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Knowledge graph representation learning aims to provide accurate entity and relation representations for tasks such as intelligent
question answering and recommendation systems. Existing representation learning methods, which only consider triples, are not
sufficiently accurate, so some methods use external auxiliary information such as text, type, and time to improve performance.
However, they often encode this information independently, which makes it challenging to fully integrate this information with
the knowledge graph at a semantic level. In this study, we propose a method called SP-TAG, which realizes the semantic
propagation on text-augmented knowledge graphs. Specifically, SP-TAG constructs a text-augmented knowledge graph by
extracting named entities from text descriptions and connecting themwith the corresponding entities.(en, SP-TAG uses a graph
convolutional network to propagate semantic information between the entities and new named entities so that the text and triple
structure are fully integrated. (e results of experiments on multiple benchmark datasets show that SP-TAG attains competitive
performance. When the number of training samples is limited, SP-TAGmaintains its high performance, verifying the importance
of text augmentation and semantic propagation.

1. Introduction

Knowledge graphs (KGs) are structured graph databases,
usually large in scale, with many entities, relations, and
triples. KGs are useful for intelligent search [1], recom-
mendation systems [2, 3], intelligent question answering
[4, 5], and other applications. Common KGs include
Freebase [6], YAGO [7], and WordNet [8]. Although these
KGs are huge in scale and cover a wide range of information,
they still face problems such as missing data and incomplete
semantics, limiting the performance of subsequent appli-
cations.(erefore, completing the missing facts semantically
in KGs is an important task.

KG representation learning (KGRL) is an effective and
practical approach to predicting missing facts. In recent
years, it becomes an important research direction in KG.
KGRL embeds entities and relations in KG into vectors and
then predicts potential triples through vector computation.

In early KGRL methods such as TransE [9] and TransH [10],
researchers embedded entities and relations using only
triples; however, the representation ability of these methods
for complex relations is limited. Hence, researchers have
proposed various improvements, such as RotatE [11] and
ConvE [12]. However, these methods may have difficulty in
training when the number of triples with specific entities or
relations in KG is limited. (e model may not fully learn the
features of KG elements through limited training samples,
thus affecting training effect of the model.

To solve this problem, many methods integrate external
auxiliary information such as type, time, text, or images into
the model. (ey usually encode auxiliary information or
expand triples into “quadruples,” endowing the entity with
rich information to compensate for the lack of training
samples. Text corpora contain more semantic information.
Researchers have proposed a variety of methods for text,
such as NTN [13], DKRL [14], ConMask [15], and TEGER
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[16]. (ese methods integrate semantic information within
text into entity representations to improve the representa-
tion performance but retain the following shortcomings:

(1) Text information does bring semantic supplement to
entities. Existing methods tend to encode the text
information independent of the triple structure,
which does not combine semantic and triple
structure information well. Moreover, the sparsity of
KGs, which make it difficult to share semantic in-
formation between related entities, remains a
problem.

(2) Entities in the same triple tend to be semantically
associated. Modelling the association information
can obtain the features at entity-pair level and be
beneficial to representation learning. However,
existing methods inadequately represent such
associations.

(3) (ese methods generally use traditional word em-
beddings to encode text information. For one token,
there will be only one representation even in dif-
ferent contexts. (e lack of semantic information is
insufficient for encoding text description sequences.

In this study, we propose SP-TAG, a KGRL method with
semantic propagation on text-augmented knowledge graph.
SP-TAG embeds the triple structure and text description
information in the same semantic space. Named entity
recognition (NER) [17], as well as relation classification (RC)
[18, 19], is an important task in process of constructing KGs
from unstructured text. Inspired by the process, for each
entity in KG, we first extract the entities from the text de-
scription (called text entities, corresponding to the existing
entities in the knowledge graph, i.e., original entities) with
NER. (e text entities are then connected to the original
entities in the KG to construct a text-augmented KG, which
contains the information from both triples and text. We then
use a pretrained language model to obtain the initial feature
embedding of the nodes in the text-augmented KG, which
incorporates semantic information into the model. Next, a
graph convolutional network (GCN) [20] is used to prop-
agate the semantic features of the entities so that the text-
based representation contains semantic information from
other nodes. Finally, we jointly learn the structure- and text-
based representations of the entities using a gate mechanism
in the same vector space.

(e main contributions of this study are as follows:

(1) (e proposed SP-TAG extracts text entity nodes to
construct a text-augmented KG based on NER from
the text description of the entity, which increases the
average number of edges around the entity and
reduces sparsity.

(2) SP-TAG uses a pretrained language model to ini-
tialize the semantic features of the nodes. It also uses
a GCN to propagate semantic features among en-
tities to better integrate structural and textual in-
formation, thereby improving the semantic
associations between entities. SP-TAG can be

combined with existing KGRL methods to improve
performance.

(3) We conducted experiments on multiple benchmark
datasets to compare SP-TAG with methods that only
consider triples or integrate text information. (e
results also show that SP-TAG is more reliable with
few training samples because of its augmentation
and propagation characteristics.

2. Related Works

(is section reviews three types of KGRL methods: methods
that only use triples, methods that integrate text informa-
tion, and new key techniques we use in our method, i.e.,
GCNs.

2.1.Methods Based onTriples. (ese methods can be divided
into methods based on translation, rotation, and neural
networks (Figure 1). A classic translation method is TransE
[9]. For each triple, TransE considers the relation r to be a
translation operation from head entity h to tail entity t in
vector space and uses a distance function to calculate the
score, which in turn measures the confidence that the triple
is true. (e score function is as follows:

fr(h, t) � − ‖h + r − t‖1/2. (1)

TransE cannot effectively deal with complex relations
such as 1-to-N, N-to-1, and N-to-N relations. TransH [10],
TransR [21], and TransD [22] employ different projection
strategies to improve the representation ability of this ap-
proach and handle such complex relations. TransH [10]
maps the head and tail entity to different relation hyper-
planes for further calculation; TransR [21] embeds entities
and relations into entity and relation spaces, respectively,
and TransD [22] constructs a dynamic mapping matrix to
reduce the number of parameters of TransR.

(e concept in rotation methods originates from Euler’s
formula, eiθ � cos θ + i sin θ, which is used to embed entities
and relations into complex space. In RotatE [11], for each
triple, t is obtained from h through a rotation operation of
relation r, which greatly improves its ability to represent
symmetry relations such as “classmates.” (is method also
measures the confidence of the triple by calculating the
distance, as follows:

fr(h, t) � − ‖h ∘ r − t‖1. (2)
QuatE [23] improves on RotatE by extending the

complex space to quaternion space. MRotatE [24] combines
both entity and relation rotations to further improve its
ability to represent complex relations.

Many KGRL models are based on neural networks.
Typical models include models that extract the deep features
of triples using convolutional neural networks (CNNs) such
as ConvE [12] and ConvKB [25]; models that learn long-
distance KG relation dependencies using recurrent neural
networks (RNNs) such as RSN [26]; models that generate
trajectory sequences by traversing KGs using generative
adversarial networks (GANs) such as GRL [27]. (ese
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models perform well on real datasets, but the geometric
interpretation is not as clear as it is in translation- and
rotation-based methods. Because a neural network is a
“black box,” [28] its interpretability is not strong.

Triple-based models perform reasonably well, but they
often require sufficient training samples and are thus sus-
ceptible to sparsity in the KG. Moreover, such models do not
fully utilize auxiliary information, making it difficult to
accurately represent entity and relation semantics.

2.2. Methods Integrating Text Information. In some KGs,
entities have related text description information that does
not exist in the triples, thus complementing the repre-
sentation of the entities. To better utilize this information,
existing methods usually encode it as a vector (referred to
as text-based representations here) for joint training with
the triple-based entity representations (referred to as
structure-based representations here). Researchers origi-
nally used a one-hot or co-occurrence matrix to encode
text, but as the size of the text increases, the computational
complexity and number of parameters rapidly increase, and
hence this approach is not suitable for large corpora. (e
word embedding method Word2VEC [29] maps words
into a lower-dimensional dense vector that retains text
features and greatly reduces the computational complexity.
In recent years, with the development of deep learning,
CNNs [30], RNNs, and BERT [31] are often used to learn
and extract deep semantic features from text. BERT is a
pretrained model based on a multilayer transformer ar-
chitecture. It captures the contextual information of text
sequences and represents semantics accurately and
efficiently.

Models that integrate text information include DKRL [14]
and Joint [32], which use a continuous bag of words and CNN
for text encoding; STKRL [33], which uses an RNN to obtain
text sequence information; EDGE [34] and AATE [35], which
are based on the bidirectional long short-term memory
network; TA-ConvKB [36], which uses bidirectional short
and long term memory network with attention to encode the
text. (e text- and structure-based representations are gen-
erally combined when calculating the score functions. DKRL
fuses the two representations using interleaving operations.
Joint and AATE fuse the representations using combination

mechanisms such as a gate structure and weight parameters.
TA-ConvKB uses LSTM to combine the representations.
Pretrain-KGE [37] utilizes BERT to obtain textual repre-
sentations of entities and relations, introducing semantic
information into the triples.

Some models do not adopt the idea of a joint repre-
sentation. For instance, ConMask [15] allocates attention by
calculating the semantic similarity of each word in the head
entity description and relation, fuses the representation of
the head entity description word and relation representation
to extract features, matches tail entities, and ranks entities
according to similarity. ConMask does not exploit the
structural information of triples. OWE [38] establishes a
transformation matrix between the structure and text rep-
resentation space and converts the text-based representation
into a structure-based representation to calculate scores.
KG-BERT [39] treats triple reasoning as a sequence pre-
diction problem. By inputting all entity descriptions and
relations into the transformer, KG-BERT determines
whether the triple is correct according to the result of the
sequence output.

(ese models increase their representation ability by
integrating text information, but the text encoding process is
often independent of the structure of the KGs. It is difficult
to fully integrate the text information and KG structure, and
thus the utilization of the semantics in the text remains
insufficient. TEGER [16] uses TF-IDF to extract keywords
from text descriptions and connects them to the KG to
expand the KG. (en, TEGER follows traditional TransE
method to obtain the embeddings of entities and relations. It
strengthens the connection between text information and
knowledge graph and improves the link prediction results.

2.3. Graph Convolutional Network (GCN). A graph is
composed of nodes and edges. It is not a structured matrix,
and hence traditional CNN methods cannot be used for
feature extraction. To extract rich information from graphs,
the GCN [20] was proposed. Similar to a CNN, a GCN is
essentially an aggregation of operations on the neighbor-
hood information and can be divided into three steps. (e
nodes send their information to the neighbor nodes, ag-
gregate the information from their neighbors, and perform a
nonlinear transform on the aggregated information.
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Figure 1: KGRL methods based on (a) translation, (b) rotation, and (c) neural networks.
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However, a GCN cannot be directly used for KGs be-
cause it often ignores edge information, i.e., relations. Re-
lational graph convocational network (R-GCN) [40]
introduces a neighbor node aggregation model based on a
GCN that considers edge types. SACN [41] divides the entire
graph into multiple subgraphs that each contain only one
relation and then applies the GCN to each subgraph sep-
arately. TransGCN [42] combines the translation model and
GCN to learn the representation of entities and relations and
integrates the triple scoring function into the model.

Models based on GCNs usually propagate information
among the nodes in graph data to obtainmore complex node
neighbor features, which has strong potential in the field of
KGRL.

3. Proposed Method

In this study, a KG is denoted as K � E, R, T{ }, where E, R,
and T denote the sets of entities, relations, and triples, re-
spectively. Each triple is defined as (h, r, t), where h, r, and t
refer to the head entity, relation, and tail entity, respectively.
Its vector embeddings are denoted as the bold symbols h, r,
and t. (e text entity set extracted from the text description
is denoted as ener, and the text-augmented KG is KTAG.
Subscripts s and d represent the structure-based and text-
based representations of the entity, respectively, e.g., e.g., hs,
ts, hd, and td.

As noted in Section 2, most existing methods encode text
independently of the triple structural information. (is
makes these methods only retain the semantic information
in the text, while ignoring the connection between the text
and the knowledge graph structure. A few methods [16, 32]
connect the keywords from the text to the KG, realizing the
fusion of text and structure. But on the one hand, these
methods do not take into account the heterogeneous features
of knowledge graphs during embedding; on the other hand,
the methods used to obtain node representations only with
triple/graph structure (such as TransE or graph neural
networks) without preserving the semantics of the text
information.

In response, we propose a representation learning
method with semantic propagation on a text-augmented KG
called SP-TAG, combining the text and the structure, and
introducing rich semantic information. SP-TAG consists of
three parts: text-augmented KG construction, feature ini-
tialization and semantic propagation, and joint embedding.
SP-TAG is illustrated in Figure 2, in which the upper-left
part is the original KG K, where the blue squares represent
the entities, and the bottom is the corresponding KTAG,
where the green and red squares represent the entities and
text entities, respectively. (e rounded rectangles with
colored circles represent the embedding of the corre-
sponding elements.

3.1. Text-Augmented KG Construction. We construct a text-
augmented KG by extracting named entities from an entity’s
text description and connecting them to KG. An entity e in a
KG usually has a corresponding text description with related

information such as associated entities and attributes. We
focus on these keywords in the text description and extract
them.

Existing TF-IDF methods do not consider the specific
content, number, and parts of speech of keywords, leading to
potential noise caused by inappropriate keywords. (e
nodes in the knowledge graph are entities with clear
meaning, so we use named entity recognition to get the same
meaningful entity nodes (called text entities) from the text.
At the same time, considering the heterogeneous character
of knowledge graph, we hope that when the extracted text
entities are connected to the knowledge graph, different
edges can be selected according to the types of the text
entities.

We use the open-source natural language processing tool
Spacy (https://spacy.io/) to perform NER operations. (is is
a popular tool that has achieved good results on several
evaluation tasks in natural language processing. Spacy can
help us complete the preliminary text processing work,
allowing us to focus on the research of knowledge graph
representation learning. According to the settings of Spacy,
we select 11 common entity types and extract these types of
text entities from the text description of the original entity.
(e 11 types are described in Table 1.

Usually, there is an explicit or latent semantic correlation
between the text entities and original KG entities. (erefore,
we use two-direct edges to connect them to assist two-way
semantic propagation. Simultaneously, for new connections,
we do not consider the specific semantics of the edges,
distinguishing them only by text entity types.

When a text entity is connected to KG, node number
around the original entity e in KG increases, and the
resulting KG is called a text-augmented KG (KTAG). For
example, in Figure 3, “/m/03ftmg” and “/m/013bd1” are the
entities in the KG, and the five terms in the dashed rectangles
are named (text) entities. Here, two entities not directly
connected in the KG acquire a common text entity node
neighbor. (erefore, semantic information can be propa-
gated between then using a GCN.(e left entity in the figure
is the screenwriter “Anthony Horowitz,” whereas the right
entity is the actor “David Suchet,” and the middle text entity
“Agatha Christie’s Poirot” happens to be the name of the TV
series associated with them both. In this way, the potential
associations of entities in the text can be mined and added to
the KG, augmenting their semantic associations.

Note that the number of text entities around each entity
may differ, while the number of entities in the original KG
connected to a text entity may also differ. For example,
“Agatha Christie’s Poirot” connects two nodes, whereas all
other text entities connect only one node.

In SP-TAG, text entities connected with only one entity
are removed from KTAG. Text entities are extracted to
connect two entities in the KG that may have semantic
associations but no explicit triple, so that we can propagate
semantics between them. If a text entity does not establish a
connection between two entities, it does not represent
additional necessary information. Retaining it will increase
the complexity of the model. Moreover, some text entities,
such as country and place names, connect too many entities.
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(e relationships between these entities may not have
practical significance, resulting in unnecessary semantics.
For example, it is not informative for the entity “parrot” to
share semantics with “Silicon Valley” via “United States.” To
consider both aspects, we define a threshold k in SP-TAG,
and only when the number of text entities connected to
entities is greater than 1 and less than k, are the text entities
and their connections preserved. We will carry out ex-
periments on parameter k. Details are provided in Section
5.2.

SP-TAG learns the text-based representation of entities
from KTAG. In contrast to existing models that integrate text
information, SP-TAG augments the existing KG by
extracting named entity nodes. (is both alleviates the
sparsity of KG and lays a foundation for subsequent joint
learning of text- and structure-based representations.

3.2. Feature Initialization and Semantic Propagation.
SP-TAG adopts the existing classical KGRL methods such as
TransE and RotatE to initialize the structure-based repre-
sentation. (is representation, which has more credible
structure semantics, is directly derived from the triples in the
KG and is key in the prediction and reasoning of missing
elements in triples.

SP-TAG initializes text-based representations of entities
and text entities in KTAG. Because each entity has an explicit
text description, we use BERT to directly encode the entity
description. (at is, for the textual description S(e) of each
entity, there is a text-based representation ed � BERT(S(e))

preserving the semantics of the original description. Since
the text entity will learn semantic features along with the
entity in the subsequent semantic propagation, to ensure
that the representations of the text entity and entity are in the
same semantic space, SP-TAG directly inputs the text entity
name into BERT to obtain its text-based representation, that
is, ener � BERT(name(ener)).

After initialization, we continue semantic propagation.
During the construction of KTAG, text entities are only
connected to original entities, and no edges will be generated
between text entities; therefore, direct semantic propagation
only occurs between entities and text entities, and between
entities and entities. Hence, we focus on semantic propa-
gation between those entities that do not have explicit triples
in K but are connected by text entities in KTAG.

We assume that the correlation between entities in the
knowledge graph will decrease as the distance increases. It is
meaningless to propagate semantic information from one
entity to distant entities. (e propagation process itself will

Table 1: Extracted named entity types.

Type Abbr Description
1 Person People
2 NORP Nationality, religion, etc.
3 FAC Building, airport, etc.
4 ORG Company, agency, etc.
5 GPE Country, city, etc.
6 LOC Mountain, water, etc.
7 Product Objects, vehicles, etc.
8 Event Battle, war, event, etc.
9 Work_of_art Book, song, etc.
10 Law Document made into law
11 Language Named language
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Figure 2: Overall schematic diagram of SP-TAG. (is figure is recommended for viewing in color.
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bring information attenuation as well.(erefore, it is needed
to define a threshold to limit the propagation, as well as
reduce the computation and simplify the model. By con-
sulting literature and conducting experiments, we set the
threshold as 2.

As shown in Figure 4, there are the following three main
situations: (1) entity to entity, (2) entity to entity to entity,
and (3) entity to text entity to entity. Situation 1 realizes the
close-range semantic propagation between entities with a
one-hop connection, situation 2 realizes longer-distance
semantic propagation between entities with a two-hop
connection, and situation 3 realizes distant semantic
propagation between entities connected by a text entity.

Semantic propagation is realized using a simple GCN.
(e graph convolution operator is expressed as follows:

h
(l+1)
i � σ 􏽘

j∈Ni

1/cij􏼐 􏼑W
(l)

h
(l)

j
⎛⎝ ⎞⎠, (3)

where h
(l)
i is the feature vector for node i in the lth neural

network layer, Ni is the set of neighbors of node i, cij is the
normalization constant for edge (vi, vj), W(l) is a layer-
specific weight matrix, and σ is the activation function.

Because a KG is essentially a heterogeneous graph, we
also considered the use of the more suitable R-GCN for
semantic propagation on KTAG. R-GCN is a variant of the
GCN that introduces a specific weight parameter for each
relation. (erefore, during semantic propagation, SP-TAG
dynamically learns the appropriate weight parameters for
different relations to obtain the semantics from neighbor
nodes more accurately. We compare the results of GCN and
R-GCN in the ablation study.

(e overall update process of R-GCN is as follows:

h
(l+1)
i � σ 􏽘

r∈R
􏽘

j∈Nr
i

1/cr
ij􏼐 􏼑W

(l)
r h

(l)
j + W

(l)
0 h

(l)
i

⎛⎝ ⎞⎠, (4)

Situation 1 Situation 2 Situation 3

Corresponding colors: Entity Text entity

Figure 4: Different situations of semantic propagation in KTAG. Squares of different colors represent entities and text entities, and arrows
represent the process of semantic propagation between these entities.
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Figure 3: Example of a text-augmented KG. It describes the connection of two entities through a common text entity and implements the
process of semantic propagation.
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where h
(l)
i is the feature vector for node i in the lth neural

network layer,Nr
i is the set of neighbors of node i with edge

r, cr
ij is the normalization constant for edge (vi, vj) with edge

r, W(l)
r is a layer-specific weight matrix with edge r, W

(l)
0 is

the self-loop weight, and σ is an activation function. Both
GCN and R-GCN can transform the dimensions of the
embedding, so the output of the BERT encoder can be
transformed to the required dimensions.

(e initialized representations ed and ener are the input
of GCN. After the semantic propagation in the network, the
output will contain the information of the original entity and
the text entity itself, which also incorporates the information
of the surrounding neighbor nodes.

In contrast to existing models that integrate text in-
formation, SP-TAG uses the pretraining model BERT to
better express the semantic information of nodes in a text-
augmented KG. With GCN-based semantic propagation,
adjacent entities and text entities can share semantics.

In the following experiments, we will also compare the
influence of whether the GCN is used for semantic prop-
agation on the results. Details are provided in Section 5.3.

3.3. Joint Embedding. To preserve both the structural se-
mantic information of the triples and the text semantic
information of the entity descriptions, SP-TAG adopts a gate
mechanism [32] to combine the two parts and obtain the
final representation of the entity. When the two represen-
tations are combined, the weights in each dimension of the
vector are automatically learned without manual parameter
setting. Moreover, the gate vectors learned for different
entities are different. In addition, the entire model can be
trained in an end-to-end manner. For entity e, the ex-
pression for combining its structure- and text-based rep-
resentations are as follows:

e � ge ⊙ es + 1 − ge( 􏼁⊙ ed, (5)

where es and ed are the structure- and text-based repre-
sentations of the entity, respectively, ge is the gate that
balances the two representations, and ⊙ is element-wise
multiplication.

To constrain the value of each element in ge to [0, 1], we
use a sigmoid function as activation, i.e.,

ge � σ 􏽥ge( 􏼁, (6)

where 􏽥ge is a vector specific to entity e and is simultaneously
initialized and optimized with es and ed. (e representations
of the head entity, relationship, and tail entity are as follows:

h � gh ⊙hs + 1 − gh( 􏼁⊙hd,

r � rd,

t � gt ⊙ ts + 1 − gt( 􏼁⊙ td.

(7)

In KGRL research, the construction of negative samples
is an important aspect of training, and the quality of their
construction affects model performance. For example,
during training, many triples are easily judged to be wrong
by the model, and sampling these triples does not provide

new information for training. To obtain high-quality neg-
ative samples, Sun et al. [11] proposed a self-adversarial
sampling method that performs dynamic sampling
according to the representation of entities and relations, so
that new negative samples contain new information. (e
method samples negative triples according to the probability
distribution:

p hj
′, r, tj
′
􏼌􏼌􏼌􏼌􏼌 hi, ri, ti( 􏼁􏼈 􏼉􏼈􏼒 􏼓 �

exp αfr hj
′, tj
′􏼐 􏼑

􏽐iexp αfr hi
′, ti
′( 􏼁

, (8)

where α is the sampling rate and f(hi
′, ti
′) is the score of the

triple. (is probability is also introduced into the loss
function as the weights of the triples. (e overall loss
function of the model is as follows:

L � − log σ(c − f(h, t)) − 􏽘
n

i�1
p hi
′, r, ti
′( 􏼁log σ f hi

′, ti′( 􏼁 − c( 􏼁,

(9)

where c is the margin hyperparameter, σ is the sigmoid
function, and (hi

′, r, ti
′) is the ith negative sample. (e model

is trained to minimize the loss function, optimize param-
eters, and improve the quality of the entity and relation
embedding.

4. Results and Discussion

We evaluated the model performance using a typical link
prediction task. We also outperformed a hyperparameter
analysis, ablation study, and semantic augmentation veri-
fication with a small number of training samples.

4.1. Experiment Setup

4.1.1. Baselines. (e comparative baseline models used in
this experiment fall into two categories: triple-based
methods (TransE [9], TransH [10], ConvE [12], ConvKB
[25], R-GCN [40], RotatE [11], and MRotatE [24]) as well as
methods that integrate text information (DKRL [14], Jointly
[32], TEKE_E [43], AATE_E [35], ConMask [15], TA-
ConvKB [36], BCRL [44], Pretrain-KGE [37], and TEGER
[16]).

4.1.2. Datasets. We used the datasets FB15K and WN18
[45], from the two real-world KGs Freebase and WordNet
(Table 2). In addition to the triples, they include a specific
text description of each entity. FB15K and WN18 have been
widely used. However, several researchers argued that there
are many inverse relations in FB15K and WN18 that cause
data leakage. (erefore, these inverse relations were re-
moved, yielding FB15K-237 [46] and WN18RR [12].

Table 2: Statistics of the datasets.

Dataset # entities # relations # train # valid # test
FB15K 14,951 1,344 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466
WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134
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4.1.3. Evaluation Metrics. (e evaluation metrics mean rank
(MR), mean reciprocal rank (MRR), and HITS@N were used.
MR reflects the average ranking of correct triples in all
prediction results, where smaller values indicate better per-
formance, MRR reflects the average of the reciprocal rankings
of all correct triples, where larger values indicate better
performance, and HITS@N reflects the correct triples in the
top n results, where larger values indicate better performance.

4.1.4. Implementations. Depending on the dataset, the
ranges of some parameter values vary. For FB15K and
FB15K-237, vector dimension is defined as
d ∈ 600, 700, 800{ } and margin hyperparameter is defined as
c ∈ 6, 12, 18{ }. For WN18RR and WN18, vector dimension

is defined as d ∈ 80, 100, 200{ } and margin hyperparameter
is defined as c ∈ 6, 9, 12{ }. In the selection of the remaining
parameters, sampling rate is defined as α ∈ 0.5, 1.0{ } and
learning rate is defined as λ � 0.00005. When using BERT to
encode text, the maximum truncation length for text entity
descriptions was set to 100 words. We use Adam [47] to
optimize the parameters.

4.2. Results and Analysis

4.2.1. Link Prediction. We evaluated the performance of the
method by predicting the missing head or tail entities in
triples. We tested the performance of SP-TAG with two
representative methods TransE and RotatE and compared it

Table 3: Results on FB15K and WN18.

Method
FB15K WN18

MR MRR HITS
@1 HITS @3 HITS @10 MR MRR HITS @1 HITS @3 HITS @10

TransE [†] — 0.463 0.297 0.578 0.749 — 0.495 0.113 0.888 0.943
TransH [†] 40 0.734 0.651 0.796 0.867 284 0.719 0.598 0.806 0.923
ConvE [†] 51 0.657 0.558 0.723 0.831 374 0.943 0.935 0.946 0.956
R-GCN — 0.651 0.541 0.736 0.825 — 0.814 0.686 0.928 0.955
RotatE [†] 40 0.797 0.746 0.830 0.884 309 0.949 0.944 0.952 0.959
MRotatE [†] 46 0.807 0.762 0.833 0.886 272 0.950 0.945 0.952 0.959
DKRL 113 — — — 0.576 — — — — —
Jointly (A-LSTM) 77 — — — 0.755 123 — — — 0.909
TEKE_E 79 — — — 0.676 127 — — — 0.938
AATE_E 76 — — — 0.761 123 — — — —
ConMask (head) 116 — — — 0.620 — — — — —
ConMask (tail) 80 — — — 0.620 — — — — —
BCRL 67 — — — 0.823 90 — — — 0.949
Pretrain-TransE 37 0.731 — — 0.866 85 0.757 — — 0.928
Pretrain-RotatE 38 0.784 — — 0.881 125 0.927 — — 0.962
TEGER-TransE 72 — — — 0.763 168 — — — 0.947
TEGER-ConvE 47 — — — 0.851 336 — — — 0.956
SP-TAG-TransE 52 0.646 0.530 0.734 0.829 103 0.783 0.693 0.854 0.947
SP-TAG-RotatE 41 0.756 0.668 0.821 0.888 72 0.946 0.930 0.952 0.963
Best results are in bold and the second best results are italics. Results of [†] are taken from reference [24]. Other results come from the corresponding original
papers.

Table 4: Results on FB15K-237 and WN18RR.

Method
FB15K-237 WN18RR

MR MRR HITS
@1

HITS
@3

HITS
@10 MR MRR HITS

@1
HITS
@3

HITS
@10

TransE [†] 347 0.294 — — 0.465 3384 0.226 — — 0.501
TransH [†] 173 0.331 0.232 0.371 0.529 3748 0.212 0.008 0.386 0.496
ConvE [†] 244 0.325 0.237 0.356 0.501 4187 0.430 0.390 0.430 0.520
ConvKB [††] 257 0.406 — — 0.517 1754 0.248 — — 0.520
RotatE [†] 177 0.338 0.241 0.375 0.533 3340 0.476 0.428 0.492 0.571
MRotatE [†] 195 0.333 0.238 0.368 0.524 4890 0.477 0.440 0.488 0.552
TA-ConvKB [††] 248 0.426 — — 0.539 1360 0.267 — — 0.568
Pretrain-TransE 162 0.332 — — 0.529 1747 0.235 — — 0.557
Pretrain-RotatE 168 0.337 — — 0.534 2138 0.447 — — 0.580
SP-TAG-TransE 171 0.330 0.232 0.375 0.530 1423 0.239 0.210 0.401 0.537
SP-TAG-RotatE 162 0.343 0.244 0.380 0.541 942 0.470 0.408 0.497 0.588
Best results are in bold and the second best results are italics. Results of [†] are taken from reference [24] and results of [††] are taken from reference [36].
Other results come from the corresponding original papers.
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with the baselines introduced above, making the results
more convincing and trustworthy. Tables 3 and 4 list the
results of SP-TAG and the baselines. Methods above the
horizontal solid line only consider triples, whereas those
below the line integrate text information.

(e results in Tables 3 and 4 yield the following
observations:

(1) Compared with the triple-based methods, methods
integrating text information generally perform better
with respect to MR and HITS@10, whereas for
HITS@1, HITS@3, and MRR, they also perform
competitively. (is reveals that text information
effectively improves the lower bound of the entity
link prediction ranking and improves average pre-
diction performance.

(2) Compared with the original models TransE and
RotatE, the SP-TAG-based models perform signifi-
cantly better, demonstrating that text information
brings more semantic features to entities. When the
triple structure information is insufficient, text is a
powerful complement that improves the perfor-
mance of representation learning.
(ough TransE is an early method, SP-TAG-TransE
can still achieve excellent results and is comparable
with recent models, demonstrating that classical
models can achieve very good results through KG
augmentation and semantic propagation. Taking
WN18RR as an example, the MR of the SP-TAG-
TransE model (1423) is still substantially better than
those of recent models (>2000), and the difference
with respect to SP-TAG-RotatE is quite small. (ese
models obtain the top two results.

(3) SP-TAG-RotatE achieved the best MR, HITS@3 and
HITS@10 results of all methods on FB15K-237,
WN18, and WN18RR, and its MRR, HITS@1 were
among the top results. On FB15K-237, the im-
provement obtained by SP-TAG is not as obvious as it
is on WN18RR. However, considering the perfor-
mance of the original method, the improvement is
substantial, reaching an average level. We believe that
because of the more complex scale and structure of
FB15K-237, the triple structure contains more in-
formation than WN18RR itself, so the augmentation
and semantic propagation effects are not as obvious.

(4) Because FB15K-237 and WN18RR have no inverse
relations, link prediction on these datasets is more
difficult. On these datasets, SP-TAG’s performance
metrics decrease less and are more stable than those
of Pretrain-KGE. (e MR of Pretrain-RotatE de-
creased from 125 on WN18 to 2138 on WN18RR,
whereas the MR of SP-TAG-RotatE only decreased
from 72 to 942. On FB15K and FB15K-237, they
performed comparably. Hence, when the complexity
of the dataset increases, SP-TAG has better stability
and adaptability because of the augmentation of the
KG and semantic propagation.

4.2.2. Parameter Analysis. To analyse the impact of semantic
propagation on KTAG, SP-TAG-RotatE is used to analyse
hyperparameter k. Figure 5 shows the distribution of the
numbers of original entities connected to each text entity in
KTAG. (e abscissa is the number of connected entities, and
the ordinate is the number of corresponding text entities.

In each KTAG, many text entities connect to only one
entity. More than 1,500 such text entities exist in WN18RR
(14.9% of all text entities) and more than 60,000 exist in
FB15K-237 (30% of all text entities). As mentioned in
previous section, retaining such text entities does not
propagate semantics between entities and increases overall
complexity. (e small histograms on the right show that the
number of text entities is roughly inversely proportional to
the number of connected entities.

(e descriptions of entities in FB15K-237 are longer and
more detailed than in WN18RR, so more text entities can be
extracted to enhance the KG, and we tend to use a smaller k

for FB15K-237 and a larger k for WN18RR. When choosing
the value of k, we set k to 2, 3, 4{ } for FB15K-237 and
2, 4, 8, 12{ } for WN18RR. Figure 6 lists the specific number
of text entities and the number of new triples in KTAG under
different k, where the abscissa is the hyperparameter k, and
the two histograms represent the number of new text entities
and the number of new triples.

Table 5 further compares the numbers of nodes, edges,
and average edges per node of K and the corresponding
KTAG for different values of k. After the augmentation, the
number of edges (i.e., number of triples) has been increased
to a certain extent. For example, the average number of edges
per node inWN18RR increased by 6.6%, and that in FB15K-
237 increased by 28.5%.(erefore, the entities are associated
more tightly, and semantics are fully propagated on KTAG.

Figure 7 and Table 6 show the results of link prediction
for FB15K-237 and WN18RR when k varies. Of the five
metrics, MR is the most sensitive to hyperparameter k. On
FB15K-237, as k increases, the link prediction metrics
slightly decrease. On WN18RR, as k gradually increases
from 2 to 8, the link prediction performance improves, but
when k further increases to 12, the results are worse. (is is
due to the overpropagation of semantics.(e addition of too
many text entities induces noise, as described before. Hence,
it is important to choose the number of text nodes when
constructing KTAG.

(e remaining main hyperparameters are dimension d

and margin c. For SP-TAG-RotatE, we used a grid search to
select the optimal parameters (FB15K-237: c � 12, d � 800
and WN18RR: c � 12, d � 200). Figure 8 and Tables 7 and 8
present the results when one of the parameters is fixed and
the other is adjusted (the remaining unrelated parameters
are fixed).

(e results reveal that

(1) For both datasets, the effect of c on the results is
obvious. When c is optimized, the performance of
the model significantly improves (WN18RR, c � 12).
However, if the value is not appropriate, the per-
formance decreases (FB15K-237, c � 18).
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(2) On both datasets, as the dimension increases, the
performance of the model improves, indicating that
vectors with higher dimensions are important for
fully expressing the features of entities and relations.
(e dimension parameter is typically related to

dataset complexity. In terms of scale and content,
FB15K-237 is more complex than WN18RR, and
hence to represent the features of entities and re-
lations in this dataset, a higher dimension is
required.
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(3) (e effect of the parameter values is more pro-
nounced on WN18RR. For simple datasets, finding
appropriate parameters can effectively improve the
performance of the model, whereas for more com-
plex datasets, additional factors must be considered.

To explore the influence of hyperparameters on datasets
from the same KG with different distributions, we also used
SP-TAG-RotatE to compare the results of WN18 and
WN18RR for different values of d and c.

Figure 9 reveals that as the dimension increases, MR is
significantly improved, whereas the other four metrics
slightly improve. With the increase in c, MRR and HITS@1
significantly improve, and HITS@3 and HITS@10 slightly
improve.

(e results of MRR and HITS@1 in Table 9 show that c

still has a significant impact on this dataset. Unlike on
WN18RR, on WN18, d is an important factor. In addition,
parameter adjustment has a greater impact on WN18 (MRR
increased by 18.8% from 0.796 to 0.946, and MR decreased
by 76.1% from 301 to 72), whereas WN18RR was relatively
less sensitive (MRR increased by 5.6% from 0.445 to 0.47,
and MR decreased by 18.8% from 1160 to 942). As men-
tioned above, a large number of inverse relations in WN18
were removed to create WN18RR, making the WN18RR
dataset more complex; in other words, WN18 has more data
containing more information, making WN18 simpler.
Consistent with previous experimental results, the simpler
the dataset, the greater the impact of parameter tuning on
the results. (e data distributions are different, and thus the
hyperparameters have different effects on them.

4.2.3. Ablation Study. We evaluated the effect of GCN and
R-GCN in semantic propagation as well as the importance of
semantic propagation by replacing GCN with a linear
transform. (e linear transform is obtained by a matrix
operation Mp∗q, where p represents the embedding di-
mension and q represents the output dimension of the BERT
encoder. Finally, we demonstrate the importance of textual
information and the gate mechanism by replacing the BERT
text initialization vector with a random vector and the gate
vector with a constant.

Table 5: Statistics of original KG and KTAG.

Dataset k
# nodes # edges Average edges per node

Before After Before After Before After Lift (%)

FB15K-237
2

14,541
+9424

272,115
+37696

18.71
21.31 13.9

3 +13212 +60424 22.87 22.2
4 +15347 +77504 24.04 28.5

WN18RR

2

40,943

+301

86,835

+1204

2.12

2.15 1.4
4 +509 +2598 2.18 3.0
8 +662 +4514 2.23 5.2
12 +721 +5716 2.26 6.6
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Figure 7: Line charts of parameter k analysis on FB15K-237 and WN18RR.

Table 6: Results of parameterk analysis on FB15K-237 and
WN18RR.

k
FB15K-237 WNRR18

k � 2 k � 3 k � 4 k � 2 k � 4 k � 8 k � 12
MRR 0.343 0.340 0.340 0.468 0.469 0.470 0.464
HITS@1 0.244 0.244 0.243 0.409 0.403 0.408 0.399
HITS@3 0.380 0.378 0.379 0.494 0.495 0.497 0.496
HITS@10 0.541 0.535 0.535 0.582 0.588 0.588 0.582
MR 162 168 168 981 964 942 985
Best results are in bold.
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Table 10 reveals that on both FB15K-237 and WN18RR,
when the dimensions are the same, the effect of using GCN
for semantic propagation is not as good as that of R-GCN,
indicating that for each relation, setting a different weight
matrix to distinguish their semantics improves results.
Moreover, when R-GCN is used instead of the linear
transform, the model has significant advantages in MRR,
HITS@1, and HITS@3, demonstrating that semantic
propagation further improves the original top-ranked pre-
diction results.

Table 11 reveals that on both datasets, the gate mech-
anism helps balance the text- and structure-based repre-
sentations, and the semantic information introduced by
BERT effectively improves the representation learning
performance of entities.

4.2.4. Verifying Semantic Augmentation with Few Training
Samples. To further illustrate how SP-TAG more fully
utilizes the semantic information in text, we reduced the
number of training samples in the WN18RR dataset. (e
total number of entities remained the same, but the number
of triples was reduced by 60%.
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Figure 8: Line charts of parameter d and c analysis on FB15K-237 and WN18RR.

Table 7: Results of parameter c analysis on FB15K-237 and
WN18RR.

c
FB15K-237 WNRR18

c � 6 c � 12 c � 18 c � 6 c � 9 c � 12
MRR 0.323 0.343 0.337 0.448 0.468 0.470
HITS@1 0.225 0.244 0.241 0.372 0.404 0.408
HITS@3 0.364 0.380 0.371 0.478 0.494 0.496
HITS@10 0.520 0.541 0.528 0.585 0.588 0.588
MR 175 162 180 1559 1009 942
Best results are in bold.

Table 8: Results of parameter d analysis on FB15K-237 and
WN18RR.

d
FB15K-237 WNRR18

d � 600 d � 700 d � 800 d � 80 d � 100 d � 200
MRR 0.338 0.339 0.343 0445 0.461 0.470
HITS@1 0.240 0.241 0.244 0.371 0.395 0.408
HITS@3 0.377 0.378 0.380 0.486 0.493 0.496
HITS@10 0.532 0.534 0.541 0.578 0.580 0.588
MR 168 167 162 1160 1066 942
Best results are in bold.
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To make the comparison more convincing, the DKRL
method (BERT+TransE), which also integrates textual in-
formation, was evaluated to highlight the importance of the
text-augmented KG and semantic propagation when the
number of training samples is limited.

(e results in Table 12, demonstrate that the models
DKRL and SP-TAG combined with text information per-
form significantly better than TransE, which only uses triples
in link prediction. When there are fewer training samples,
the models obtain more entity feature information from the
text, effectively compensating for the lack of triple training
samples. Compared with the performance of DKRL, the
performance of SP-TAG is obviously better in all three

metrics. Its MR is very close to the results obtained by some
methods on the complete training set (e.g., Pretrain-RotatE).
(ese results further demonstrate that SP-TAGmore closely
connects entities in KG by connecting text entities and better
achieves semantic propagation between related entities.

5. Conclusion and Future Work

To address the problem of insufficient utilization of text
semantic information in existing methods, we proposed SP-
TAG, which is based on text-augmented KG semantic
propagation to better realize the full integration of text
semantics and structural semantics and further improve the
utilization of text information. (e experimental analysis on
multiple benchmark datasets demonstrated that SP-TAG
can effectively improve link prediction performance, espe-
cially when the number of training samples is limited.
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Table 9: Results of parameter d and c analysis on WN18.

FB15K-237 WNRR18
c � 6 c � 9 c � 12 d � 80 d � 100 d � 200

MRR 0.796 0.921 0.946 0.929 0.942 0.946
HITS@1 0.655 0.886 0.930 0.912 0.925 0.930
HITS@3 0.932 0.952 0.952 0.947 0.948 0.952
HITS@10 0.958 0.960 0.963 0.951 0.955 0.963
MR 58 63 72 301 295 72
Best results are in bold.

Table 10: Effect of semantic propagation on performance.

Method FB15K-237 SP-TAG-RotatE
MR MRR HITS@1 HITS@3 HITS@10

w/R-GCN 172 0.322 0.226 0.361 0.515
w/GCN 185 0.310 0.220 0.352 0.508
w/GCN [†] 162 0.343 0.244 0.380 0.541
w/linear [†] 153 0.337 0.240 0.373 0.534

Method WN18RR SP-TAG-RotatE
MR MRR HITS@1 HITS@3 HITS@10

w/R-GCN 942 0.470 0.408 0.497 0.588
w/GCN 2080 0.197 0.015 0.319 0.549
w/linear 802 0.453 0.376 0.493 0.595
[†] denotes that the embedding dimension is 800, whereas the others are
200. Best results are in bold.

Table 11: Effect of the gate mechanism and BERT encoder on
performance.

Method FB15K-237 SP-TAG-RotatE
MR MRR HITS@1 HITS@3 HITS@10

Baseline 172 0.322 0.226 0.361 0.515
w/o GATE 196 0.316 0.221 0.351 0.507
w/o BERT 261 0.300 0.212 0.330 0.476

Method WN18RR SP-TAG-RotatE
MR MRR HITS@1 HITS@3 HITS@10

Baseline 942 0.470 0.408 0.497 0.588
w/o GATE 2551 0.450 0.392 0.477 0.561
w/o BERT 4822 0.456 0.421 0.468 0.524
Best results are in bold.

Table 12: Link prediction results with few training samples.

Method MR MRR HITS@10
TransE 9738 0.138 0.339
DKRL (BERT+TransE) 4343 0.139 0.349
SP-TAG-TransE 2248 0.145 0.371
Best results are in bold.
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Our experimental results demonstrate the feasibility of
the theory and indicate the significance of continuing re-
search in this direction. In the future, the following further
improvements could be considered:

(1) When building a text-augmented KG, the entities
and text entities could be aligned to make the KG
more streamlined and accurate.

(2) During semantic propagation, the attention mech-
anism can be further combined to obtain different
representations of entities for different relations.

(3) For entities that do not appear in the training set, text
information could be used to represent them to
achieve zero-shot prediction or open KG prediction.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by the NSF of Henan Province,
China, under grant no. 222300420590.

References

[1] C. Xiong, R. Power, and J. Callan, “Explicit Semantic Ranking
for Academic Search via Knowledge Graph Embedding,” in
Proceedings of the 26th International Conference on World
Wide Web, pp. 1271–1279, Perth, Australia, April 2017.

[2] F. Zhang, N. J. Yuan, D. Lian, X. Xing, and M. Wei-Ying,
“Collaborative Knowledge Base Embedding for Recom-
mender Systems,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp. 353–362, San Francisco, CA, USA, August 2016.

[3] H. Fan, Y. C. Zhong, G. P. Zeng, and C. Ge, “Improving
recommender system via knowledge graph based exploring
user preference,” Applied Intelligence, vol. 52, no. 9, Article ID
10032, 2022.

[4] Y. Hao, Y. Zhang, K. Liu et al., “An end-to-end model for
question answering over knowledge base with cross-attention
combining global knowledge,” in Proceedings of the ACL,
pp. 221–231, Vancouver, CANADA, July 2017.

[5] M. R. A. H. Rony, D. Chaudhuri, R. Usbeck, and J. Lehmann,
“Tree-KGQA: an unsupervised approach for question an-
swering over knowledge graphs,” IEEE Access, vol. 10, Article
ID 50467, 2022.

[6] K. Bollacker, C. Evans, P. Paritosh, S. Tim, and T. Jamie,
“Freebase: a collaboratively created graph database for
structuring human knowledge,” in Proceedings of the 2008
ACM SIGMOD international conference on Management of
data, pp. 1247–1250, Vancouver, CANADA, June 2008.

[7] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of
semantic knowledge,” in Proceedings of the 16th international
conference on World Wide Web, pp. 697–706, Banff, Canada,
May 2007.

[8] G. A. Miller, “WordNet: a lexical database for English,”
Communications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[9] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in Proceedings of the 26th International
Conference on Neural Information Processing Systems, Lake
Tahoe, NV, USA, 2013.

[10] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence,
pp. 1112–1119, Quebec City, CANADA, July 2014.

[11] Z. Sun, Z. H. Deng, J. Y. Nie, and T. Jian, “Rotate: knowledge
graph embedding by relational rotation in complex space,” in
Proceedings of the ICLR, New Orleans, LA, USA, 2019.

[12] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel,
“Convolutional 2D knowledge graph embeddings,” in Pro-
ceedings of the AAAI, pp. 1811–1818, New Orleans, LA, USA,
July 2018.

[13] R. Socher, D. Chen, C. D. Manning, and Y. N. Andrew,
“Reasoning with neural tensor networks for knowledge base
completion,” in Proceedings of the 26th International Con-
ference on Neural Information Processing Systems, pp. 926–
934, Lake Tahoe, NV, USA, December 2013.

[14] R. Xie, Z. Liu, J. Jia, L. Huanbo, and S. Maosong, “Repre-
sentation learning of knowledge graphs with entity descrip-
tions,” in Proceedings of the AAAI, pp. 2659–2665, Phoenix,
AZ, USA, 2016.

[15] B. Shi and T. Weninger, “Open-World knowledge graph
completion,” in Proceedings of the AAAI, pp. 1957–1964, New
Orleans, LA, USA, 2018.

[16] L. Hu, M. Zhang, S. Li et al., “Text-graph enhanced knowledge
graph representation learning,” FRONTIERS IN ARTIFICIAL
INTELLIGENCE, vol. 4, Article ID 697856, 2021.

[17] Z. Geng, Y. Zhang, and Y. Han, “Joint entity and relation
extraction model based on rich semantics,” Neurocomputing,
vol. 429, pp. 132–140, 2021.

[18] Z. Geng, J. Li, Y. Han et al., “Novel target attention con-
volutional neural network for relation classification,” Infor-
mation Sciences, vol. 597, pp. 24–37, 2022.

[19] H. Z. Yu, H. S. Li, D. H. Mao, and Q. Cai, “A relationship
extraction method for domain knowledge graph construc-
tion,” World Wide Web, vol. 23, no. 2, pp. 735–753, 2020.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” in Proceedings of the
ICLR, Toulon, France, 2017.

[21] Y. Lin, Z. Liu, M. Sun, L. Yang, and Z. Xuan, “Larning entity
and relation embeddings for knowledge graph completion,”
in Proceedings of the AAAI, pp. 2181–2187, Austin, TX, USA,
January 2015.

[22] G. Ji, S. He, L. Xu, L. Kang, and Z. Jun, “Knowledge Graph
Embedding via Dynamic Mapping Matrix,” in Proceedings of
the ACL, pp. 687–696, Beijing, China, July 2015.

[23] S. Zhang, Y. Tay, L. Yao, and Q. Liu, “Quaternion knowledge
graph embeddings,” in Proceedings of the NIPS, pp. 2731–
2741, Vancouver, CANADA, 2019.

[24] X. Huang, J. Tang, Z. Tan, W. Zeng, J. Wang, and X. Zhao,
“Knowledge graph embedding by relational and entity ro-
tation,” Knowledge-Based Systems, vol. 229, Article ID 107310,
2021.

[25] D. Q. Nguyen, D. Q. Nguyen, T. D. Nguyen, and D. Phung, “A
convolutional neural network-based model for knowledge
base completion and its application to search personaliza-
tion,” Semantic Web, vol. 10, no. 5, pp. 947–960, 2019.

14 Computational Intelligence and Neuroscience



[26] L. Guo, Z. Sun, and W. Hu, “Learning to exploit long-term
relational dependencies in knowledge graphs,” in Proceedings
of the ICML, pp. 2505–2514, Long Beach, CA, USA, 2019.

[27] Q. Wang, Y. Ji, Y. Hao, and J. Cao, “GRL: knowledge graph
completion with GAN-based reinforcement learning,”
Knowledge-Based Systems, vol. 209, p.106421, 2020.

[28] Y. Liang, S. Li, C. G. Yan, M. Li, and C. Jiang, “Explaining the
black-box model: a survey of local interpretation methods for
deep neural networks,” Neurocomputing, vol. 419, pp. 168–
182, 2021.

[29] T. Mikolov, I. Sutskever, K. Chen, C. Greg, and D. Jeffrey,
“Distributed representations ofwords and phrases and their
compositionality,” in Proceedings of the NIPS, pp. 3111–3119,
Lake Tahoe, NV, USA, December 2013.

[30] Y. Li and C. B. Yin, “Application of dual-channel convolu-
tional neural network algorithm in semantic feature analysis
of English text big data,” Computational Intelligence and
Neuroscience, vol. 2021, Article ID 7085412, 15 pages, 2021.

[31] J. Devlin, M. W. Chang, K. Lee, and T. Kristina, “BERT: Pre-
training of Deep Bidirectional Transformers for Language
Understanding,” in Proceedings of the NAACL-HLT,
pp. 4171–4186, Minneapolis, MN, USA, 2019.

[32] J. Xu, X. Qiu, K. Chen, and H. Xuanjing, “Knowledge Graph
Representation with Jointly Structural and Textual Encoding,”
in Proceedings of the IJCAI, pp. 1318–1324, Melbourne,
Australia, 2017.

[33] J. Wu, R. Xie, Z. Liu, and S. Maosong, “Knowledge Repre-
sentation via Joint Learning of Sequential Text and Knowledge
Graphs,” 2016, https://arxiv.org/abs/1609.07075.

[34] S. Rezayi, H. Zhao, S. Kim, A. R. Ryan, L. Nedim, and
L. Sheng, “EDGE: Enriching Knowledge Graph Embeddings
with External Text,” 2021, https://arxiv.org/abs/2104.04909.

[35] B. An, B. Chen, X. Han, and S. Le, “Accurate text-enhanced
knowledge graph representation learning,” in Proceedings of
the NAACL-HLT, pp. 745–755, New Orleans, LA, USA, 2018.

[36] C. Liu, Y. Zhang, M. Yu et al., “Text-augmented Knowledge
Representation Learning Based on Convolutional Network,”
in Proceedings of the ICONIP, pp. 187–198, Sydney, Australia,
December 2019.

[37] Z. Zhang, X. Liu, Y. Zhang, S. Qi, S. Xu, and H. Bin, “Pretrain-
KGE: learning knowledge representation from pretrained
language models,” in Proceedings of the EMNLP, pp. 259–266,
Virtual, Online, 2020.

[38] H. Shah, J. Villmow, A. Ulges, S. Ulrich, and F. Shafait, “An
open-world extension to knowledge graph completion
models,” in Proceedings of the AAAI, pp. 3044–3051, Hono-
lulu, HI, USA, June 2019.

[39] L. Yao, C. Mao, and Y. Luo, “KG-Bert: Bert for Knowledge
Graph Completion,” 2019, https://arxiv.org/abs/1909.03193.

[40] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolu-
tional networks,” inDe Semantic Web. ESWC 2018,Springer,
Cham, Heraklion, Greek, 2018.

[41] C. Shang, Y. Tang, J. Huang, B. Jinbo, H. Xiaodong, and
Z. Bowen, “End-to-end structure-aware convolutional net-
works for knowledge base completion,” in Proceedings of the
AAAI, pp. 3060–3067, Honolulu, HI, USA, January 2019.

[42] L. Cai, B. Yan, G. Mai, J. Krzysztof, and Z. Rui, “TransGCN:
Coupling transformation assumptions with graph convolu-
tional networks for link prediction,” in Proceedings of the
K-CAP, pp. 131–138, Marina Del Rey, CA, USA, September
2020.

[43] Wang and J. Li, “Text-enhanced Representation Learning for
Knowledge Graph,” in Proceedings of the IJCAI, pp. 1293–
1299, New York, NY, USA, July 2016.

[44] G. Wu, W. Wu, and L. Li, “BCRL: long text friendly
knowledge graph representation learning,” Semantic Web,
vol. 12506, pp. 636–653, 2020.

[45] A. Bordes, J. Weston, R. Collobert, and B. Yoshua, “Learning
Structured Embeddings of Knowledge Bases,” in Proceedings
of the AAAI, San Francisco, CA, USA, August 2011.

[46] K. Toutanova and D. Chen, “Observed versus latent features
for knowledge base and text inference,” in Proceedings of the
3rd Workshop on Continuous Vector Space Models and Deir
Compositionality, pp. 57–66, Beijing, China, July 2015.

[47] A. KingaD and J. Ba, “Adam: a method for stochastic opti-
mization,” in Proceedings of the ICLR, San Diego, CA, USA,
2015.

Computational Intelligence and Neuroscience 15

https://arxiv.org/abs/1609.07075
https://arxiv.org/abs/2104.04909
https://arxiv.org/abs/1909.03193

