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Activation of natural killer (NK) cell function is regulated by cytokines, such as IL-2, and
secreted factors upregulated in the tumor microenvironment, such as platelet-derived
growth factor D (PDGF-DD). In order to elucidate a clinical role for these important
regulators of NK cell function in antitumor immunity, we generated transcriptional
signatures representing resting, IL-2-expanded, and PDGF-DD-activated, NK cell
phenotypes and established their abundance in The Cancer Genome Atlas bladder
cancer (BLCA) dataset using CIBERSORT. The IL-2-expanded NK cell phenotype was
the most abundant in low and high grades of BLCA tumors and was associated with
improved prognosis. In contrast, PDGFD expression was associated with numerous
cancer hallmark pathways in BLCA tumors compared with normal bladder tissue, and a
high tumor abundance of PDGFD transcripts and the PDGF-DD-activated NK cell
phenotype were associated with a poor BLCA prognosis. Finally, high tumor
expression of transcripts encoding the activating NK cell receptors, KLRK1 and the
CD160–TNFRSF14 receptor–ligand pair, was strongly correlated with the IL-2-expanded
NK cell phenotype and improved BLCA prognosis. The transcriptional parameters we
describe may be optimized to improve BLCA patient prognosis and risk stratification in the
clinic and potentially provide gene targets of therapeutic significance for enhancing NK cell
antitumor immunity in BLCA.
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INTRODUCTION

Bladder cancer (BLCA) is a disease of the elderly in the developed world (1, 2). An aging population,
industrialization, and endemic tobacco smoking in developing nations mean that global BLCA
diagnoses are estimated to double (2). The first-line management of high-grade non-muscle-
invasive BLCA involves transurethral resection of the bladder tumor (3) and administration of an
induction course of intravesical bacille Calmette–Guerin (BCG) vaccine. Longer-term BCG
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maintenance therapy retards the progression and recurrence of
BLCA disease (4, 5), but toxicity and intolerance, albeit rare,
confer considerable risks to BLCA patients (6, 7).

Transition to a BCG-refractory high-grade BLCA is associated
with poor survival outcomes (8), and radical cystectomy (RC) for
patients that fail intravesical immunotherapy is the current gold
standard treatment (9). Nonetheless, RC and chemotherapy are
costly (10), highly invasive, and are associated with significant side
effects (11) and impaired quality of life (12). Limited therapeutic
options beyond systemic chemotherapy have resulted in dire
outcomes for patients with metastatic BLCA disease (11, 13).
Thus, there is an urgent need for less invasive, tolerable, and
durable alternatives for intractable BLCA.

Early incursions into immune checkpoint blockade (ICB) in
BLCA have yielded promising results (14–19). However, only
30% of bladder cancer patients with metastatic disease respond
to ICB therapy. To circumvent tumor incompatibility (20) and
acquired resistance to ICB (21), a more detailed characterization
of tumor immune surveillance pathways will undoubtedly
inform more effective immunotherapies for BLCA patients
(22–25). Natural killer (NK) cells are innate lymphocytes that
produce IFN-g but are distinct from other innate lymphoid cells
because they specialize in the cytolysis of malignant and infected
cells and are thus considered the innate counterparts of cytotoxic
T lymphocytes (26). While NK cell cytotoxicity is known to
contribute to BCG therapeutic benefit (27, 28), immune
surveillance of malignant uroepithelial tissue by NK cells is
understudied (29).

NK cell cytotoxicity is regulated by antagonistic signaling
networks moderated by an array of activating and inhibitory cell
surface receptors (30, 31). The downregulation of ligands, such as
MHC-I, for inhibitory receptors in conjunction with the
abundant expression of ligands recognized by activating
receptors, such as killer cell lectin-like receptor K1 (KLRK1)
(32) and the natural cytotoxicity receptors (NCRs) (33),
predisposes tumor cells to NK cell elimination (34). Human
KLRK1, also known as NKG2D, is expressed by NK cells and
CD8+ T lymphocytes and recognizes a range of stress-inducible
ligands expressed on malignant cells, such as MICA, MICB, and
the ULBP-binding proteins 1–6 that are collectively known as
“NKG2D ligands” (NKG2D-L) (35, 36). Indeed, in vitro assays
suggest that NKG2D recognition of stress-inducible ligands is a
prominent mode of BLCA tumor cell recognition (37). In
contrast, the NCR NKp44 can bind to platelet-derived growth
factor D (PDGF-DD), which is overexpressed by many solid
tumors including BLCA, and may activate NK cell antitumor
functions to control tumor growth (38). NK cells express many
other activating and inhibitory receptors that are likely to
cooperate to elicit maximal NK cell activity in the tumor
microenvironment (39). In-depth analysis of the immune cell
phenotypes and receptors associated with improved BLCA
patient prognosis will shed light on the tumor surveillance
pathways that may be enhanced for improved BLCA
immunotherapy (40).

Like NKG2D, TNFRSF14 is expressed by NK cells and CD8+

T lymphocytes and has multiple ligands, such as TNFSF14 (also
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known as LIGHT), lymphotoxin-a (LTA), CD160 (also known
as natural killer cell receptor BY55), and B- and T-lymphocyte-
associated protein (BTLA). TNFRSF14, also known as herpes
virus mediator of entry (HVEM), can convey either lymphocyte
activation or inhibition depending on cis and trans interactions
with the ligand (41). For example, acting as a receptor for
TNFSF14 or LTA, TNFRSF14 can stimulate downstream
NF-kB signaling to promote NK cell and T-lymphocyte
proliferation, IFN-g production, and tumor cell clearance (42–
45). CD160 is also expressed by NK cells and CD8+ T cells as
GPI-anchored and transmembrane forms. Binding of TNFRSF14
to the transmembrane form of CD160 delivers an activating
signal that can promote NK cell cytotoxicity and IFN-g
production (46). In contrast, TNFRSF14 binding in cis to
BTLA inhibits trans interactions with LIGHT, LTA, or CD160,
to maintain NK cells and T lymphocytes in a resting state, thus
tuning lymphocyte activation to the surrounding tumor
microenvironment (47). Interestingly, TNFRSF14 is also
expressed by tumor cells and TNFRSF14 ligation can inhibit
bladder cancer cell proliferation by inducing apoptosis (48).

Here, we investigated the clinical impact of the abundance of
resting, IL-2-expanded, and PDGF-DD-activated NK cell
phenotypes and the receptors they express in the BLCA tumor
microenvironment. To achieve this, we generated transcriptional
signatures representing the latter NK cell activation states to
estimate their relative abundance in The Cancer Genome Atlas
(TCGA) BLCA dataset and tested the association with curated
progression-free survival (49).
METHODS

Material Availability
The R codes for the analyses presented in this study are available
at RAGG3D/BLCA_IL2NK (github.com).

Data Collection and Validation of
Functional NK Cell Datasets
Gene transcript-abundance and patient clinical information were
collected from TCGA through the GDC Data Portal (50).
Progression-free survival information was used as a measure of
clinical outcome (49). The cell-type-specific transcriptional
signatures were derived from a large collection of RNA
sequencing samples spanning a wide range of cell types. For
NK cells, an experimentally derived dataset for IL-2-expanded
[27 biological replicates (38)], PDGF-DD activated via NKp44
signaling [4 biological replicates (38)] and resting (25 biological
replicates from six datasets) were included. For resting NK cells
and other cell types, the data collected were from the following
datasets: BLUEPRINT (51), Monaco et al. (52), ENCODE (53),
Squires et al. (54), GSE77808 (55), Tong et al. (56), PRJNA339309
(57), GSE122325 (58), FANTOM5 (59), GSE125887 (60),
GSE130379 (61), and GSE130286 (62).

In order to validate the functional status of the RNA-seq
datasets curated in this study, we determined the expression of
transcripts for surface proteins commonly upregulated during
November 2021 | Volume 12 | Article 724107
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IL-2 expansion of NK cells, such as CD69, CD25, CD70, and
NKp44 (63–67). With the exception of CD69, transcripts for
IL2RA, CD70, and NCR2 were significantly upregulated in IL-2-
expanded and PDGF-DD-activated NK cells compared with
resting NK cells (Supplementary Figure 1), which we
conclude sufficiently validates the use of these curated datasets
to generate transcriptional signatures representative of “resting”
and “IL-2-expanded” NK cell phenotypes.

Generation of Transcriptional Signatures
In order to derive transcriptional signatures of 24 cell types
(memory B cell, naive B cell, immature dendritic myeloid cell,
mature dendritic myeloid cell, endothelial, eosinophil, epithelial,
fibroblast, macrophage M1 and M2, mast cell, monocyte,
neutrophil, resting NK cells, IL-2-expanded NK cells, PDGF-
DD-activated NK cells, central memory CD4 T cell, effector
memory CD4 T cell, central memory CD8 T cell, effector
memory CD8 T cell, naive CD8 T cell, gamma-delta T cell,
helper T cell, and regulatory T cell), a total of 592 highly curated
(i.e., for which identity was confirmed in the literature), non-
redundant biological replicates (including 25 resting NK cell
samples, 27 IL-2-expanded NK cell samples, and 4 PDGF-DD-
activated NK cell samples) have been used. Due to the sparse
nature of a heterogeneous set of datasets, the expected value and
variability of gene transcription abundance was inferred for each
cell type using a publicly available Bayesian statistical model
(github: stemangiola/cellsig), based on a negative binomial data
distribution (68). This model allows to fit sparse data (e.g.,
transcript abundance of one gene for which data are available
in a subset of reference biological replicates) and calculate
theoretical data distributions of cell-type/gene pairs. The cell-
type transcriptional marker selection was based on the pairwise
comparison of each cell type within cell-type categories along a
cell differentiation hierarchy (Supplementary Figure 2) (69). For
example, all cell-type permutations from the root node of level 1
(including epithelial, endothelial, fibroblasts, and immune cells)
were interrogated in order to select the genes for which the
transcript abundance distribution (data generated from the
posterior distribution) was higher for one cell type compared
with another. This was executed calculating the distance of the
upper and lower 95% credible intervals, respectively (obtained
from cellsig). From each comparison, the top 5, 10, and 20 genes
per cell-type pair were selected from levels 1, 2, and 3,
respectively (Supplementary Figure 2). The marker gene list is
composed by the union of genes for all levels. This hierarchical
approach favors the identification of marker genes that
distinguish broad cell-type categories as well as specific
activation phenotypes.

The top marker genes (upregulated) that segregate IL-2-
expanded NK cells from PDGF-DD-activated NK cells are
ERP29, IMPDH2, and MFSD10. The top markers
(upregulated) that segregate activated from resting NK cells are
RPSAP9, POTEF, POTEE, GOLGA8IP, HERC2P4, and
HNRNPA3P1. The top markers (upregulated) that segregate
NK cells from other major immune cells are CD247, CTSW,
HOPX, GZMA, ID2, IL2RB, SHROOM1, CD74, NKG7,
CATSPER1, CCNJL, MTRNR2L6, CST7, EIF4A1, KRT81,
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PPP1R9A, and SH2D2A. The full signature matrix is provided
as supplementary material (Supplementary File 1).

Benchmark of the Transcriptional
Signatures
To test whether the selected signature for IL-2-expanded NK
cells was suitable to accurately detect changes in cell abundance
in association with progression-free survival, we implemented a
benchmark on simulated tissue mixtures. This benchmark was
organized in 81 simulation conditions, each of which included 63
test runs. The simulation conditions were i) the amount of tissue
mixture (replicates) from 250 to 1,000, ii) the degree of change
(slope) from −1 to 1, and iii) the proportion of a foreign cell type,
whose signature was not included in our reference (i.e., neural
cells), from 0 to 0.8 (80%). For each test run, a number of tissue
mixtures (replicates) were simulated. One mixture is created as
the sum of the transcriptional profiles for each cell type, weighted
by a proportion array (summing to one) that represents the
relative amount of cell types within the tissue. The
transcriptional profiles were samples at random from our
reference database. The proportion arrays (for each run) were
built according to a linear model, correlating the cell-type
proportion with progression-free survival. For example, in case
T cells were to be positively associated with progression-free
survival, the tissue mixtures (i.e., patients) with bigger
progression-free survival would be characterized by a larger
proportion of T cells. The values of progression-free survival
were simulated according to real-world data. We sampled the
progression-free survival time from the TCGA BLCA patient
cohort. For each test run (including several simulated mixtures),
only one cell type was set up as being associated with
progression-free survival.

The cell-type proportion associations were estimated for each
test run. The estimation included two steps: deconvolution and
Cox regression of the estimated cell-type proportions. To
simulate censored data (partial follow-up for progression-free
survival time), the Cox regression was provided with halved the
time-to-event for half of the tissue mixtures. We classified IL-2-
expanded NK cells as changing or not-changing based on a p-
value threshold of 0.05. The framework tidybulk was used to
infer the cell-type proportions through CIBERSORT and
perform a multiple Cox regression on the predicted
proportions (logit-transformed) (70), with progression-free
survival censored time as a covariate. The significance calls
were compared with the ground truth to generate a receiver
operating characteristic (ROC) curve.

Estimation of the Association of Cell-Type
Abundance With Relapse-Free
Patient Survival
To estimate the cell-type abundance for each biological replicate,
we used CIBERSORT with our RNA sequencing-derived gene
marker signature. In order to estimate the clinical relevance of
NK activation phenotypes, we produced a Kaplan–Meier
estimator (71) based on the median proportion split of each
cell type. Percent survival vs. time-to-event statistics were
November 2021 | Volume 12 | Article 724107
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calculated by the log-rank (Mantel–Cox) test (72). Statistics of
Kaplan–Meier curves were performed by the log-rank test then
adjusted by the Benjamini–Hochberg (BH) procedure. A table of
all p-values prior to adjustment is provided in Supplementary
Table 1. Data analysis was performed using the R environment
in R Studio (73). Packages include tidyverse (74), tidybulk (75),
survminer (76), survival (70, 77), foreach (78), org.Hs.eg.db (79),
cowplot (80), ggsci (81), GGally (82), gridExtra (83), grid (73), reshape
(84), Hmisc (85), tidyHeatmap (86), and viridis (87).

Functional Enrichment Analysis
To identify the unique protumorigenic pathways associated with
PDGFD expression in BLCA tumors compared with normal
bladder tissue, we utilized the functional enrichment analysis
for the top 1,000 co-expressed genes of PDGFD in both TCGA
BLCA tumors and TCGA BLCA normal tissues datasets, which
we obtained from the GEPIA2 web server (88). The comparative
functional enrichment analysis was performed in Gitools v1.8.4
(89) utilizing the modules constructed from the Gene Ontology
(90) Biological Process (GOBP), Bioplanet pathways (91), KEGG
pathways (92), Reactome pathways (93), and Wikipathways (94)
databases. During the analysis, the resultant p-values of the
enriched terms were adjusted using the multiple test correction
approach outlined in the Benjamini–Hochberg’s false discovery
rate (FDR) method, and we only considered those enriched
pathways/terms significant which have an FDR q-value <0.05.
From the enrichment results, we sorted and grouped the
significant pathways/terms manually based on the associated
protumorigenic hallmarks and immune responses.
RESULTS

IL-2-Expanded NK cells Are Associated
With a More Favorable BLCA Prognosis
We hypothesized that NK cells of unique phenotype can
infiltrate different cancer types to confer antitumor immunity.
To answer this question, we performed a benchmark for the
inference of changes in the abundance of IL-2-expanded NK cells
in artificial tissue mixtures built from our reference dataset (see
Methods) to determine the ability of the IL-2-expanded NK cell
signature to provide an identifiable biologically relevant signal
from whole tissue RNA sequencing data (Figure 1A). This
benchmark showed a high accuracy (area under the curve)
across simulation settings including magnitude of variability,
sample size, and proportion of unknown cells (please see
Methods). An accuracy of 0.75 was reached for simulation
settings that match our findings on TCGA data (slope and
sample size; Figures 1B, C). These data show that our NK cell
signatures have the potential to uncover clinically relevant
associations from TCGA-derived whole tissue RNA sequencing
data. We then defined marker genes for transcriptional
signatures representing resting NK cells (ReNK) (95), IL-2-
expanded NK cells (IL2NK), and a signature of PDGF-DD-
activated NK cells (SPANK) (96), respectively, and established
the transcript abundance of these NK cell phenotypes in TCGA
Frontiers in Immunology | www.frontiersin.org 4
BLCA cohort using CIBERSORT (please see Methods). Using
this approach, we found that the IL2NK phenotype was more
abundantly expressed in BLCA tumors compared with the ReNK
or SPANK phenotypes (Figure 1D). Interestingly, the IL2NK
phenotype, but not the ReNK or SPANK, was associated with
improved BLCA patient prognosis (Figure 1E). In contrast to
IL2NK, high tumor abundance of the ReNK phenotype was
associated with poor prognosis, while abundance of the SPANK
was not associated with prognosis (Figure 1E). The tumor
abundance of signature T-cell phenotypes was also not
associated with prognosis (Supplementary Figure 3). These
results show that a high infiltration of the IL2NK phenotype in
BLCA tumors is associated with improved BLCA prognosis.

Abundance of NK Cell Phenotypes in
Different Clinical Grades of BLCA Tumors
Since a high tumor abundance of the IL2NK phenotype was
associated with a more favorable BLCA prognosis, we next asked
whether a particular NK cell phenotype was preferentially
associated with a different clinical grade of the BLCA tumor.
BLCA tumors were partitioned into either low or high grade and
the abundance of the ReNK, IL2NK, and SPANK NK cell
phenotypes was determined, respectively (Figure 2). In both
low- and high-grade BLCA tumors, the IL2NK phenotype was
the most abundant followed by the SPANK and then ReNK
phenotypes (Figure 2). Remarkably, abundance of either the
ReNK, IL2NK, or SPANK NK cell phenotypes did not differ
between low- and high-grade BLCA tumors (Supplementary
Figure 4). These results show that the IL2NK phenotype is more
abundant in low and high BLCA tumor grades, followed by the
SPANK and then ReNK phenotypes.

PDGFD Expression Is Associated
With Cancer Hallmarks and Poor
BLCA Prognosis
PDGF-DD is produced by many aggressive cancers and binds to
PDGFR-b expressed on tumor cells to induce protumorigenic
signaling pathways that are thought to be associated with poor
patient outcome (38–42, 97). Even though the SPANK and IL2NK
represent activated NK cell phenotypes, our initial analysis showed
that tumor abundance of the SPANK was not associated with
BLCA patient prognosis, unlike IL2NK (Figure 1B). We
hypothesized that protumorigenic pathways associated with
PDGFD expression might mask any antitumor functions of
PDGF-DD-activated NK cells on BLCA patient prognosis. We
downloaded the top 1,000 transcripts from the GEPIA2 website
associated with PDGFD expression in BLCA and in normal bladder
tissue (please see Methods) and performed gene enrichment
analysis to identify enriched protumorigenic pathways (Figure 3).
Many protumorigenic pathways associated with PDGFD
expression that represent core cancer hallmarks (98, 99) were
enriched in BLCA but not in normal bladder tissue (Figure 3A).
These pathways include PDGF signaling and response to growth
factor stimulus (Supplementary Figures 5A, B). These data show
that protumorigenic pathways representing key cancer hallmarks
are associated with PDGFD expression in BLCA tumors.
November 2021 | Volume 12 | Article 724107
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SinceprotumorigenicpathwaysassociatedwithPDGFDexpression
were enriched in BLCA, we next determined the relationship between
tumor expressionofPDGFDorPDGFRB andBLCApatient prognosis
(Figure 3). High tumor expression of PDGFD was associated with a
poor BLCA prognosis compared with those BLCA patients with low
Frontiers in Immunology | www.frontiersin.org 5
tumor expression of PDGFD (Figure 3A). In contrast, tumor
expression of PDGFRB did not influence BLCA patient prognosis
(Figure 3B). Overall, these data show that a high tumor expression of
PDGFD is associated with the activation of core cancer hallmarks and
poor BLCA patient prognosis.
A B

D

E

C

FIGURE 1 | Benchmark, overall abundance and survival associations of NK phenotypes in BLCA. (A) Accuracy of the inference of changes in proportion of IL-2-
expanded NK cells from simulated mixtures. The detection of a significant proportional change when it exists in the simulation defined a true-positive. Data points
represent the area under the curve (AUC) for mixtures created with a specific combination of sample size (x-axis), degree of change (slope; color-coded), and
proportion of foreign cell type (facets; i.e., neurons, for which we do not include transcriptional profile in the training data). A simulation condition that represents the
associations we detected in the TCGA database is circled. (B) Receiver operating characteristic (ROC) curve, measuring the accuracy (true-positive and false-
positive) for the simulated mixture circled in (A). A curve touching the top-left corner (0 false-positive and 1 true-positive rates) would represent the best achievable
performance. A curve overlapping the dotted line (45°) would represent a random detection of proportional changes. (C) The underlying association between cell
type and time-to-event (e.g., survival days) of the simulated dataset circled in (A). Data points represent cell-type/sample pairs. (D) Abundance of NK cell phenotypes
(fraction and percentage) for TCGA BLCA cohort; IL2NK is the most abundant NK cell phenotype in BLCA. (E) Kaplan–Meier survival curve for all three NK cell
phenotypes for TCGA-BLCA; high tumor abundance of IL2NK, but not the ReNK or SPANK phenotypes, is associated with a favorable BLCA patient outcome
(x-axis, days; y-axis, progression-free survival).
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Stratifying Tumors Based on PDGFD
Expression Reveals the SPANK Phenotype
Is Associated With a Poor BLCA Prognosis
In addition to the activation of protumorigenic pathways, PDGF-
DD can evoke NK cell antitumor functions through binding to
NKp44 and signaling via the associated DAP12 adaptor (38, 64,
100). In support of this, the DAP12 signaling pathway was
strongly associated with PDGFD expression in BLCA tumors
(Supplementary Figures 5C, D). However, the contribution of
each NK cell phenotype in mitigating the detrimental effect of
PDGFD expression on patient prognosis remained unclear
(Figure 3A). We next determined the association between each
NK cell phenotype and patient prognosis for BLCA tumors
stratified for PDGFD expression. When BLCA tumors were
stratified for high PDGFD expression, high tumor abundance
of the ReNK was associated with poor prognosis, and neither the
IL2NK nor SPANK phenotypes were associated with patient
prognosis, underscoring the strong association between high
BLCA tumor expression of PDGFD and poor patient prognosis
(Figure 4). In contrast, when BLCA tumors were stratified for
low PDGFD expression, a high tumor abundance of IL2NK was
associated with improved prognosis, whereas the SPANK was
associated with poor prognosis and to a lesser extent the ReNK
(Figure 4). These results show that a high tumor abundance of
IL2NK in BLCA tumors with low PDGFD expression is
associated with a more favorable prognosis, whereas a high
tumor abundance of the ReNK or SPANK phenotypes is
associated with poor BLCA prognosis.
Frontiers in Immunology | www.frontiersin.org 6
Critical Role for IL2NK-Associated NK Cell
Receptors in BLCA Prognosis
NK cells express an array of activating and inhibitory cell surface
receptors, but how these NK receptors function for effective
antitumor immunity in different types of cancer remains unclear.
Since the IL2NKphenotypewas associatedwith improvedprognosis,
we next determined whether tumor expression of specific NK cell
receptors was critical for BLCA patient prognosis (Figure 5). BLCA
tumorswith high expression ofKLRK1, which encodes the activating
NKG2D receptor, had a much improved prognosis compared with
BLCA patients with low tumor expression of KLRK1 (Figure 5A).
HumanNKG2Dbinds to a rangeof stress-inducibleNKG2D-L, such
asMICA,MICB, andULBPs 1–6, and sowe next determined patient
prognosis forBLCAtumors stratified forKLRK1 expression andeach
NKG2D-L, respectively (Supplementary Figure 6). When KLRK1
expression was high in BLCA tumors, expression of each NKG2D-L
did not influence patient prognosis (Supplementary Figure 6).
However, when KLRK1 expression was low in BLCA tumors,
expression of MICA and MICB trended toward improved
prognosis, whereas ULBP1 expression trended toward poor
prognosis (Supplementary Figure 6).

TNFRSF14, also known as herpes virus mediator of entry
(HVEM), can induce lymphocyte activation or inhibition
depending on cis or trans interactions with ligand. TNFRSF14 can
bind to four possible ligands, TNFSF14, LTA, CD160, or BTLA.
TNFRSF14 interactions with either TNFSF14, LTA, or CD160 can
promoteNKcell activation,whereasbinding toBTLAcan induceNK
cell inhibition. We noted that high BLCA tumor expression of
FIGURE 2 | Abundance of NK cell phenotypes in different clinical BLCA grades. Abundance of the ReNK, IL2NK, and SPANK NK cell phenotypes (log10 transformed
fraction) for TCGA BLCA cohort partitioned into low and high clinical grades. IL2NK is the most abundant NK cell phenotype in low- and high-grade BLCA tumors,
followed by the SPANK and then ReNK phenotypes. Wilcoxon signed-rank test was conducted to examine the differences between clinical grades. P-values were
adjusted by Benjamini-Hochberg procedure.
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A

B C

FIGURE 3 | PDGFD expression is associated with the activation of protumorigenic pathways and poor prognosis in BLCA. (A) Cancer hallmark signaling pathways
associated with PDGFD expression in BLCA tumors and normal bladder tissue. Color-coded heatmaps represent the statistical significance of the functionally
enriched pathways. Color toward red indicates the most significant pathways, while the yellow color represents less significant and gray color represents the non-
significant events. Only selected significant terms were presented within the heatmaps. Kaplan–Meier survival curves constructed for (B) PDGFD or (C) PDGFRB
expression in BLCA tumors. High tumor expression of PDGFD is associated with poor BLCA prognosis (x-axis, days; y-axis, progression-free survival).
Frontiers in Immunology | www.frontiersin.org November 2021 | Volume 12 | Article 7241077
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TNFRSF14 orCD160 trended toward improved prognosis compared
with eitherTNFSF14, LTA, orBTLA (Supplementary Figure 7).We
next determinedpatient prognosis for BLCA tumors stratified for the
expression of TNFRSF14 and CD160. High expression of both
TNFRSF14 and CD160 in BLCA tumors was associated with more
favorable patient prognosis compared with all the other groups
(Figure 5B). Finally, expressions of the KLRK1, TNFRSF14, and
CD160NK cell receptor genes were all positively correlated with the
IL2NKphenotype comparedwith theReNKor SPANK(Figure 5C).
These results show that high tumor expression of transcripts
encoding the NK cell receptors KLRK1, TNFRSF14, and CD160
may be critical for antitumor immunity in BLCA because the
expression of these receptors is associated with the IL2NK cell
phenotype and a more favorable BLCA prognosis.
DISCUSSION

The clinical relevance of NK cells in cancer immune surveillance,
particularly for solid tumors, remains unclear.We hypothesized that
different NK cell phenotypes may be present in diverse cancer types
and the abundance of these NK cell phenotypes may be associated
with prognosis. We constructed transcriptional signatures
representing ReNK, IL2NK, and SPANK and used a computational
approach to determine the association between the abundance of
these NK cell phenotypes in BLCA tumors and patient prognosis
using the TCGA cohort. Using this approach, we found that a high
tumor abundance of the IL2NK phenotype was associated with
improved BLCA prognosis, but not the ReNK or SPANK.

PDGF-DDexpression is dysregulated in several cancers including
BLCA and activates several protumor pathways with adverse effects
on prognosis (38, 97). Analysis of the expression of transcripts
encoding PDGF-D and its receptor, PDGFRb, showed that high
expression of PDGFD in BLCA tumors wasmost strongly associated
withpoorprognosis. Since all threeNKcell phenotypesweredetected
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in BLCA tumors, we speculated that PDGF-DD-activated NK cells
might counterbalance the effect of PDGFD expression on BLCA
prognosis. Interestingly, when BLCA tumors were stratified for
PDGFD expression and each respective NK cell phenotype, a high
tumor abundance of the SPANK phenotype was associated with a
poor BLCA prognosis. Conversely, a high abundance of the IL2NK
phenotype inBLCAtumorswas associatedwith improvedprognosis.
Since the NKp44 receptor for PDGF-DD is upregulated by IL-2-
expanded NK cells, these results suggest a critical balance between
activation via NKp44/PDGF-DD signaling and a clinically
unfavorable prognosis versus maintaining a high proportion of the
IL-2-expanded NK cell phenotype and a clinically favorable
prognosis (Figure 6) (38). Moreover, the ReNK phenotype was
associated with a poor BLCA prognosis, and it is entirely possible
that failure of NK cells to become activated, e.g., by IL-2, is
detrimental for BLCA patient survival (Figure 6). Interestingly,
other cellular and tumor ligands have been reported to bind and
regulate NKp44 signaling, such as Nidogen-1 (101), Syndecan-4
(102), a subset of HLA-DP molecules (103), a splice variant of the
mixed lineage leukemia 5 (MLL5) gene (104), and proliferating cell
nuclear antigen (PCNA) (105). It will be interesting to determine the
expression of these latter gene products in the BLCA tumor
microenvironment and the influence on the associations between
the NK cell phenotypes that we describe and BLCA prognosis.

Wespeculated that if the IL2NKphenotypewascritical forNKcell
surveillance of BLCA tumors and improved prognosis, then NK cell
receptors would also be associated with improved BLCA prognosis.
In support of this hypothesis, high tumor expressionof transcripts for
theKLRK1,TNFRSF14, andCD160NK cell receptors was associated
with improved BLCA prognosis, suggesting that the expression of
theseNKcell receptor gene products by IL-2-expandedNKcellsmay
be critical for BLCA antitumor immunity. High tumor expression of
KLRK1, more commonly known asNKG2D,was strongly associated
with enhanced BLCA patient prognosis. KLRK1/NKG2D is an
activating receptor expressed by NK cells and CD8+ T cells and
FIGURE 4 | Tumor abundance of IL2NK, but not the SPANK, counteracts the protumorigenic effects of PDGFD on BLCA patient prognosis. Combined BLCA
patient survival analysis stratified for tumor expression (median split) of PDGFD and each NK cell phenotype, ReNK, IL2NK, and SPANK, respectively. KM curves
display the survival of BLCA patients plotted in all four combinations for each stratum, respectively (L/L, L/H, H/L, and H/H). Low PDGFD expression and high IL2NK
abundance in BLCA tumors are associated with improved prognosis, whereas low expression of PDGFD and abundance of the SPANK phenotype in BLCA tumors
are associated with a poor prognosis (x-axis, days; y-axis, progression-free survival).
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recognizes a range of stress-inducible ligands, such asMICA,MICB,
and the ULBP-binding proteins 1–6, collectively known as “NKG2D
ligands” (NKG2D-L), that are expressed on malignant and virus-
infected cells. Our data and recent in vitro studies (37) suggest that
NKG2D is a key receptor for NK cell surveillance of BLCA
tumor cells.

Like NKG2D, TNFRSF14 is also expressed by NK cells and T
lymphocytes and has multiple ligands; TNFSF14, LTA, and CD160
activate TNFRSF14 signaling and NK cell antitumor functions,
whereas BTLA inhibits TNFRSF14 signaling and downregulates NK
cell antitumor functions. High tumor expression of TNFRSF14 and
CD160, but not TNFSF14, LTA, or BTLA, was associated with
improved BLCA patient prognosis, suggesting that the TNFRSF14–
CD160 interaction, like KLRK1, is a prominent pathway of NK cell
tumor surveillance in BLCA. In support of this, the expressions of
TNFRSF14, CD160, and KLRK1 were all strongly positively
correlated with the IL2NK phenotype compared with other
immune cell phenotypes in BLCA tumors.
Frontiers in Immunology | www.frontiersin.org 9
Overall, these data strongly suggest that the NKG2D/NKG2D-L
and TNFRSF14/CD160 pathways play a prominent role in the
immune surveillance of BLCA tumors by IL-2-expanded NK cells.
Our results show that high tumor abundance of the IL2NK
phenotype and transcripts for the KLRK1, CD160, and TNFRSF14
receptors are associated with improved survival, whereas high tumor
abundance of the SPANK and PDGFD transcripts is associated with
poor survival. Collectively, these data may be optimized to improve
BLCA patient prognosis and risk stratification in the clinic.
Interestingly, TNFRSF14 is also expressed by many tumor cells
including BLCA, and TNFRSF14 ligation can induce BLCA cell
apoptosis (48). Consequently, how the TNFRSF14–CD160
interaction might occur between NK cells and tumor cells in the
BLCA tumor microenvironment to promote antitumor immunity
and favorably impact patient prognosis remains unclear. Such
information may help determine if the TNFRSF14–CD160 and
NKG2D–NKG2D-L pathways can cooperate for NK cell
cytotoxicity of BLCA tumor cells and whether these immune
A B

C

FIGURE 5 | Tumor expression of activating NK cell receptors is associated with the IL2NK phenotype and a more favorable BLCA prognosis. (A) KM plots displaying
progression-free survival of BLCA patients stratified for tumor expression (median split) of KLRK1 (x-axis, days; y-axis, progression-free survival). (B) Combined BLCA patient
survival analysis stratified for tumor expression (median split) for CD160 and TNFRSF14. KM curves display the survival of BLCA patients plotted for the highest strata of
expression for CD160 and TNFRSF14 (H/H) compared with all other strata combinations for CD160 and TNFRSF14 combined. High tumor abundance of CD160 and
TNFRSF14 is associated with improved BLCA prognosis (x-axis, days; y-axis, progression-free survival). (C) Heatmap displaying correlations between the expression of each
NK cell receptor transcript (y-axis) and immune cell phenotype (x-axis), respectively (Tcm, central memory T cell; Tem, effector memory T cell; Treg, regulatory T cell).
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surveillancepathways canbe targeted for inBLCApatients, e.g., using
recombinant approaches to enhance NKG2D recognition of
NKG2D-L expressing BLCA cells (106) or blocking negative
regulators of TNFRSF14 activation, such as BTLA (47).
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