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Abstract The spatial separation between the cytoplasm
and the cell nucleus necessitates the continuous exchange
of macromolecular cargo across the double-membraned
nuclear envelope. Being the only passageway in and out of
the nucleus, the nuclear pore complex (NPC) has the princi-
pal function of regulating the high throughput of nucleocy-
toplasmic transport in a highly selective manner so as to
maintain cellular order and function. Here, we present a ret-
rospective review of the evidence that has led to the current
understanding of both NPC structure and function. Looking
towards the future, we contemplate on how various out-
standing eVects and nanoscopic characteristics ought to be
addressed, with the goal of reconciling structure and func-
tion into a single uniWed picture of the NPC.

Introduction

The cytoplasmic and nuclear compartments of eukaryotic
cells are separated by the nuclear envelope (NE). The dou-
ble membrane of the NE is perforated by nuclear pore com-
plexes (NPCs), which are large multiprotein complexes that
support passive diVusion of small molecules, and facilitate
receptor-mediated translocation of proteins and ribonucleo-
protein complexes. Overall, the vertebrate NPC is a
»120 MDa protein complex made of »30 diVerent proteins
called nucleoporins (or Nups) that are repetitively arranged
as distinct subcomplexes to form the NPC (Cronshaw et al.
2002; Lim and Fahrenkrog 2006; Rout et al. 2000;

Schwartz 2005; Tran and Wente 2006). In the plane of the
NE, the eightfold symmetric central framework of the NPC,
also known as the spoke complex, encloses a central pore
that is »50 nm long and is narrowest (»40 nm) at the NE
midplane (Beck et al. 2004, 2007; StoZer et al. 2003).
Attached to the central framework are cytoplasmic Wla-
ments and a nuclear basket (Figs. 1, 2).

We begin, here, with a retrospective that summarizes the
analysis and elucidation of NPC architecture by electron
microscopy (EM) techniques. We will discuss how the dis-
section of NPC structure by electron tomography and X-ray
crystallography has in a methodical and progressive man-
ner reached the ultrastructural, molecular and atomic scale.
In parallel, we will overview the progress that has contrib-
uted to the contemporary understanding of how the NPC
functions as a selective gate-barrier. Setting our sights on
the future, we will close by highlighting the importance of
reconciling both NPC structure and function, as we strive
towards converging on a single conceptual, mechanistic
understanding of the NPC.

Nuclear pore complex architecture

NPCs are the most distinctive structural components of the
NE as resolved by EM. NPC structure was initially dis-
sected using transmission EM (TEM), but later expanded to
scanning transmission as well as to scanning EM and, most
recently, to cryo-electron tomography (CET). The Wrst EM
study on the NE in 1950 revealed that it is perforated by
pores (Callan and Tomlin 1950). Gall (1967) showed for
the Wrst time that NPCs exhibit an octagonal structure
(Fig. 1a). This was later conWrmed by a number of studies
in the following years (Aaronson and Blobel 1974; Franke
and Scheer 1970; Maul 1971), whereby its overall architecture,
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particularly its eightfold symmetry, appeared to be evolu-
tionarily conserved (Franke and Scheer 1970). Although its
functional signiWcance was ambiguous at that time, it was
already evident from these early studies that the NPC is
composed of a “membranous” structure, speciWcally with a
part residing within the NE, and nonmembranous, Wlamen-
tous structures being attached to the cytoplasmic and the
nuclear face of the NPC (Fig. 1b) (Franke and Scheer 1970;
Kessel 1969).

According to today’s consensus, the NPC consists of an
approximately cylindrical central framework, eight cyto-
plasmic Wlaments and a nuclear basket (Fig. 1c–g) that is
composed of eight Wlaments that join into a distal ring
(Fig. 2b, d, f). ReWnement in EM techniques using nega-
tively stained and frozen-hydrated NPCs from Xenopus
laevis oocyte NEs (Akey and Radermacher 1993; Hinshaw
et al. 1992; Unwin and Milligan 1982) (Fig. 2a) or frozen-
hydrated yeast cells (Fig. 2c) (Yang et al. 1998) provided
early 3D reconstructions of the central framework. The cen-
tral framework of the NPC (also known as the spoke com-
plex) resides within the NE, and is anchored to the region

where the inner and outer nuclear membranes fuse. Early
structural studies showed that the cytoplasmic and nuclear
ring moieties are integral to the central framework. Recent
CET studies on isolated nuclei from Xenopus oocytes
(StoZer et al. 2003) and intact, transport-competent nuclei
isolated from Dictyostelium discoideum (Fig. 2f) (Beck
et al. 2004, 2007) have improved the resolution of the cen-
tral framework to 6 nm and revealed the Wrst reconstruc-
tions of peripheral, Xexible components of the NPC, i.e. the
cytoplasmic Wlaments and the nuclear basket. In Dictyoste-
lium, the cytoplasmic Wlaments are about »35 nm in length
and the nuclear basket is about 60 nm long. Together with
the »50 nm central framework, the NPC has an overall
length of about 150 nm and an outer diameter of 125 nm
(Beck et al. 2004, 2007). Although the overall linear
dimensions of the NPC vary between species, the overall
3D architecture appears to be evolutionarily conserved
(Fahrenkrog et al. 1998; Kiseleva et al. 2004; Yang et al.
1998).

Enclosed by the central framework is the hourglass-
shaped central pore of the NPC, which has a diameter of

Fig. 1 Electron micrographs of NPCs over time. a Cytoplasmic face
of negatively stained and b a stretch along a nuclear envelope of
embedded and thin-sectioned nuclei from Triturus alpestrus.
c Cytoplasmic face of negatively stained and d a stretch along a nucle-
ar envelope of embedded and thin-sectioned nuclei from Xenopus la-
evis. View of the nuclear basket of isolated nuclei from Xenopus
oocytes prepared by e critical point drying and Weld emission scanning
electron microscopy, f quick-freeze/freeze-drying/rotary metal

shadowing and g thin-sectioning and transmission electron micros-
copy. a Reproduced with permission from Gall (1967). b Reprinted
with permission from Franke and Scheer (1970). c Reprinted with
permission from Gerace and Burke (1988). d Reprinted with
permission from Pante and Aebi (1996). e Courtesy of Martin
Goldberg (www.dur.ac.uk/m.w.goldberg/). f Courtesy of Bohumil
Maco (University of Queensland, Australia). g Courtesy of Birthe
Fahrenkrog
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60–70 nm at its cytoplasmic and nuclear periphery and is
»45 nm in the midplane of the NPC/NE (Beck et al. 2004,
2007; Pante and Kann 2002; StoZer et al. 2003). This cen-
tral pore mediates the traYc between the cytoplasm and the
nucleus, i.e. diVusion of small molecules and ions, as well
as the selective transport of signal-carrying macromolecu-
lar cargo with diameters up to 39 nm (Pante and Kann
2002) (see later section).

The peripheral channels of the NPC have a diameter of
about 8 nm and have been implicated in the diVusion of
small molecules and ions (Feldherr and Akin 1997; Hin-
shaw et al. 1992) and/or in traYcking of integral membrane
proteins to the inner nuclear membrane (Soullam and Wor-
man 1995). Structurally, the cytoplasmic and the nuclear
openings of the peripheral channels are not topologically
continuous (StoZer et al. 2003). However, since biochemi-
cal studies suggest that passive and facilitated transport
across the NPC proceed via routes that are sterically non-
overlapping (Naim et al. 2007), it remains debated if (1)
there are two routes existing in the central pore [i.e., facili-
tated transport along the walls of the central pore and pas-
sive diVusion through a narrow diVusion tube located at the
pore center (Peters 2005)], or (2) whether passive diVusion
might somehow also utilize the peripheral channels (Akey
and Radermacher 1993; Beck et al. 2004; Hinshaw et al.

1992; StoZer et al. 2003). Other potential roles for the
peripheral channels have been proposed, such as in main-
taining the NE electrical conductance (Danker et al. 1999;
Enss et al. 2003; Mazzanti et al. 2001; Shahin et al. 2001)
or as mechanical buVer zones that accommodate deforma-
tions of the central framework upon translocation of large
cargoes (StoZer et al. 2003).

The number of NPCs per cell varies greatly with cell
size and activity. Yeast cells have »200 NPCs/nucleus,
proliferating human cells have »10–20 NPCs/�m2 (i.e.
2,000–5,000 NPCs/nucleus) and a mature Xenopus oocyte
has about 60 NPCs/�m2 yielding »5 £ 107 NPCs/nucleus
(Gerace and Burke 1988; Gorlich and Kutay 1999). A com-
prehensive ultrastructural study using freeze-fracture EM
of yeast cells in combination with 3D reconstruction has
shown that the distribution of yeast NPCs in the NE is not
equidistant, but rather cluster into regions of higher density
(Winey et al. 1997). This observation is not limited to yeast
and is present in other cell types as well (Franke 1974). In
yeast, the number of NPCs was found to increase steadily,
beginning in the G1-phase and peaking in the S-phase of
the cell cycle, suggesting that NPC assembly occurs contin-
uously throughout the cell cycle (Winey et al. 1997). Simi-
larly, the density of NPCs increases throughout the cell
cycle in HeLa S3 cells (Maeshima et al. 2006).

Fig. 2 NPC models in chronological order. Three-dimensional
reconstruction of the central framework of negatively stained NPCs
after detergent treatment a from Xenopus oocytes, and b its adaptation
for a consensus model of the NPC architecture and c from yeast nuclei
and d its adaptation into a model. e Consensus model of the NPC based
on a reconstruction of native NPCs embedded in thick amorphous ice.
f Reconstruction of NPCs from intact nuclei of Dictyostelium discoid-

eum examined by cryo-electron tomography. a Reprinted with permis-
sion from Hinshaw et al. (1992). b Reprinted with permission from
Pante and Aebi (1995). c Reprinted with permission from Yang et al.
(1998). d Reprinted with permission from Rout and Aitchison (2001).
e Reproduced from Fahrenkrog and Aebi (2003). f Reproduced with
permission from Beck et al. (2007)
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Biochemical composition of the nuclear pore complex: 
the nucleoporins

The molecular building blocks of the NPC comprise 30
diVerent proteins known as nucleoporins or Nups, which
are present in at least eight copies per NPC (Cronshaw et al.
2002; Rout et al. 2000). Based on secondary structure pre-
diction, nucleoporins can be grouped into three distinct
classes (Devos et al. 2006). The transmembrane group,
which contains transmembrane �-helices and a cadherin
fold, comprises the outermost features of the NPC central
framework and is thought to assist in anchoring the NPC to
the NE. The second group of nucleoporins contain �-pro-
peller and �-solenoid folds, which localizes towards the
inside of the NPC, whereas the third class harbors the con-
served sequence motif of phenylalanine–glycine (FG)-
repeats in combination with a coiled-coil fold and likely
contributes to the formation of the NPC’s inner central
framework and the peripheral structures (Devos et al. 2006;
Schwartz 2005; Tran and Wente 2006). Other less frequent
structural motifs found in nucleoporins are zinc-Wnger
domains as in Nup153 and RanBP2/Nup358 (Higa et al.
2007) or RNA-recognition motifs as in Nup35 (Handa et al.
2006).

�-Propellers are predicted in the third class of the nucle-
oporins, and in fact seven-bladed �-propellers have been
resolved from the N-terminal domains (NTD) of the
human nucleoporins Nup133 and Nup214 as well as from
the NTD of Nup159p in yeast by X-ray crystallography
(Berke et al. 2004; Napetschnig et al. 2007; Weirich et al.
2004). Proteins with �-propeller folds participate in
diverse cellular functions and serve as platforms for multi-
ple dynamic protein–protein interactions. Along this line,
yeast Nup133p and Nup159p both play roles in mRNA
export from the nucleus, given that deletion or mutations
in their NTDs impair their functions in mRNA export,
probably by preventing the association of multiple mRNA
export factors with the NPC (Berke et al. 2004; Weirich
et al. 2004).

The NTD of human Nup133 furthermore contains an
amphipathic �-helical motif capable of sensing membrane
curvature (Drin et al. 2007). This motif corresponds to an
exposed loop, which connects two blades of the �-propeller
and folds to an �-helix upon interacting with small lipo-
somes. Whether the �-helical motif in Nup133 serves to
recognize the curved topology of the nuclear pore mem-
brane to anchor the NPC during interphase or to recognize
small vesicles containing NE fragments critical for NE
reassembly after mitosis, or both, remains to be clariWed
(Drin et al. 2007). The NTD of human Nup214, in compar-
ison to its yeast homolog Nup159p, consists of two distinct
structural elements: the �-propeller and a 30-residue C-ter-
minal extended peptide segment (Napetschnig et al. 2007).

This extension binds to the bottom of the �-propeller with
low aYnity and has been suggested to play an “auto-inhibi-
tory” role in NPC assembly.

The Wrst crystal structure obtained for a nucleoporin was
the NPC targeting domain of human Nup98 (Hodel et al.
2002). This domain, similar to the nuclear pore-targeting
domain of its yeast homolog Nup116p, consists of a
six-stranded �-sheet sandwiched against a two-stranded
�-sheet and is Xanked by two �-helical regions (Hodel et al.
2002; Robinson et al. 2005). This domain exhibits multiple
conformations and is stabilized only when bound to a
ligand, i.e. Nup96 and Nup145p-C in the case of Nup98
and Nup116p, respectively (Robinson et al. 2005). Confor-
mational diversity may allow Nup98 and Nup116p to bind
to multiple targets within the NPC or to associate and
dissociate quickly from the NPC to increase the mobility of
the nucleoporins, as described for Nup98, which shuttles in
a transcription-dependent manner (GriYs et al. 2002,
2004).

An attempt to crystallize the Wrst subcomplex of
the NPC, the Nup62 complex, yielded the structure of the
�-helical coiled-coil domain of rat Nup58/45 (Melcak et al.
2007). Nup58/45 forms tetramers in the crystal structure
consisting of two antiparallel dimers. Each dimer consists
of two �-helices that are connected by a short loop. The
intradimer interface is hydrophobic, whereas dimer-dimer
interactions occur through large hydrophilic residues. The
tetramer can adopt various conformations leading to a lat-
eral displacement between tetramers suggesting an inter-
molecular sliding mechanism (Melcak et al. 2007). The
Nup62 complex has recently been mapped to the cytoplas-
mic periphery of the NPC’s central pore (Schwarz-Herion
et al. 2007), so that sliding of Nup58/45, and possibly of
Nup62 and Nup54 as well, could contribute in modulating
the diameter of the central pore in response to transport
activity (Melcak et al. 2007).

FG-repeat domains (also known as FG-domains) are
found in about one-third of the nucleoporins and mediate
the interaction between soluble transport receptors loaded
with signal-bearing cargo and the NPC. These FG-domains
constitute the key components of the selective gate-barrier
that limits the diVusion of cargoes through the NPC (see
following section). Atomic structures of short FG-repeat
peptides in complex with, for example, the import receptor
importin � (Bayliss et al. 2000, 2002b), NTF2 (Bayliss
et al. 2002a) or the putative mRNA export factor TAP/
NXF1 (Grant et al. 2002, 2003), have consistently shown
that the interaction between FG-repeats and the diVerent
transport receptors involves primarily the phenylalanine
ring of the FG-repeat core and hydrophobic residues on the
surface of the receptor (Isgro and Schulten 2005, 2007a, b).
Hydrophilic linker regions between individual FG-motifs,
which constitute the majority of amino acid mass in the
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overall FG-domain, appear to inXuence the strength of the
binding and allow simultaneous binding of several FG-
cores to the receptor (Liu and Stewart 2005).

Based on biophysical measurements, the FG-domains
of yeast nucleoporins have been found to be natively
unfolded (Denning et al. 2002, 2003), i.e. having little or
no secondary structure. Similarly, FG-domains of
human, Xy, worm and other yeast species are most likely
disordered based on their amino acid composition
(Denning and Rexach 2007). This notion is further sup-
ported by immuno-EM studies of vertebrate FG-repeat
nucleoporins, which suggest that the FG-domains are
Xexible and mobile within the NPC (Fahrenkrog et al.
2002; Paulillo et al. 2005, 2006; Schwarz-Herion et al.
2007). Single molecule studies using atomic force
microscopy (AFM) on the recombinantly expressed FG-
domain of human Nup153 further revealed that this
»700 residue domain is in fact an »180 nm long
unfolded molecule when adsorbed on the surface of mica
(Lim et al. 2006a). Based on the eightfold rotational
symmetry of the NPC, it is now estimated that each NPC
is populated by at least 128 FG-domains together dis-
playing »3,500 FG-repeats (Strawn et al. 2004).

Nup153 and Nup214 are both known to play roles in
distinct nucleocytoplasmic transport (NCT) pathways
and interact with a number of nuclear transport receptors
via their FG-repeats (Ball and Ullman 2005; Bernad
et al. 2006; Hutten and Kehlenbach 2006; Sabri et al.
2007; van Deursen et al. 1996). The location of the
FG-domains of Nup153 and Nup214 shifts in a trans-
port-dependent manner in the NPC, further supporting
their role in NCT (Paulillo et al. 2005). Systematic dele-
tion of FG-repeat regions in yeast nucleoporins revealed,
however, that yeast NPCs suVer from only slight
changes in distinct nuclear transport pathways, but oth-
erwise remain functional despite having removed up to
50% of their FG-repeats (Strawn et al. 2004). This
suggests that the FG-repeats exhibit a functional
redundancy in bulk NCT, except for speciWc nuclear
transport pathways, which may require individual FG-
nucleoporins, and/or that other interaction sites for
transport receptors exist within the NPC (Terry and
Wente 2007).

Besides playing important roles in NCT, certain FG-
repeats have been implicated in other functions as well. The
crystal structure of the RRM domain of mouse Nup35
revealed that all three FG-sequences of this nucleoporin are
in ordered secondary structure elements and that these FG-
sequences do not interact with transport receptors, such as
importin �, but rather with, for example, the integral mem-
brane protein Ndc1. Thus, the FG-sequences of Nup35 may
contribute to the formation of the NPC’s central framework
(Handa et al. 2006).

Nucleocytoplasmic transport and nuclear 
pore complex function

NPCs are porous to small molecules (e.g. water and ions),
which freely diVuse through the NPC, while more massive
cargoes (i.e. >40 kDa in size) [a recent study has showed
that this limit may extend to »100 kDa (Wang and Brattain
2007)] require the assistance of soluble transport receptor
proteins to be eVectively chaperoned through the NPC. A
large number of these receptor proteins, known collectively
as karyopherins (Kaps) or more speciWcally as importins
(imp) and exportins (exp), were discovered around the
1990s (Rexach and Blobel 1995; Wozniak et al. 1998)
[most recently reviewed in (Stewart 2007)]. Today, the
biochemical role of the receptors in “unlocking” the NPC
barrier as part of the nuclear traYcking machinery is
relatively well understood. As illustrated in Fig. 3,
appropriate cargoes are identiWed through a short sequence
of residues known as nuclear localization/export signals
(i.e. NLS/NES) for import and export, respectively, which
exhibit binding interactions with the karyopherins
[sometimes using an adaptor such as, for example,
importin-� (Gorlich et al. 1994)]. Otherwise, passage
through the NPC is obstructed for large, non-NLS/NES

Fig. 3 Schematic representation identifying the main biochemical
constituents of the nuclear import machinery. Passage through the
NPC is restricted to transport receptors, which bind and chaperone
NLS-cargo through the NPC, while access is prohibited for passive
(non-NLS) molecules of similar size. Binding of RanGTP to the trans-
port receptor releases the NLS-cargo into the nucleus. The gray shaded
area emphasizes the location of the FG-domains and the question mark
highlights the uncertainty with regard to the biophysical aspects of the
selective gating mechanism within the NPC, which operates to restrict
or promote cargo translocation
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harboring molecules that do not bind to the karyopherins
(i.e. passive) (Paine et al. 1975). The directionality of NCT
is driven by an asymmetric distribution of the two nucleo-
tide states of the small GTPase Ran (Melchior et al. 1993;
Moore and Blobel 1993). Being predominant in the
nucleus, RanGTP functions to release the cargo from its
import receptor by binding to the receptor itself (Gorlich
et al. 1996). Within the nucleus, exportins bind to their
cargo in the presence of RanGTP, which ferries the com-
plex back into the cytoplasm. Once in the cytoplasm, GTP
hydrolysis causes the disassembly of the export complex,
thereby recycling the export receptor and fueling the
cytoplasmic RanGDP pool.

Modeling NPC function

Early models of the NPC gating mechanism were derived
from initial EM studies, which linked the biophysical origin
of the selective gate to the presence of a “central plug” or
“central transporter” module located within the NPC (Akey
1989, 1990). The central transporter was suggested to
consist of an iris-like mechanism that is hinged to the cen-
tral channel (Akey 1990) (Fig. 4a). Although recent evi-
dence indicates that this feature represents to a large extent
cargo complexes arrested during translocation (Beck et al.
2004, 2007; StoZer et al. 2003), this model suggested a
translocation mechanism that has largely deWned the

Fig. 4 Getting to the bottom of the NPC selective gating mechanism.
a The central transporter consisting of an iris-like mechanism that is
hinged to the central channel. b Being natively unfolded and located at
the nuclear/cytoplasmic peripheries of the NPC, the virtual gating
model suggests that the entropic movements of the FG-domains can act
as a barrier to inert cargo. c The aYnity gradient model proposes that
receptor-cargo complexes traverse a pathway that is lined by FG-
domains of increasing aYnity. d The oily-spaghetti model predicts that
the FG-domains can only be pushed aside by receptor-cargo
complexes. e The undersaturated and subsequently the saturated
hydrogel model purport that the FG-domains crosslink via a dense

number of inter-FG interactions to form a highly organized three-
dimensional network within the NPC. f The nanomechanical
“reversible collapse” model asserts that the selective gating mecha-
nism consists of a stochastic Xux of collapsing and distending FG-
domains that is regulated by binding and unbinding interactions
between the FG-domain and the transport receptors. a Reproduced
with permission from Akey (1989) and Akey (1990). b Reprinted with
permission from Rout et al. (2003). c Reproduced with permission
from Ben-Efraim and Gerace (2001). d Reproduced with permission
from Macara (2001). e Reprinted with permission from Frey and
Gorlich (2007). f Reproduced from Lim et al. (2007a)
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criteria for subsequent NPC models in the Weld (Akey and
Goldfarb 1989). These steps include a peripheral binding to
the NPC, followed by a docking step, and then a transloca-
tion step (e.g. by a dilation of the transporter).

Coupled to the requirement of Kaps, Radu et al. (1995b)
recognized that the FG-domains represent the key constitu-
ents of the NPC selective gate by determining that the FG-
repeats act as docking sites for Kaps. By identifying and
binding to the FG-domains, the Kaps provide the biochemi-
cal selection mechanism for NCT (Radu et al. 1995a, b).
Consequently, Rout et al. (2000) showed that each NPC
consists of up to 12 diVerent FG-domains (i.e. nucleopo-
rins), which are located near the nuclear and cytoplasmic
peripheries of the NPC. To further emphasize the functional
redundancy between the various FG-domains in the NPC
(1) the asymmetric FG-Nups have been shown to be dis-
pensable for NCT (Zeitler and Weis 2004); (2) the direction
of transport through the NPC can be inverted (Nachury and
Weis 1999); (3) active transport is able to proceed in NPCs
lacking cytoplasmic Wlaments (i.e. FG-rich Nup358) (Wal-
ther et al. 2002); (4) the selective gating mechanism has
been found to remain functional even after 50% of the FG-
repeats had been depleted (Strawn et al. 2004).

Taken together, it is generally agreed that the FG-
domains act as the physical constituents of the NPC barrier
(Ben-Efraim and Gerace 2001; Macara 2001; Ribbeck and
Gorlich 2002; Rout et al. 2000) (Fig. 3). However, the
mechanistic manner in which the FG-domains contribute to
the selective gating of the NPC is widely speculated and
has been the subject of several reviews (Fahrenkrog and
Aebi 2003; Lim et al. 2006a; Stewart 2007; Suntharalingam
and Wente 2003; Weis 2003). Akin to the entropic Xuctua-
tions of unstructured microtubule-associated proteins
(MAPs) (Mukhopadhyay and Hoh 2001) and neuroWlament
sidearms (Brown and Hoh 1997), the Brownian aYnity gat-
ing model (Rout et al. 2000), later called virtual gating
(Rout et al. 2003), proposes that the entropic behavior of
peripheral FG-domains acts as a substantial barrier to inert
cargo (Fig. 4b). Translocation is anticipated for receptor-
mediated cargoes due to interactions between the FG-
repeats and the transport receptors, which increases the res-
idence time and probability of entry into the NPC. In a sim-
ilar manner, the “oily-spaghetti” model (Macara 2001)
postulates that noninteracting FG-domains are pushed aside
by cargo complexes but otherwise obstruct the passage of
passive cargo (Fig. 4d).

Beyond its barrier function, the dualistic ability of each
NPC to restrict or promote cargo translocation (i.e. to
simultaneously act as a barrier and a vectorial transport
facilitator) is only Wguratively understood. Karyopherin–
cargo complex movement through the NPC has been com-
pared to “stepping from one FG-repeat to the next” (Rexach
and Blobel 1995), or “sliding over a surface comprised of

FG-repeats” (Peters 2005). Alternatively, the aYnity gradi-
ent model (Ben-Efraim and Gerace 2001) suggests that
transport complexes “step” through NPCs lined with FG-
nucleoporins exhibiting increasing binding aYnities with
the cargo complexes (Fig. 4c). Finally, the selective phase
model (Ribbeck and Gorlich 2002) predicts that FG-
domains attract each other via hydrophobic inter-FG-repeat
interactions to form a hydrophobic gel or meshwork
(Fig. 4e). This interpretation is based on experiments,
which show that the addition of hydrophobic solvents dis-
rupts the meshwork and triggers a nonselective opening of
the pore (Ribbeck and Gorlich 2002; Shulga and Goldfarb
2003). Hence, it is predicted that passive, more hydrophilic
material is obstructed while hydrophobic cargo complexes
are able to “dissolve” through the sieve-like meshwork.

Unraveling FG-domain behavior 

Frey et al. (2006) showed that the yeast FG-Nup, Nsp1, can
be cast in the form of a macroscopic hydrogel to lend sup-
port to the “selective phase” model (Ribbeck and Gorlich
2002). However, the same authors reported that the Nsp1
hydrogel lacked any discriminatory eVects between inert,
non-Kap binding proteins and Kap-complexed proteins
unless the FG concentration within the gel was raised
(»50 mM) to the point where it formed a “saturated”
hydrogel (Frey and Gorlich 2007). In this manner, they
explained that an eYcient permeability barrier was recov-
ered due to the formation of a highly ordered meshwork
consisting of cohesive inter-FG repeats (Fig. 4e). In addi-
tion to preventing the translocation of inert molecules, it
was found that such a saturated hydrogel could reproduce
the diVusion rates of receptor-driven transport in the NPC
(Kubitscheck et al. 2005; Yang et al. 2004).

To address this issue, Patel et al. (2007) reported evi-
dence that refutes the gel-forming quality of Nsp1. To
investigate the cohesiveness of diVerent FG-domains, Patel
et al. devised a low aYnity assay, which could detect the
binding of CFP-Nups to GST-Nups immobilized on
Sepharose beads. By avoiding the non-physiological condi-
tions used to form the hydrogels (Frey et al. 2006; Frey and
Gorlich 2007), they found that only GLFG-domains show
weak cohesive interactions, whereas FxFG-domains (such
as Nsp1) do not bind together. Based on their Wndings, the
authors suggested that the FxFG domains on both cytoplas-
mic and nuclear peripheries act as an entropic repulsive
barrier, while the GLFG-domains form a cohesive mesh-
work in the central NPC channel (Patel et al. 2007). There-
fore, they proposed a two-gate model that combines
elements of both Brownian gating and the selective phase
(Patel et al. 2007). Such a two-gate model, however, is
likely to be more appropriate to yeast NPCs, because verte-
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brate NPCs are known to be composed almost entirely of
FxFG-domains (except for the GLFG-domain of Nup98)
(Suntharalingam and Wente 2003). Furthermore, by a sys-
tematic depletion of FG-domains in yeast, the authors
showed that the NPCs displayed similar qualitative “leaki-
ness” in all the cases studied, which indicates that all the
FG-domains exhibit a functional redundancy in that both
peripherally and centrally anchored FG-Nups play equal
roles in maintaining the selective gating mechanism.

Lim et al. (2006b, 2007a) developed an experimental
platform that allowed for the collective behavior of surface-
tethered FG-domains to be probed at the nanoscopic length
scale. By reproducing the physical dimensions of the NPC,
they found that the FxFG-domains of the vertebrate
Nup153 resembles a polymer brush (Halperin et al. 1992;
Milner 1991; Zhao and Brittain 2000). This is caused by
packing constraints between the entropy-dominated FG-
domains, which force the surface-tethered FG-domains to
extend in a net directionality away from the surface (i.e.
entropic barrier). This creates a signiWcant repulsive barrier
that can repel large macromolecules while allowing small
molecules such as ions and water to diVuse more easily
through. This may explain why a reduced number of FG-
domains is enough to maintain an eVective barrier in the
NPC. By showing that the extended brush-like FG-domains
collapsed in hexanediol, they were further able to explain
why the NPCs could reversibly open and close when simi-
lar reagents were added/removed in nuclear transport
assays (Patel et al. 2007; Ribbeck and Gorlich 2002; Shulga
and Goldfarb 2003). This was further substantiated with
atomic force microscope (AFM) single molecule force
spectroscopy (SMFS) analysis, which showed that individ-
ual Nup153 FG-domain molecules (1) lack intra-FG inter-
actions; (2) are natively unfolded; (3) can be reversibly
stretched and relaxed without any change to its intrinsic
entropic elasticity, i.e. resembling a worm-like chain
(WLC) (Bustamante et al. 1994; Marko and Siggia 1995).
In comparison, SMFS analysis revealed complex plateau-
like (un)binding topologies between Kap�1 (importin�)
and Nup153 when Kap�1-modiWed AFM tips were used
(Lim et al. 2007b). This provided evidence for binding pro-
miscuity (Dunker et al. 2001; Tompa 2002) in FG-receptor
interactions and is in agreement with the fact that Kap�1
consists of Wve experimentally veriWed hydrophobic FG-
binding sites (Bayliss et al. 2000, 2002b; Bednenko et al.
2003; Liu and Stewart 2005), with additional Wve binding
sites predicted by molecular dynamics (MD) simulations
that can be simultaneously occupied (Isgro and Schulten
2005).

To further correlate the governing biochemical interac-
tions to the biophysical behavior of the FG-domains, Lim
et al. (2007a) studied the nanomechanical response of the
brush-like FG-domains under the inXuence of transport fac-

tors such as Kap�1, RanGTP and RanGDP. Consequently,
they found that the entropic barrier collapsed in vitro due to
Kap�1-FG binding interactions (i.e. causing a reduction in
conformational entropy of the FG-domains) and was
reversed by the sequestration of Kap�1 by RanGTP (but
not RanGDP). By validating similar eVects in situ using an
immunogold-EM labeling assay in Xenopus oocytes nuclei,
they hypothesized that the selective gating mechanism con-
sists of a rapid, stochastic Xux of collapsing and distending
FG-domains that regulates passage through the NPC
(Fig. 4f). Such “seamlessness” may explain the reversibility
of NCT and apparent open communication between the
cytoplasm and nucleus (Kopito and Elbaum 2007).

Outlook

Besides resolving the overall structure of the NPC, an accu-
rate picture of how selective gating is achieved by the
(structureless) FG-domains remains unclear due to a gen-
eral lack of understanding with regard to their behavior and
function within the NPC. So far, only the reversible col-
lapse of the FG-domains has been directly observed to
occur in the NPC (Lim et al. 2007a). The source of this
ambiguity stems in part from the diYculty in trying to visu-
alize the FG-domains in vivo, which is evident given the
lack of resolution even when using state-of-the-art struc-
tural techniques such as cryo-tomography (cryo-ET) to
detect the FG-domains (Beck et al. 2004, 2007; StoZer
et al. 2003). Although immunogold-EM techniques can
provide positional information of the FG-domains within
the NPC, this is limited to static views of FG-domain
behavior (Fahrenkrog et al. 2002; Paulillo et al. 2005, 2006;
Schwarz-Herion et al. 2007; Lim et al. 2007a). New micro-
scopic techniques such as the AFM is also usually limited
in resolution and chemical sensitivity due to the complexity
of the NPC and its cellular environment (Jaggi et al. 2003a,
b; Mooren et al. 2004; StoZer et al. 1999; Wang and Clap-
ham 1999). In fact, owing to their natively unfolded struc-
ture (Denning et al. 2002, 2003), the FG-domains
themselves have so far only been directly visualized as
individual bioploymers by AFM (Lim et al. 2006a).

In combination with biochemical eVorts to identify
whether diVerent transport receptors use preferential FG-
domains during NCT (Terry and Wente 2007), it may be
beneWcial to use bottom-up strategies to investigate how the
FG-domains behave on a biophysical level to give rise to
the selective gating of the NPC. This is because biochemi-
cal approaches can only provide a marginal mechanistic
description of the selective gating process. Moreover,
because NCT occurs over tens of nanometers in and around
the NPC, i.e. a near-Weld eVect, this in fact necessitates a
consideration of such physical details, including (1) the
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geometry and nanoscopic dimensions of the NPC, (2) the
FG-domain anchoring sites within the NPC and (3) the
limited number of FG-domains located within the NPC.

Thus, it will be essential to establish FG-domain confor-
mations at the NPC-relevant length scale. To critically
underscore this point, can macroscopic assays that address
the characteristics of enormously large numbers of FG-
domains be interpreted to represent and describe the bio-
physical behavior of »100–150 natively unfolded FG-
domains anchored within the NPC? How does one recon-
cile the notion of having extended FG-domains in the NPC
when the diameter of the central pore is about ten times
larger than the size of a FG-domain at dynamic equilibrium
[Stokes’ radius typically a few nanometers (Denning et al.
2003)]? What physical basis can allow for the FG-domains
on opposing sides of the central pore to extend so far past
their Stokes’ radius so as to “touch each other,” much less
to form an inter-FG crosslinked meshwork spanning the
diameter of the central pore (Frey and Gorlich 2007)
(Fig. 4e), in a highly vacuous NPC (Beck et al. 2004,
2007)? In fact, can the presence of strong FG–FG binding
eVects prevent the formation of such a meshwork by caus-
ing individual FG-domains to collapse or “curl up” along
the walls of the central channel (Weis 2007)? Conversely,
if a brush-like conformation is a valid prerequisite for the
extension of the FG-domains to form a barrier in the NPC
(Lim et al. 2006b), does this necessarily preclude the possi-
bility of inter-FG interactions occurring between neighbor-
ing FG-domains?

Bearing in mind that the FG-domains are anchored to the
NPC instead of free Xoating in solution, whether or not
FXFG- and GLFG-domains cohere in the NPC (Patel et al.
2007) will not only depend on how strongly (and dynami-
cally, i.e. frequently) they interact with each other, but also
on their physical proximity within the NPC (i.e. anchoring
site). Therefore, other contextual eVects that require consid-
eration include the following: (1) How conWnement eVects
based on the hourglass-like geometry aVect the entropic
behavior of the FG-domains (e.g. preferring to remain in
the central pore or outside)? (2) The strength of FG–FG
interactions in the midst of competing eVects such as the
steric hindrance between the hydrophilic regions of neigh-
boring FG-domains; (3) How nonspeciWc interactions can
bias their behavior (Paradise et al. 2007; Timney et al.
2006), e.g. macromolecular crowding (Zimmerman and
Minton 1993)? (4) More generally, how does the complex
cellular environment (exhibiting a multitude of speciWc/
nonspeciWc interactions) in and around the NPC near-Weld
aVect FG-domain conformations? (5) Finally, how do these
eVects inXuence and aVect the interactions between the FG-
domains and transport receptors?

Given these arguments, the modus operandi of the NPC
selective gating mechanism requires careful substantiation

at the near-Weld, mesoscopic scale (i.e. the length scale rele-
vant to the properties of a material or phenomenon). To
emphasize its relevance, the outermost surface of a hydro-
gel at the gel–liquid interface has been shown to consist of
noncrosslinked polymer chains (Kim et al. 2001, 2002).
Moreover, FG-domain behavior will have to be assessed at
the relevant time scales, since selective gating appears to be
a rapid kinetic process over a time scale of the order of
»5 ms (Kubitscheck et al. 2005; Yang et al. 2004; Yang
and Musser 2006). This emphasizes the need to move
beyond conventional biological methods and to adopt more
interdisciplinary experimental approaches (Dutta and Bel-
fort 2007). In addition, the use of molecular dynamics
(MD) simulations (Isgro and Schulten 2005, 2007a, b) and
other theoretical frameworks (Zilman et al. 2007) may be
able to illuminate aspects of FG-domain behavior and the
nuclear traYcking machinery that experimentalists can then
look out for and validate.

Perhaps most importantly, the desire to conceptually rec-
oncile and reach a single objective understanding of NPC
function and structure will require that such aspects of
nuclear transport processes be scrutinized in individual
NPCs in vivo. However, beyond the technical challenges
involved, a diYculty remains as to how a “ground-state”
can be deWned in the NPC—so as to monitor subsequent
changes in the nebulous haze of FG-domains—without any
quantitative information regarding the endogenous recep-
tors and cargo already bound to the FG-domains, which
will inXuence FG-domain behavior. In any case, such atten-
tion to detail will be key to deWning a uniWed picture of the
NPC. As noted by Paine et al. (1975) in Nature more than
30 years ago, “as solute size approaches the dimensions of
the pore, solute–pore wall interactions become increasingly
important. SpeciWc site interactions…would also inXuence
solute movements.”
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