reliability
method (SORM).

Early applications of reliability analysis methods assumed that the limit function
was an explicit function of random variables. The presented dependence can only be
implemented on simple examples. Unfortunately, in practical implementations, this depen-
dence is implicit, which requires the use of a numerical procedure, for example, the finite
element method (FEM). The development of numerical methods contributed to the use of
very desirable tools in the theory of structure reliability, such as the methods of implicit
dependence of the boundary state functions on basic random variables. An example is the
perturbative method proposed in the works of Hisada and Nakagiri [23], Liu, Belytschko,
and Mani [24], and Shinozuki [25] for tasks of the linear theory of elasticity. This method
consists in expanding the stiffness matrix into a power series with respect to the random
fluctuations of its parameters. However, the perturbative method is not intended to calcu-
late the failure probability, but only to obtain statistical response moments. Calculating the
probabilities would require introducing probability distributions of random variables into
the calculations and estimating the higher moments of the statistical responses. Similar
to the perturbative method, also using the Neumann expansion (the inverse matrix to the
stiffness matrix is expanded in series), only information about the statistical moments of the
random variable (being the response of the system) is obtained. Li and Der Kiureghian [26],
and also Matthies [27] proposed a method that allows to estimate the probability of failure
in a situation where the design is calculated using the finite element method.

In [28], Pelisetti and Schueller provided an overview of various software tools that
enable rational treatment of the effects of uncertainty. The article covered issues that in-
clude the underlying algorithms, and also the interaction with deterministic FE codes. In
addition, other topics were discussed, including the availability of graphical user interfaces,
distributed processing, verification functions, and the possibility of probabilistic modeling.
The work in [29] describes the problems that can be solved with two additional tools
introduced by Ansys Inc.: ANSYS Probabilistic Design System and the ANSYS DesignX-
plorer. In both modules, an extremely efficient method can be used in which an accurate
high-order response surface, using single finite element analysis, variation technology, is
provided. Der Kiuregian et al. [30] discussed the Calrem/Ferum and OpenSees programs
for the analysis of structural reliability, while the work in [31] presents an overview of the
current state of COSSANe software. In [32], Thacker et al. discussed NESSUS probabilistic
analysis software, which allows the user to combine advanced probabilistic algorithms
with analytical equations, commercial finite element analysis programs, and their “own”
standalone deterministic analysis codes to calculate probabilistic responses or system reli-
ability. Gollwitzer et al. [33] described examples of analyses using a combination of the
Strurel probabilistic analysis system, which includes Comrel, Sysrel, Costrel, and Statrel,
and the PERMAS general purpose finite element program. The authors of [34,35] described
the general-purpose probabilistic software PHIMECA and Proban. A summary of the
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possibilities of the program for probabilistic analysis and designing ProFES is presented
in [36]. This program allows to perform a wide range of probabilistic function assessments,
including finite element analysis in a graphical environment. UNIPASS is a probabilis-
tic evaluation software that provides the ability to model uncertainty, define probability
distribution variables, and probabilistic models and responses [37]. The use of reliability
analysis and of the finite element method has been described by many researchers (Lee
and Ang [38], Engelstad and Reddy [39], Mahadevan and Mehty [40], Zabojszcza and
Radoń [41,42], Mochocki et al. [43], Kubicka et al. [44]).

When creating a program that enables reliability analysis through the use of the
finite element method, the best situation is to have access to the FEM source code and
a reliability program. In general, however, this is not possible; therefore, at the expense
of efficiency loss, existing MES packages are combined with a reliability program, using
various types of interfaces. The paper presents a combination of the Numpress reliability
program with the MES3D proprietary module. There is resistance among engineers to
use numerical probabilistic methods, the complexity of which is hidden inside computer
programs. Additional effort required from the user of the program is the necessity to
characterize data with two parameters, i.e., the expected value and the standard deviation,
instead of the one parameter used in deterministic methods. For this reason, it is necessary
to provide engineers with algorithms that will enable the analysis of a structure, taking
into account random factors. According to the authors, the FORM method may fill this gap
in the future.

2. Materials and Methods
2.1. Method FORM

The increase in computational power allows to design more and more complex struc-
tures. Nowadays, static-strength analysis of structures is implemented by means of the
finite element method (FEM). Nevertheless, a design procedure is still performed deter-
ministically, applying safety factors. This concept aims to ensure that the risk induced
due to the randomness of input parameters is sufficiently small. A more efficient way
is take the impact of uncertainties in a structural response into account by performing
structural reliability analyses. In reliability analysis, the probability of failure is calculated,
accounting for randomness in the input parameters. Let the vector X denote a set of basic
random variables. Let g(X) represents the design criterion (limit state function), with
negative values defining the failure. Hasofer and Lind [5] presented the concept of the
location of the so-called “design point”, i.e., such a realization of random variables (x)
located in the failure area, which corresponds to the highest value of the probability density
function. By linearizing the limit function at design point x*, a measure of reliability can be
obtained which is invariable due to the equivalent formulation of the boundary condition,
the so-called Hasofer–Lind reliability index, β. Figure 1 shows a graphical form of the
problem of the reliability index determination for the non-linear limit state function g(x) = 0
in the realization space of basic random variables.
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Figure 1. Non-linear, n-dimensional (for n = 2) surface of the limit state function g(x) = 0 realization
space of the basic random variables, with the marking of linearization on the surface g(x) of the limit
state function at point x*.

The transformation of the basic variables from the original to the standard normal
space of uncorrelated random variables, Z = T(X), is used to facilitate the implementation
of the algorithms. The precise determination of the design point is extremely important.
There are many works aimed at comparing the effectiveness of different algorithms. Most
of these come from researchers associated with the research laboratories of Rackwitz and
Der Kiureghianna. Currently, due to their efficiency and ease of implementation, the
most frequently used algorithms are based on the standard Rackwitz–Fiessler method.
According to this algorithm, the task of locating a design point can be determined as
follows:
find

minQ(z) = zTz, (1)

under the constraint
g(z) = 0. (2)

After expanding the quadratic objective function (Q(z)) around point z(k) in a Tay-
lor series, and also linearizing function g(z), we have the task of finding the optimal
increment, ∆z(k):

minQ̃
(

∆z(k)
)

= Q
(

z(k)
)
+∇QT

(
z(k)
)
·∆z(k) + 1

2 ∆z(k)T ·∇2Q
(

z(k)
)
·∆z(k)

= z(k)Tz(k) + 2z(k)T∆z(k) + ∆z(k)T∆z(k),
(3)

under the constraint

g̃
(

∆z(k)
)
= g

(
z(k)
)
+∇gT

(
z(k)
)
·∆z(k) = 0. (4)

The condition of the existence of the local minimum at point zk results from the
stationarity condition of the Lagrange function. The Lagrange function has the following
form:

L
(

∆z(k), λ
)
= z(k)Tz(k)+ 2z(k)T∆z(k)+∆z(k)T∆z(k)−λ

(
g
(

z(k)
)
+∇gT

(
z(k)
)
·∆z(k)

)
. (5)

The necessary condition is stated by the so-called Kuhn–Tucker criteria.
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Kuhn–Tucker conditions are as follows:

∇L = 2z(k) + 2∆z(k) − λ∇g
(

z(k)
)
= 0, (6)

g
(

z(k)
)
+∇gT

(
z(k)
)
·∆z(k) = 0. (7)

After transformations, an iterative formula for finding a design point is obtained:

z(k+1) =
1∥∥∇g
(
z(k)
)∥∥2 ·

(
∇gT

(
z(k)
)
·z(k) − g

(
z(k)
))
·∇g

(
z(k)
)

. (8)

Iterations are continued until the condition is met:∣∣∣z(k+1)
i − z(k)i

∣∣∣ ≤ ε for all i and |g(z∗)| ≤ ε. (9)

The relationship has a clear geometrical interpretation:

z(k+1) =
1∥∥∇g
(
z(k)
)∥∥ ·(∇gT

(
z(k)
)

z(k) − g
(

z(k)
))

︸ ︷︷ ︸
length

∇g
(

z(k)
)

∥∥∇g
(
z(k)
)∥∥︸ ︷︷ ︸

search
direction

. (10)

The length of vector z(k+1) is a sum of the length of the vector z(k) projection in the
direction ∇g

(
z(k)
)

and the length g
(

z(k)
)

/
∥∥∥∇g

(
z(k)
) ∥∥∥, which results from substituting

the limit surface with a trace of hyperplane g′
(

z(k)
)

= 0, the latter originating in the

linearization of the limit function at point z(k).
Finding the design point is a key step in the FORM method. This is an approximation

method, according to which the failure area is approximated by linearization of the limit
state function at the design point. The distance of the most probable point of failure from
the mean value of random variables is represented by reliability index β. On its basis, the
probability of failure is approximated as:

Pf ≈ φ(−β) (11)

where φ(.) is the standard normal cumulative distribution function.
A major advantage offered by the FORM method lies in the possibility of determining

the reliability index sensitivity to the average values of random variables by calculating the
elasticity index. It is practically not necessary to conduct any additional computations. The
elasticity of the reliability index Eβ(x0) can be defined as a percentage change in reliability
index β when parameter pi is changed, e.g., by 1% (Stocki [45]) (Figure 2).
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Figure 2. Illustration of the elasticity of the function β(x) of one variable [41].

2.2. Crude Monte Carlo Method

The classical Monte Carlo method uses an independent random sample {X(1), X(2), . . . ,
X(n)}, obtained by generating random numbers directly from the probability distribution
of a random variable modeling the parameters of the structure. Estimation of the failure
probability, treated as the average value of the function:

Pfn =
1
n

n

∑
i=1

IΩf

(
X(i)

)
, (12)

which is called the empirical average value. Based on the strong law of large numbers,
the sequence Pfn converges with probability 1 to E(IΩ f(X)). The estimator error (12) is
expressed by its variance, which in the case of the characteristic function of the failure area
is defined by the expression:

VPfn= Var
(
Pfn
)
=

1
n

∫
Rn

(
IΩf (x)−E

[
IΩf (X)

])2f(x)dx =
1
n

(
E
[
IΩf (X)

2
]
−E
[
IΩf (X)

]2). (13)

Estimation of VPfn on the basis of a random sample {X(1), X(2), . . . , X(n)} can be obtained
using the estimator:

VPfn =
1

n2

n

∑
i=1

(
IΩf(X)

2 − Pfn

)2
. (14)

The accuracy of the estimate (12) is often determined using the so-called the coefficient
of variation of the estimator, defined as:

ê =

(
VPfn

) 1
2

Pfn
(15)

An alternative to the determination of the point estimate and its error is to define the
so-called the confidence interval in which the failure probability Pf is included with the
assumed confidence level. The confidence interval of the estimator (12) can be determined
using the fact that a random variable

Yn =

1
n ∑n

i=1 I Ωf

(
X(i)

)
− E [I Ω f(X)

]
√

VPfn

, (16)
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by the central limit theorem, has an asymptotically standard normal distribution N(0,1).
Let C be the assumed confidence level, and the k-quantile of the distribution N(0,1) of the
order 1

2 (1−C), then for n→ ∞ there is P(k ≤ Yn ≤ −k) = C.
Having the failure probability estimate (12) and its variance (15), based on Formu-

las (15) and (18), we obtain an approximation of the failure probability confidence interval:

P
(

Pfn+k
√(

VPfn

)
≤ Pf ≤ Pfn − k

√(
VPfn

))
= C. (17)

The number of simulations that must be performed to obtain the estimator with the
desired coefficient of variation can be determined from the formula:

ê =

√
1−Pfn

nPfn
, (18)

Which you get by substituting expression (14) in (16); as can be seen, the number
of necessary simulations does not depend on the number of dimensions of the random
variable, which is one of the advantages of the classic Monte Carlo method. However, the
error of the method is inversely proportional to the size of the probability to be estimated. To
achieve the variability level of the estimate ê = 0.1 for Pf = 3.16× 10−5, which corresponds
to the reliability index β = 4, more than 3× 106 simulations should be performed. Especially
when the calculation of the failure function is associated with the performance of the finite
element analysis, the numerical costs of the classic Monte Carlo method are very high.
Despite this, the classic Monte Carlo formulation finds practical application due to the
simplicity of its implementation.

2.3. Cooperation between Numpress Explore and MES3D Software

In this paper, Numpress Explore software developed at the Institute of Fundamental
Technological Research of the Polish Academy of Sciences (IPPT PAN) [46] was used to
conduct the reliability analysis. The website from which is it possible to download the
software can be found in [47]. Solving reliability analysis issues requires the development
of software that enables easy communication with external MES modules. Numpress’s
object-oriented architecture software meets this requirement. The Numpress code is a
collection of C++ libraries that group data classes and algorithms together. In addition, the
code is equipped with mechanisms for interactive task definition. The procedure begins
by creating a model of a stochastic task. The program user specifies the parameters of the
boundary probability distributions of basic random variables. Then, the external variables
are defined. External variables are implicit functions of the basic random variables. The
values of external variables are obtained as a result of the FEM calculation modules for
successive implementations of the vector of basic random variables. After defining the
stochastic model via the graphical interface, the user enters the formula for the limit
function. The limit function can contain both basic random variables and external variables.
The next step is to choose the reliability analysis method and run the calculations. The task
ends by generating a report containing the failure probability values and its sensitivity to
the parameters of the probability distributions of random variables.

For static-strength calculations, the MES3D module, designed by the authors, was
employed. The MES3D program was developed at the Kielce University of Technology [44].
It is constantly being developed in terms of computational capabilities. It was written in
Object Pascal in the Lazarus IDE, which is based on the classical finite element method. It
enables obtaining static solutions, natural vibrations, performing dynamic calculations—
integration of equations of motion and simulations of fire problems. By default, in the
standard mode, it is an interactive program. This especially applies to the visualization of
the obtained solutions. However, in the article uses the ability to work in the console mode:
the names of files containing data and the results of calculations were the parameters
of the program. These are text files with a strictly defined structure, thanks to which
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it is possible to indicate the exact location of selected parameters used in the reliability
analysis. This applies to both data and results. In the case of work in the console mode,
graphic libraries were not loaded, which significantly accelerated the performance of
proper numerical calculations.

In this paper, external variables are vertical displacements, a bending moment with
respect to the z-z axis, a bending moment with respect to the y-y axis, and axial forces. The
basic random variables are dead load, snow load, wind load, Young’s modulus, and cross-
sectional area. The ultimate limit state was defined as the condition of non-exceedance
of the capacity value, resulting from the stability criterion of the bent and compressed
element. The serviceability limit state was defined as the condition of non-exceedance
of allowable vertical displacement. The above conditions constitute implicit forms of
random variable functions; therefore, it was necessary to build an interface between the
Numpress Explore and MES3D programs. Numpress Explore software communicates and
controls the deterministic analyses by running the corresponding MES3D modules. The
communication of the Numpress Explore program with external computing modules is
ensured via text files. The realizations of random variables are saved in text input files.
The MES3D program calculates the values necessary to define the limit state function
for individual realizations of random variables. The calculation results of the MES3D
program are read from the appropriate text output files. Figure 3 shows the algorithm for
cooperation between Numpress Explore and MES3D software.

Figure 3. Cooperation between the Numpress Explore and MES3D software.
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3. Results
3.1. Deterministic Static and Strength Analysis

The geometry of a steel lattice dome, consisting of 120 nodes and 220 elements, is
presented in Figure 4 and in Table 1. The bars of the structure are modeled as frame
elements. It was assumed that the structure elements are made of RO159x11 steel pipes
with a yield point of fy = 235 MPa and Young’s modulus E = 210 GPa. The structure of the
dome is based on 20 reinforced concrete columns, 5 m high, at the ends of which there is a
reinforced concrete wreath that closes and stiffens the structure, and simulating the work
of the grate.

Figure 4. Ribbed dome.
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Table 1. Dome geometry.

No. X Y Z No. X Y Z No. X Y Z

1 −3.380 0.000 6.000 41 −8.996 −6.536 4.700 81 −5.828 −17.937 2.200
2 −3.215 1.044 6.000 42 −10.576 −3.436 4.700 82 −11.086 −15.258 2.200
3 −2.734 1.987 6.000 43 −11.120 0.000 4.700 83 −15.258 −11.086 2.200
4 −1.987 2.734 6.000 44 −10.576 3.436 4.700 84 −17.937 −5.828 2.200
5 −1.044 3.215 6.000 45 −8.996 6.536 4.700 85 −18.860 0.000 2.200
6 0.000 3.380 6.000 46 −6.536 8.996 4.700 86 −17.937 5.828 2.200
7 1.044 3.215 6.000 47 −3.436 10.576 4.700 87 −15.258 11.086 2.200
8 1.987 2.734 6.000 48 0.000 11.120 4.700 88 −11.086 15.258 2.200
9 2.734 1.987 6.000 49 3.436 10.576 4.700 89 −5.828 17.937 2.200

10 3.215 1.044 6.000 50 6.536 8.996 4.700 90 0.000 18.860 2.200
11 3.380 0.000 6.000 51 8.996 6.536 4.700 91 5.828 17.937 2.200
12 3.215 −1.044 6.000 52 10.576 3.436 4.700 92 11.086 15.258 2.200
13 2.734 −1.987 6.000 53 11.120 0.000 4.700 93 15.258 11.086 2.200
14 1.987 −2.734 6.000 54 10.576 −3.436 4.700 94 17.937 5.828 2.200
15 1.044 −3.215 6.000 55 8.996 −6.536 4.700 95 18.860 0.000 2.200
16 0.000 −3.380 6.000 56 6.536 −8.996 4.700 96 17.937 −5.828 2.200
17 −1.044 −3.215 6.000 57 3.436 −10.576 4.700 97 15.258 −11.086 2.200
18 −1.987 −2.734 6.000 58 0.000 −11.120 4.700 98 11.086 −15.258 2.200
19 −2.734 −1.987 6.000 59 −3.436 −10.576 4.700 99 5.828 −17.937 2.200
20 −3.215 −1.044 6.000 60 −6.536 −8.996 4.700 100 0.000 −18.860 2.200
21 −6.895 −2.240 5.500 61 −8.811 −12.127 3.600 101 0.000 −22.730 0.000
22 −7.250 0.000 5.500 62 −12.127 −8.811 3.600 102 −7.024 −21.618 0.000
23 −6.895 2.240 5.500 63 −14.256 −4.632 3.600 103 −13.360 −18.389 0.000
24 −5.865 4.261 5.500 64 −14.990 0.000 3.600 104 −18.389 −13.360 0.000
25 −4.261 5.865 5.500 65 −14.256 4.632 3.600 105 −21.618 −7.024 0.000
26 −2.240 6.895 5.500 66 −12.127 8.811 3.600 106 −22.730 0.000 0.000
27 0.000 7.250 5.500 67 −8.811 12.127 3.600 107 −21.618 7.024 0.000
28 2.240 6.895 5.500 68 −4.632 14.256 3.600 108 −18.389 13.360 0.000
29 4.261 5.865 5.500 69 0.000 14.990 3.600 109 −13.360 18.389 0.000
30 5.865 4.261 5.500 70 4.632 14.256 3.600 110 −7.024 21.618 0.000
31 6.895 2.240 5.500 71 8.811 12.127 3.600 111 0.000 22.730 0.000
32 7.250 0.000 5.500 72 12.127 8.811 3.600 112 7.024 21.618 0.000
33 6.895 −2.240 5.500 73 14.256 4.632 3.600 113 13.360 18.389 0.000
34 5.865 −4.261 5.500 74 14.990 0.000 3.600 114 18.389 13.360 0.000
35 4.261 −5.865 5.500 75 14.256 −4.632 3.600 115 21.618 7.024 0.000
36 2.240 −6.895 5.500 76 12.127 −8.811 3.600 116 22.730 0.000 0.000
37 0.000 −7.250 5.500 77 8.811 −12.127 3.600 117 21.618 −7.024 0.000
38 −2.240 −6.895 5.500 78 4.632 −14.256 3.600 118 18.389 −13.360 0.000
39 −4.261 −5.865 5.500 79 0.000 −14.990 3.600 119 13.360 −18.389 0.000
40 −5.865 −4.261 5.500 80 −4.632 −14.256 3.600 120 7.024 −21.618 0.000

The considered dome was loaded with a permanent load (self-weight of the bar
structure and covering), a snow load determined for zone 3 according to [1], and a wind
load according to [2] (Figure 5). The combination of loads applied to the structure was
consistent with [3]. The deformation of the structure is shown in Figure 5c.

In the MES3D program, self-weight can be added automatically as a load evenly
distributed on the bar or planar elements. In the calculations, it is also possible to take
into account the additional weight of the covering elements, fittings, etc. In a similar way,
the snow load is taken into account—in this case, it was collected from adjacent areas and
added to the load on latitudinal elements.

In the case of circular domes, for wind loads, the PN-EN 1991-1-4 standard recom-
mends assuming surface loads acting in the direction normal to the surface of the sphere.
These values are constant in each arc resulting from the intersection of the canopy with the
surface perpendicular to the wind direction (Figure 6 [2]).
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Figure 5. (a) Permanent load and snow load, (b) wind load, and (c) ribbed dome deformation.

Figure 6. Standard wind pressure distribution of a circular dome [2].

However, even in the case of simple circular domes, the above definition causes a
lot of problems in modeling; therefore, in practical implementations, various simplifying
procedures are used, e.g., the surface is divided into zones, assuming constant load values
in them.

For the dome under consideration, based on the geometry and geographic location,
the values of the pressure coefficients at points A, B and C were determined. Values in
the remaining points in the direction of the wind axis were determined using parabolic
approximation. It was assumed that the load was applied to flat surface elements formed by
the dome bars (Figure 4) and inside them it had a constant value defined for the element’s
center of gravity. Triangular shell elements were used to transfer the load from the element
surface to the nodes. For four-node areas, the load was divided into two equal parts,
and then transferred to mesh nodes through triangular elements with different meshing
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(Figure 7). This modeling method does not introduce additional errors related to the use of
triangular elements.

Figure 7. Diagram of applying wind load on 4-node elements.

A static-strength analysis, on the basis of which the structure was dimensioned, was
made according to [4] using MES3D software with spatial frameworks. In order to improve
the accuracy of calculations, all elements were further divided into 10 parts.

Internal forces and strength utilization of individual bars of the structure were spec-
ified (Figures 8–10). Based on the static-strength analysis, it was observed that the most
stressed bar was bar number 212. The maximum vertical displacement concerns node 58.
The values of the internal forces, the capacity for the most stressed element of the structure
(bar no. 212 in the meridian line), and the maximum horizontal and vertical displacement
for node 58 are collated in Table 2. In the dimensioning of the structure, the case that turned
out to be decisive was the one in which the permanent load, governing snow load and
accompanying wind load were combined. As regards the selection of cross-sections, it was
decided by the stability condition of the bent and compressed element.

Figure 8. Axial force, NEd.
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Figure 9. Bending moment with respect to the y-y axis My.

Figure 10. Bending moment with respect to the z-z axis Mz.
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Table 2. Values of the internal forces, capacity of the most stressed element of the structure (bar no.
212 in the meridian line), and the maximum horizontal and vertical displacement of node 58.

Force/Bearing Capacity Value

NEd [kN]—axial force 445.444
Nc,Rd [kN]—design capacity of the section under uniform compression 1200.85

Nb,Rd [kN]—design buckling resistance of the compressed element 878.945
My,Ed,Max [kNm]—design bending moment with respect to y-y axis 9.55
My,c,Rd [kNm]—design bending resistance with respect to y-y axis 56.73
Mz,Ed,max [kNm]—design bending moment with respect to z-z axis 12.45
Mz,c,Rd [kNm]—design bending resistance with respect to z-z axis 56.73

Strength utilization [%] 95
Maximum vertical displacement [mm]—for node 58 121.36

Allowable vertical displacement [mm]—D/300 151.53
Maximum horizontal displacement [mm]—for node 58 35.24

Allowable horizontal displacement [mm]—H/150 40.00

The limit values in Table 2 have been determined in accordance with the standard
PN-EN 1993-1-1. Eurocode 3: Design of steel structures. Part 1-1: General rules and rules
for buildings. Figure 8 shows the distribution of axial forces with the distinction of the bar
212, for which the value is 445.444 kN.

The value of the My bending moment with respect to the y-y axis for bar no. 212
was: My = 9.55 kNm. Figure 9 shows diagrams of the bending moment with respect to the
y-y axis.

The value of the Mz bending moment with respect to the z-z axis for bar no. 212 was:
Mz = 12.45 kNm. Figure 10 shows diagrams of the bending moment with respect to the
z-z axis.

3.2. Computation of the Hasofer-Lind Reliability Index

The next stage involved the analysis of the limit states of the single layer ribbed dome,
in which a full probabilistic description was utilized. In the literature, many studies can
be found in which the deterministic approach was adopted to describe the ultimate and
serviceability limit states [48–54]. According to the deterministic approach, loads, material,
and geometry features of the structure are described with code-specified characteristic
values and relevant safety factors. The probabilistic approach offers a description of the
above-mentioned quantities that is more accurate and closer to reality. It is possible to
achieve that by providing the type and parameters of distribution.

The most frequently applied distribution in the probability theory is the normal
distribution. It can be adopted to describe, e.g., the randomness of the location of structure
nodes or of a permanent load multiplier. In actual systems, distributions of some loads
significantly diverge from the Gaussian distribution. As a result, the adoption of the
assumption of their being normal may lead to gross errors in the assessment of structure
reliability. Weather-related loads are highly non-Gaussian in character. The Gumbel
distribution was used to describe snow and wind loads. The modulus of elasticity and
cross-sectional area were described by means of a log-normal distribution. In the study,
a comparative analysis of two cases was conducted. For Case 1, all adopted random
variables had a normal distribution. Case 2 accounted for a more accurate description
of the quantities of concern. The adopted random variables were independent. Their
descriptions are shown in Tables 3 and 4.



Materials 2021, 14, 5528 15 of 20

Table 3. Description of random variables for Case 1.

Case 1

Random variable Type of probability distribution
P1—dead load Normal (5400, 540)
P2—snow load Normal (3900, 562)
P3—wind load Normal (300, 60)

E—Young’s modulus Normal (2.1 × 1011, 5.1 × 109)
A—cross-sectional area Normal (0.00511, 0.0002555)

Table 4. Description of random variables for Case 2.

Case 2

Random variable Type of probability distribution
P1—dead load Normal (5400, 540)
P2—snow load Gumbel (3647.07, 438.190)
P3—wind load Gumbel (272.997, 46.782)

E—Young’s modulus Log-normal (2.1 × 1011, 5.1 × 109)
A—cross-sectional area Log-normal (0.00511, 0.0002555)

The normal distribution is characterized by the following density function:

f(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ

σ

)2
]

; x ∈ (−∞, ∞) (19)

Function (19) is defined by two parameters, namely by mean value:

µ =

∞∫
−∞

x f(x)dx (20)

and by variance:

σ2 =

∞∫
−∞

(x− µ)2 f(x)dx (21)

The Gumbel distribution is characterized by the following density function:

f(x)= α exp[−α(x− u)− exp(−α(x− u))]; x ∈ (−∞, ∞) (22)

where α, u are parameters of the Gumbel distribution. The mean value and standard
deviation are equal to µ = u + 0.5772/α and σ = π/2.4495 α.

The lognormal distribution is characterized by the following density function:

f(x) =
1

x δ
√

2π
exp

[
−1

2

(
ln(x/ξ)

δ

)2
]

; x ∈ (0,∞) (23)

where δ2= ln
(

Cov2+1
)

, ξ = x√
Cov2+1

, Cov =σ
x .

In this work, it necessary to transform the normal distribution into a Gumbel or
log-normal distribution; to achieve that, Method of Moments was used [55].

As regards the two-parameter distributions utilized in the paper, the method of
probabilistic moments is based on the use of conformity conditions of the mean value and
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the variance. For the two-parameter distributions A and B, from the conformity conditions
of the mean value and the variance, the following equations were developed:

∞∫
−∞

xfA(x)dx =
∞∫
−∞

xfB(x)dx

∞∫
−∞

(x− µA)
2fA(x)dx =

∞∫
−∞

(x− µB)
2fB(x)dx

(24)

Serviceability limit state SLS was considered as the condition of non-exceedance of
the allowable vertical displacement:

gSLS = 1 − abs(w)/(D/300), (25)

where w—external variable describing the maximum displacement of the structure, D—
dome diameter.

Ultimate limit state (ULS) was defined as condition of non-exceedance of the capacity
value, resulting from the stability criterion of the bent and compressed element:

gULS = 1 − N/Nb,Rd − kzyMy/χMy,Rk − kzzMz/Mz,Rk, (26)

where N [kN]—axial force, My [kNm]—bending moment with respect to the y-y axis, Mz
[kNm]—bending moment with respect to the z-z axis, Nb,Rd [kN]—buckling resistance of
the compressed element, My,Rk [kNm]—bending resistance with respect to the y-y axis,
Mz,Rk [kNm]—bending resistance with respect to the z-z axis, χ—buckling coefficient, kzy,
kzz—interaction coefficient according to [4].

The values of w, N, My and Mz are external variables that are computed by the MES3D
software. For the applied functions of ULS and SLS, the Hasofer–Lind reliability index
was computed using the FORM method. The FORM method was employed as a primary
research tool. In order to validate the correctness of computation the Monte Carlo method
was used (Tables 5 and 6). The obtained values of the probability of failure are within the
range 10−3–10−5. The necessary number of simulations was 109. Due to the large number
of simulations needed, only SLS was verified.

Table 5. Reliability index β for SLS.

Reliability Index β for SLS

FORM Monte Carlo

CASE 1 4.334 4.265
CASE 2 3.588 3.494

Table 6. Reliability index β for ULS.

Reliability Index β for ULS

FORM

CASE 1 2.738
CASE 2 2.492

3.3. Analysis of the Sensitivity of the Hasofer-Lind Index to Changes in Random Parameters

Additionally, based on the analysis of the elasticity index, which random variables
most affect the failure probability in the ultimate limit state and serviceability limit state
was estimated. When constructing the mathematical model of the task, the design engineer
has to make a decision of which design parameters should be treated as random ones, and
which as deterministic ones. With respect to ULS, the analysis of the elasticity index made
it possible to estimate that random variables describing the permanent load, wind load,
and snow load had the highest impact on the assessment of the structure safety (Figure 11).
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When SLS was considered, wind load and Young’s modulus were of the greatest relevance
(Figure 12).

Figure 11. Elasticity index for ULS: (a) Case 1, (b) Case 2.

Figure 12. Elasticity index for SLS: (a) Case 1, (b) Case 2.

3.4. Discussion of the Results

In the study, two cases were examined that differed with respect to the type of prob-
ability distribution of the adopted random variables. In both cases, the possibility of
stability failure was accounted for. Instability resulted from the exceedance of the allowable
displacement (SLS) and the exceedance of the capacity condition of bent and compressed
bar (ULS). Substantial differences in the value of ] reliability index β were observed, de-
pending on the case considered and the limit state. The maximum value of the reliability
index, namely 4.334, was obtained for SLS, when all the random variables of concern
were accounted for and normal probability distribution was assumed. For Case 2, even
when the limit state was the same, this value was reduced by 17.21%. In both cases, for
ULS, the values of the reliability index were lower than those obtained for SLS. For Case 1
and Case 2, the index values amounted to 2.738 and 2.492, respectively. Based on these
results, it can be observed that the identification of variables decides, to a great extent,
the solution to the problem. For that reason, it is essential to examine the sensitivity of
the reliability index to changes in the probabilistic characteristics of the random variables
under consideration. That is done by means of specifying the elasticity index. Substantial
differences in the determined values of the elasticity index were observed for the cases of
concern. However, the same variables are decisive in both limit states for both cases. As
regards ULS, the decisive effect of loads (random variables P1, P2, P3), especially of the
dead load (variable P1), on the values of the reliability index can be seen. For SLS, however,
the decisive variables are Young’s modulus—E and wind load (random variable P3). The
results obtained with the Monte Carlo method agreed with the results obtained with the
FORM method.
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4. Conclusions

Two global parameters determine the safety of a structure: load and bearing capacity.
Each of these parameters are random. The likelihood of failure is an objective, probabilistic
measure of the safety of a structure. However, this measure is still not accepted by engineers.
They prefer a security measure with a deterministic overtone, which is adopted in the
semi-probabilistic method of limit states. It assesses the safety of a structure on the basis of
the quantiles of the values of the characteristic loads and bearing capacity, as well as partial
safety factors. The safety factors were separately calibrated for loads and bearing capacities.
The random nature of load variability was taken into account by increasing them with
an appropriate factor. The bearing capacity was assessed by its reduction. In the design
of the limit state method, all possible design situations should be considered and it must
be shown that none of the limit states was exceeded. This structural safety assessment is
qualitative. The fully probabilistic methods are extensions of semi-probabilistic method of
limit states. These methods allow the quantitative assessment of structure reliability.

Therefore, it is necessary to provide engineers with algorithms that enable the analysis
of structures, taking into account random factors, which is not an easy task. Commonly
available programs for static strength analysis using the finite element method are based
on the deterministic limit state method. It is a good idea to try to combine existing design
software with reliability analysis programs. The authors presented this path by combining
MES3D with Numpress and showing other solutions of this type that are available.

In reliability analyses, it is crucial to adopt a computational model that represents real
conditions as closely as possible. Incomplete statistical data or inappropriate assumptions
may lead to substantial differences in the reliability index values. The study indicate that
for the reliability analysis it is important to appropriately select not only random variables
but also the type of their probability distribution.

It is highly advisable to conduct the analysis of the sensitivity of the assumed random
variables. A important moment in the design process is to decide which parameter to treat
as deterministic and which as random. The FORM method gives a quick answer to this
question by analyzing the sensitivity of the reliability index.
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