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Abstract—Phylogenetic analyses often produce large numbers of trees. Mapping trees’ distribution in “tree space” can
illuminate the behavior and performance of search strategies, reveal distinct clusters of optimal trees, and expose differences
between different data sources or phylogenetic methods—but the high-dimensional spaces defined by metric distances are
necessarily distorted when represented in fewer dimensions. Here, I explore the consequences of this transformation in
phylogenetic search results from 128 morphological data sets, using stratigraphic congruence—a complementary aspect
of tree similarity—to evaluate the utility of low-dimensional mappings. I find that phylogenetic similarities between
cladograms are most accurately depicted in tree spaces derived from information-theoretic tree distances or the quartet
distance. Robinson—Foulds tree spaces exhibit prominent distortions and often fail to group trees according to phylogenetic
similarity, whereas the strong influence of tree shape on the Kendall-Colijn distance makes its tree space unsuitable for
many purposes. Distances mapped into two or even three dimensions often display little correspondence with true distances,
which can lead to profound misrepresentation of clustering structure. Without explicit testing, one cannot be confident that
a tree space mapping faithfully represents the true distribution of trees, nor that visually evident structure is valid. My
recommendations for tree space validation and visualization are implemented in a new graphical user interface in the

“TreeDist” R package. [Multidimensional scaling; phylogenetic software; tree distance metrics; treespace projections.]

Phylogenetic analysis seeks to reconstruct historical
relationships between evolving lineages, such as species,
languages, or cell lines. Such analyses often identify
many candidate trees, making it difficult to encapsulate
the underlying phylogenetic signal. Single summary
trees generated through consensus, compromise, or
centroid methods (Wilkinson 1994; Nixon and Carpenter
1996) cannot communicate information about the “land-
scape” (Bastert et al. 2002) that trees occupy, such as
the existence of tightly defined but potentially dissimilar
“islands” or “terraces” (Maddison 1991).

The structure of “tree space”—formally, the metric
space defined by the distances between each pair of
trees in a set—can help to establish the progress of tree
searches; to produce more informative summary trees; to
reveal relationships within a set of optimal trees obtained
from different data sets or methods; and to illuminate the
posterior distribution of trees resulting from Bayesian
analysis (Amenta and Klingner 2002; Stockham et al.
2002; Hillis et al. 2005; Holmes 2006; Chakerian and
Holmes 2012; Whidden and Matsen 2015; Willis and Bell
2018; Wright and Lloyd 2020).

To appreciate this structure, a tree space that may
have many intrinsic dimensions must be mapped into
fewer: ideally two or three. However, dimensionality
reduction discards information: mapping into too few
dimensions will misrepresent spatial relationships. Few
published studies evaluate whether a mapped tree
space meaningfully depicts true tree-to-tree distances—
perhaps because such distortion is deemed a theoretical
rather than practical concern.

Alongside the dimensionality of a mapping, other
factors known to influence the nature and utility of tree
space include the method of dimensionality reduction;

the means of calculating distances between trees; the
specific trees used to generate the tree space; and how
clusters (“islands”) of trees are identified (Hillis et al.
2005; Huang and Li 2013; Wilgenbusch et al. 2017). The
methods implemented in the popular “TreeSetVis” and
“treespace” software packages (Amenta and Klingner
2002; Jombart et al. 2017) are frequently used, but there
otherwise seems to be little consensus as to how a
method should be selected.

Here, I evaluate the behavior of eight distance metrics,
four clustering approaches, and six mapping methods
in the construction and interrogation of tree spaces
from 128 sets of stratigraphically calibrated cladograms
(Lloyd and Wright 2020). I explore the degree to which
methodological decisions can materially impact the
analysis and interpretation of tree space, and identify
recommendations for best practice.

MATERIALS AND METHODS

Wright and Lloyd (2020) used a selection of 128
morphological data sets to demonstrate how tree space
analysis can facilitate the interpretation of phylogenetic
results. They estimated Bayesian trees under the Mk
model of morphological evolution (Lewis 2001), parti-
tioning data sets according to the number of observed
tokens per character, and using four rate categories
to describe the speed of morphological change, with
each category’s mean rate drawn from the quartiles
of a gamma distribution. A single MCMC run was
executed in “RevBayes” (Hohna et al. 2016) for 300,000
generations. To minimize the risk of artifacts due to non-
convergence of chains, I conservatively discard the first
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50% of Bayesian trees as burn-in, and sample 2500 of
the remaining trees at uniform intervals to represent the
posterior distribution.

Wrightand Lloyd (2020) identified most parsimonious
trees using TNT (Goloboff and Catalano 2016) under
equal-weights parsimony, using exhaustive searches for
data sets with <25 leaves, and heuristic searches for
larger data sets. I include all most parsimonious trees
reported, with an upper limit of 1000 trees for each
data set.

I treat all trees as cladograms, discarding branch
length information in order to focus exclusively on
the evolutionary relationships contained within each
tree. The underlying paleontological data sets contain
4-88 (median: 15) terminal taxa and 8-540 (median:
57) morphological characters, address a broad range of
vertebrate and invertebrate taxa, and are each associated
with stratigraphic occurrence data from the fossil record
(Lloyd and Wright 2020). This broad suite of tree
sets with disparate properties helps to illuminate, if
incompletely, the nature of tree spaces constructed from
typical morphological data sets.

Molecular data sets are not added to this sample
because they cannot be directly integrated with strati-
graphic information from the fossil record. Besides
data type, the character of tree space may also depend
on factors such as the method of inference, the sig-
nal:noise ratio, or the number of sites per taxon. While
acknowledging that certain details of the results might
therefore be particular to these specific data sets, this
study documents the degree to which methodological
decisions have the potential to influence tree space
analysis.

Distances

This study considers distances that purport to
quantify the similarity of relationships between clado-
grams: the Robinson-Foulds (RF), matching split
information (MS), phylogenetic information (PI), clus-
tering information (CI), path (Pt), Kendall-Colijn (KC),
and quartet (Q) metrics, and a new metric (SV) derived
from vector representations of trees.

The RF (symmetric partition) distance (Robinson
and Foulds 1981) counts the number of splits (loosely
equivalent to edges or nodes) that occur in one tree but
not the other, making no allowance for the existence
of splits that may be almost—but not quite—identical.
This distance is crude: it has a low resolution, is readily
saturated, and is sensitive to the relocation of a single
group within a tree (Steel and Penny 1993).

Information-theoretic distances (Smith 2020a) gen-
eralize the RF distance to account for the differing
information content of differently sized splits, and to
acknowledge similarities between pairs of splits that are
not quite identical. These metrics construct a “matching”
that pairs splits between two trees so as to maximize
the amount of information that all paired splits hold in
common; the amount of information not held in common

gives the distance. The clustering, phylogenetic, or
matching split concepts of information capture subtly
different aspects of similarity between relationships.

The quartet distance (Estabrook et al. 1985) counts
whether the relationships between each possible com-
bination of four leaves are the same or different between
two trees; it has a similar objective to information-
theoretic distances but is slower to calculate.

Euclidian vector-based tree distances are the square
root of the sum of squared differences between explicit
vector representations of trees. The path distance (Steel
and Penny 1993) constructs a vector such that for each
pair of leaves {i,j}, the entry of the vector ejj is the number
of edges between i and j. For the KC (Kendall and Colijn
2016) distance with A =0 (which discards branch length
information), ¢;; denotes the number of edges separating
the common ancestor of i and j from the root; taxa
whose most recent common ancestor is further from
the root belong to a smaller taxonomic group. Setting
¢jj to the number of leaves in the smallest bipartition
split containing both i and j provides an alternative
measure of the size of a taxonomic group that is defined
for unrooted trees; the Euclidian distance between such
vectors defines a metric that I term the split size vector
(SV) metric.

The KC metric is the only metric examined that assigns
significance to the position of the root of a tree. To
establish the degree to which annotating the position
of the root influences the properties of tree space, all
experiments with the CI distance are repeated with and
without the root node labeled.

I do not consider distances that incorporate branch
length information (e.g., Billera et al. 2001; Speyer and
Sturmfels 2004; Garba et al. 2018), while acknowledging
that these can produce “natural” tree spaces with
desirable properties (Gori et al. 2016; Monod et al. 2018;
Garba et al. 2021). Neither do I include “edit”-based
distances, which are difficult to calculate exactly, and
whose approximations exhibit undesirable properties
(Smith 2020a). Other distances, which capture other
aspects of tree similarity, might also be used as the
basis for tree space construction: leaf-to-leaf distances
(e.g., Leigh et al. 2011) emphasize branch lengths over
relationships; shape metrics (e.g., Mir et al. 2013; Colijn
and Plazzotta 2018) consider aspects of tree shape but
not relationship information. As these distances do not
denote the similarity in the evolutionary relationships
implied by cladograms in any straightforward sense, I
do not consider them further.

I have previously evaluated a number of tree distance
metrics in their ability to assign higher distances to
cladograms that denote increasingly different evolution-
ary relationships (Smith 2020a). In summary, these tests
evaluate whether tree distances exhibit the following
desirable properties: moving a single subtree a greater
distance results in a greater distance to the resulting tree
(“length of move”); moving a small subtree represents a
smaller change than moving a larger subtree the same
distance (“number of leaves moved”); few pairs of trees
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exhibit the maximum possible distance (“saturation”);
few pairs of trees are allocated identical distance values
(“sensitivity”); tree shape is not correlated with tree
distance (“shape independence”); simulated clusters of
trees can be recovered (“cluster recovery”); trees inferred
from progressively more degraded data sets are further
from the reference topology used to generate the pristine
data set, whether data sets are degraded by subsampling
characters (“bullseye subsampling”) or by switching
character states between leaves (“bullseye miscoding”);
trees separated by more subtree pruning and regrafting
rearrangements tend to exhibit greater distances (“SPR
rearrangement”); and random tree pairs exhibit a con-
sistent score (“random distances interquartile range”).
The present study evaluates the KC and SV met-
rics against these criteria (detailed in full in Smith
(2020a)), and against a new benchmark designed to
explore the sensitivity of metrics to differences in
tree balance. This new “balance independence” test
uses 10,000 pairs of 25-leaf trees drawn from a uni-
form distribution. I calculate the distance between
each pair of trees using each distance metric, and
the degree of balance for each tree using the
total cophenetic index (TCI, Mir et al. 2013), using
Rfunction TreeTools: : TotalCopheneticIndex ()
(Smith 2019a). Low TCI values denote a balanced tree, in
which the left and right children of each node exhibit
an equal number of descendants. A lack of correlation

(2) between a metric distance and the difference in TCI
values indicates that a metric is independent of tree
balance.

Clustering

Iidentify clusters of unique tree topologies using:

¢ the Hartigan—-Wong K-means algorithm (Hartigan
and Wong 1979, R function kmeans ()), with 3
random starts and up to 42 iterations;

e partitioning around medoids (cluster: :pam(),
Maechler et al. 2019), using 3 random starts and the
algorithmic shortcuts of Schubert and Rousseeuw
(2021);

¢ hierarchical clustering with minimax linkage
(Murtagh 1983) (protoclust: :protoclust (),
Bien and Tibshirani 2011) (chosen after outper-
forming other linkage methods in initial informal
analyses); and

custom function
alongside

¢ spectral clustering (using
TreeDist: :SpectralEigens ()
cluster: :pam()).

I use silhouette coefficients to calculate the optimal
clustering method and number of clusters for each
analysis (after Kaufman and Rousseeuw 1990). The
silhouette value of a given tree compares its cohesion—
its distance from each other tree within its cluster—with

its separation—its distance from each tree that is not
within its cluster. Values close to +1 denote a high
proximity to other trees within its cluster; values close
to —1 indicate proximity to trees in other clusters. The
silhouette coefficient is the mean silhouette value of
all trees. Following Kaufman and Rousseeuw (1990),
I interpret silhouette coefficients >0.7 as representing
“strong” structure; >0.5 as “reasonable” structure; >0.25
as “weak structure that may not be genuine”; and <0.25
as lacking clustering structure.

Clusterings (i.e., assignments of trees to clusters) are
compared using their variation of information (VI, Meila
2007). Similar clusterings exhibit a low VI: the cluster to
which a tree belongs in one clustering strongly predicts
which cluster it belongs to in the other. The VI of two
clusterings that each divide objects into two equally
sized clusters will range from zero to two bits; the
maximum possible VI decreases if clusters are uneven
in size, and increases where more clusters are present in
a clustering.

To evaluate whether clustering structure is preserved
after mapping to two dimensions, I consider all tree
sets with “reasonable” clustering structure (silhouette
coefficient > 0.5). I selected two mapping approaches—
principal coordinates analysis (PCoA) and t-distributed
stochastic neighbor embedding (t-SNE)—for detailed
(and computationally expensive) investigation on the
basis of preliminary analyses. After computing clus-
terings from distances mapped into two dimensions,
I record any change to the number of clusters, and
calculate the VI between clusterings computed from
original and mapped distances.

Mapping

Distances are calculated using the R (R Core Team
2021) packages “TreeDist” (Smith 2020b) and “Quartet”
(Sand et al. 2014; Smith 2019b) and mapped into 1-12
dimensions using a suite of multidimensional scaling
(MDS) approaches: PCoA (also termed classical MDS)
(Gower 1966; R function stats::cmdscale(), R
Core Team 2021); non-metric MDS with a Kruskal-1
stress function (Kruskal 1964) (MASS::isoMDS (),
Venables and Ripley 2002); Sammon’s (1969) metric
non-linear mapping (MASS::sammon (), Venables
and Ripley 2002); curvilinear components analysis
(CCA) (Demartines and Herault 1997, Sun et al.
2013) (ProjectionBasedClustering: :CCA(),
Thrun and Ultsch 2021), another metric MDS
method; diffusion mapping (Coifman and Lafon
2006) (diffusionMap::diffuse (), Richards and
Cannoodt 2019); Laplacian eigenmapping (Belkin and
Niyogi 2003) (dimRed::embed(), Kraemer et al.
2018), a kernel eigenmap method; and t-SNE (van
der Maaten and Hinton 2008; van der Maaten 2014)
(Rtsne: :Rtsne (), Krijthe 2015).

PCoA is a simple approach, which essentially rotates
a high-dimensional space such that as much of the
variance of the data as possible falls within the plotted
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dimensions (Thrun 2018). PCoA requires Euclidean dis-
tances, and converting distances between phylogenetic
trees into a Euclidean space entails a loss of information
(Nye 2011). To make the distances Euclidian, I follow the
standard practice of adding a constant to each distance
(Cailliez 1983; Jombart et al. 2017), while noting that
this might distort the relative magnitude of individual
distances.

Kruskal-1 and Sammon MDS mappings minimize the
normalized difference between original and mapped
distances, each using a separate stress function to
quantify the normalized difference. In the usual case
where tree distances are metrics, Sammon MDS is
expected to closely resemble PCoA (Ekman and Blaalid
2011)—though it can emphasize accuracy in shorter
rather longer distances (van der Maaten et al. 2009),
providing a clearer depiction of local geometric features
such as separation between clusters (Thrun 2018).

CCA uses a stress function that implicitly assigns
points in a high number of dimensions to locations
on a “manifold” that can be readily represented in
fewer dimensions—akin to reconstructing original two-
dimensional distances on a sheet of paper that has
since been crumpled into a three-dimensional ball. This
is accomplished with a stress function that penalizes
distortion in distances that are short when mapped
(contra short original distances, as in the Sammon
stress function), allowing longer distances to deform
more readily. The length scale that qualifies as “short”
decreases as the mapping is refined.

Diffusion mapping is a different manifold-learning
approach. Rather than minimizing a stress function,
trees are represented as nodes on a graph, with each
node connected to others by edges whose lengths are
a function of the distances between trees. A Markov
chain constructed over this graph generates a transition
matrix; treating the eigenvectors of this Markov matrix
as coordinates results in a low-dimensional space that,
when successful, captures the main structure of the
data, in particular preserving the spatial relationships
of near neighbors (Coifman and Lafon 2006). Laplacian
eigenmapping is a special case of diffusion mapping
that emphasizes the influence of local density on the
mapping, in part by connecting trees only to a number
(here, 50) of their nearest neighbors in the initial graph; it
is considered particularly appropriate when data contain
meaningful clusters (Belkin and Niyogi 2003).

Finally, t-SNE constructs a probability distribution
whereby trees that lie close to a specified tree are more
probable. A low-dimensional mapping is selected in
order that the equivalent treatment of mapped distances
replicates this probability distribution as closely as
possible.

Distortion

To evaluate the susceptibility of a tree space to distor-
tion on mapping, I calculate its correlation dimension
(Camastra and Vinciarelli 2002), a measure of its intrinsic
dimensionality—that is, the number of dimensions

necessary in order to reproduce all the structure present
in the tree space. I evaluate the distortion present in
mappings using the product of the trustworthiness and
continuity metrics (Venna and Kaski 2001; Kaski et al.
2003), calculated using R package “dreval” with k=10
nearest neighbors. Trustworthiness measures the degree
to which points that are nearby in a mapping are truly
close neighbors; continuity, the extent to which points
that are truly nearby retain their close spatial proximity
when mapped. Their product gives a composite score
that encapsulates both aspects of quality. I also calculate

the strength of correlation (Pearson’s r> and Kendall’s
1) between original and mapped distances, which
corresponds to the goodness of fit of a Shepard (1962)

plot. Pearson’s > measures the degree to which the
original distance can be predicted from the magnitude of
the mapped distance: it will be zero if mapped distances
are random with respect to original distance, and one
where the ratio between any two distances is identical
before and after mapping. Kendall’s t considers only
the ranking of distances; where t=1, tree pairs will be
ranked in the same sequence whether sorted by original
or mapped distances. The adequacy of PCoA mappings
can be further evaluated by calculating the proportion
of variation retained, or through visual examination of
scree plots (Jolliffe 2002); these approaches were not
systematically applied in this study.

I graphically depict stress by plotting the minimum
spanning tree (MST, Gower and Ross 1969)—the shortest
path connecting all trees—for 350 trees uniformly
selected from the list of all Bayesian and parsimony
results. Tortuous paths indicate distortion in a mapping
(Anderson 1971). To quantify the distortion thus shown,
I calculate the “MST extension factor,” which I define as
the ratio between the mapped length of the MST and
the shortest length possible for each mapping (i.e., the
length of the MST calculated from mapped distances);
in the absence of distortion, this ratio will be unity.

Stratigraphic Congruence

The distribution of fossil taxa in the stratigraphic
record is independent of their morphology, except
insofar as both represent a single historical record
of evolution (Sansom et al. 2018). The stratigraphic
congruence of trees ought therefore to be reflected in
the structure of any space that fully reflects the nature
of the evolutionary histories implied by its constituent
trees, even where the data used to assess stratigraphic fit
are not used to construct the space.

Wright and Lloyd (2020) quantified stratigraphic
congruence with the minimum implied gap (MIG)
statistic, calculated using fossil occurrence data from
the Paleobiology Database after rooting each tree on a
manually specified outgroup taxon. A “gap” in the fossil
record is a period of time in which a taxon is inferred to
exist but is not represented by fossils. The MIG is the
sum of gaps across all edges, when each node is situated
at the time that minimizes gaps. A small MIG denotes a
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good fit with the stratigraphic record, and by implication
an increased likelihood that a tree faithfully represents
evolutionary history. To establish the extent to which
mappings of tree space portray stratigraphic structure, I
calculate the cumulative proportion of variance (adjus-

ted r2) of stratigraphic consistency predicted by the first
1-12 dimensions of each mapping.

RESULTS

Six-dimensional mappings for each data set, tree
distance method, and mapping method, with evaluation
of clusterings and depiction of stratigraphic fit, are
provided in the Supplementary Material available on
Dryad at http://dx.doi.org/10.5061/dryad.kh1893240
(Smith 2021). Results obtained under the CI distance
when trees were rooted do not materially differ from
those when trees are treated as unrooted (Smith 2021).

Tree Distance Metric

The results of the tests devised to compare tree
distances by Smith (2020a), plus the new “balance
independence” test, are presented in Table 1. Of the
metrics examined, only the quartet and information-
theoretic tree distances consistently reflect differences
in the evolutionary relationships within trees (Table 1).
Relative to these distances, Euclidian vector-based
distances—the path, KC, and sv metrics—do a poor job
of representing pre-defined structures in sets of trees.
They are less effective at identifying known clusters of
trees (Table 1, “cluster recovery”), and more often fail
to assign greater distances to trees that are increasingly
far from a reference tree (Table 1, “length of move,”
“bullseye,” and “SPR rearrangement” tests).

The KC metric places a particular emphasis on
differences in tree shape (1>=0.35 for eight-leaf trees;
see Table 1, “shape independence”), and thus downplays
differences in the relationships between labeled leaves;
38% of the variation in the KC score between pairs of 25-
leaf trees can be attributed to differences in the degree

of balance (Table 1, “balance independence”), compared
to <3% for all other studied distances. The sensitivity
of the KC metric to properties of trees that take no
account of which leaf is which curtails its ability to
discriminate trees based on the evolutionary relation-
ships they imply, reducing its relevance to phylogenetic
questions. The SV metric outperforms the KC metric
against all but two of the examined benchmarks, but
still performs poorly relative to the quartet distance and
information-theoretic distances (Table 1). As such, it is
difficult to see a clear case for using Euclidian vector-
based distances, whose values have no straightforward
interpretation, to measure the phylogenetic similarity
of trees.

Because different metrics capture different aspects of
tree similarity, the tree spaces they define can exhibit
very different properties. The strong connection between
tree shape and the KC distance means that differences
in the degree of tree balance are often the primary
feature of KC tree spaces, but do not characterize
spaces constructed using other metrics (e.g., Fig. 1d—f).
Mappings of RF spaces often stand out as particularly
different to those of other spaces; in many cases, the
underlying RF space lacks structures, such as clusters
and correlation with stratigraphic fit, which are present
in all other tree metric spaces (Fig. 1a—c, g-1; Smith 2021);
though in other cases (e.g., Fig. 1d), RF mappings exhibit
structure that is not evident in other spaces.

Clusters

If a data set displays genuine clustering structure, then
itis desirable for clusters to be clearly distinguished. Tree
spaces constructed on the quartet, KC, and SV metrics
exhibit the most prominent clusters, whereas clustering
is least defined in RF tree spaces (Fig. 2a). Better-defined
clusters exhibit a higher silhouette coefficient, increasing
the number of cases in which “reasonable” clustering
structure (silhouette coefficient > 0.5) can be identified
(Fig. 2c). For tree spaces that exhibit “reasonable”
clustering, the clustering solution identified is very
similar (VI < 0.01 bits) under all distance metrics except

TaBLE 1. Performance of selected tree distance metrics against tests of tree distance behavior

Ranking Best 2 3 4 5 Worst
Length of move: mis-orderings (0-545) RF (0) CID (8) QD (94) Path (126) SV (188) KC (360)
No. leaves moved: inconsistent cases (0-289) = CID (0) = Path (0) SV (2) KC (11) QD (17) RF (289)
Saturation: 11-leaf trees with max score (1-100,000) =CID (1) =QD(1) = Path (1) =5V (1) KC (3) RF (86,336)
Sensitivity: distinct values (100,000-1) CID (28,939) KC (581) SV (541) Path (302) QD (200) RF (6)
Shape independence: 2 (0-1) QD (107%) CID (0.0079) RF (0.024) SV (0.055) KC (0.35) Path (0.48)
Balance independence: 12 (0-1) RF (0.0001) QD (0.0007) CID (0.0014) SV (0.004) Path (0.027)  KC (0.375)
Cluster recovery: mean rank (1-25) CID (7.2) QD (9.8) RF (10.9) KC (14.1) Path (16.3) SV (16.9)
Bullseye subsampling successes (1000-0) CID (650) Path (633) QD (626) SV (588) KC (573) RF (410)
Bullseye miscoding successes (1000-0) CID (941) QD (809) RF (781) SV (709) Path (704) KC (598)
SPR rearrangement: Kendall’s t (1-0) CID (0.771) RF (0.744) QD (0.739) SV (0.608)  Path (0.536)  KC (0.482)
Random distances interquartile range (% of median) QD (1.6) CID (1.6) SV (2.2) Path (18.8) KC (35.2) RF (n/a*)

Note: Parentheses denote range of possible scores for each measure (best to worst). Note that random tree pairs obtain the maximum possible
RF distance, resulting in a zero interquartile range (*). Full details and results in Smith (2020a) and Smith (2021).
CID = clustering information distance; KC = Kendall-Colijn distance; QD = quartet distance; RF = Robinson-Foulds distance; SV = split size

vector distance.
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dark = balanced): (d) strong clustering in RF mapping (silhouette coefficient =0.70) has no underlying basis (silhouette coefficient =0.040 « 0.2),
as suggested by tortuous minimum spanning tree (extension factor =33.3); (e) vertical axis in KC mapping (MST extension factor =9.61) shows
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different (non-clustering) structures, whose validity is supported by inspection of MST and of higher dimensions. CID = clustering information
distance tree space; KC = Kendall-Colijn tree space; MIG = Minimum implied gap; Q’tet = Quartet tree space; RF = Robinson-Foulds tree
space; SV = split size vector tree space; TCI = total cophenetic index.


https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syab100#supplementary-data

2022

SMITH—ANALYSIS OF PHYLOGENETIC TREE SPACE

1261

the quartet, KC, and SV metrics (VI with each other
metric > 0.03, > 0.02, and > 0.01 bits, respectively)
(Fig. 2e).

The highest silhouette coefficients are typically
obtained with hierarchical clustering (Fig. 2g,h). Where
“reasonable” structure is present, K-means and parti-
tioning around medoids (PAM) tend to produce similar
results to each other (VI =0.0094 bits) and to hierarchical
clustering (VI =0.011 bits) (Fig. 2f). Spectral clustering
tends to resolve clusterings that are somewhat different
from those of other methods (VI > 0.021 bits) (Fig. 2f),
often with lower silhouette coefficients; these clusters
often fall below the threshold for “reasonable” structure,
even in some instances where “strong” structure (silhou-
ette coefficient > 0.7) is recovered by other methods.

Effects of Mapping

The degree of clustering is often exaggerated in two-
dimensional mappings of tree space. Silhouette coeffi-
cients on clusterings calculated from mapped distances
are typically higher by around 0.25 (Fig. 2a-d), with
the effect that “weak” structure in the original tree
space often appears “reasonable” when mapped, and
“reasonable” structure often appears “strong” (for an
extreme example see Fig. 1d, noting how the MST hints at
a discrepancy between mapped and original distances).
This said, the existence of “reasonable” structure in the
original tree space does not guarantee that clustering
will be evident in a two-dimensional mapping. Of
the 116 tree spaces (11% of 128 data sets x eight
distance metrics) with at least “reasonable” clustering
structure, 19 two-dimensional PCoA mappings and
66 two-dimensional t-SNE mappings display no more
than “weak” structure, meaning that genuine clusters
cannot be distinguished. Even where clustering structure
exists in both the original tree space and its two-
dimensional mapping (97 PCoA mappings; 50 t-SNE
mappings), dimensionality reduction often changes the
composition of clusters markedly (VI > 0.25 bits in 39%
of PCoA and 94% of t-SNE mappings) (Fig. 1g-i).
Clusterings are identical in only 53% of PCoA and
6% of +-SNE mappings (Fig. 3a,b). Changes in cluster
composition are particularly pronounced in mappings
of the Euclidian vector-based and quartet distances, and
in PCoA mappings of RF distances (Fig. 3a,b).

More broadly, tree spaces defined by different metrics
have different propensities for mapping. Mappings of RF
tree spaces exhibit greater distortion than mappings of
other spaces, reflected by lower trustworthiness and con-
tinuity metrics, higher stress, more extended MSTs, and
less correlation with original distances (Fig. 3c—e).
To obtain a trustworthy and continuous mapping of
RF distances, it is often necessary to plot at least
one dimension more than with other distance metrics
(Fig. 3c). Conversely, KC tree space, and to a lesser
extent the quartet, path, and SV spaces, can be mapped
in a more trustworthy and continuous fashion than
information-theoretic tree spaces, often attaining the

same degree of distortion with one or even two fewer
dimensions (Fig. 3c)—reflected by lower stress, less
extension of the MST, and a higher correlation between
original and mapped distances (Fig. 3c—e). Though
mappings of KC, SV, and quartet tree spaces are the most
faithful to the original distances, these mappings tend
to exhibit a lower intrinsic dimensionality (Fig. 3g) and,
for the SV and quartet spaces, a correspondingly weaker
correlation with stratigraphic congruence (Fig. 3f)—
suggesting that the improved mapping may reflect a
simpler original tree space that fails to represent certain
aspects of tree similarity.

Mapping Method

In most cases, PCoA, Kruskal-1, and Sammon map-
pings of tree space differ only in small details, a recurrent
theme being that Sammon maps often contain outliers
plotted far from the majority of trees (Smith 2021). These
methods consistently attain the highest correlation with
the original distances and stratigraphic congruence, and
high levels of trustworthiness and continuity (Fig. 4),
indicating that these methods map the original tree space
with the least distortion.

The lower correlation between other methods and
original distances reflects their different motivations—
for example, contraction of large distances may be seen
as justified if it allows a clearer mapping of spatial
relationships on a more local scale. In the case of t-
SNE, this trade-off results in mappings with higher
trustworthiness and continuity and with less-extended
MSTs. The opposite is true for Laplacian eigenmapping,
diffusion mapping, or CCA. t-SNE, Laplacian eigenmap-
ping, and diffusion mapping each exhibit prominent
and idiosyncratic structure (which may or may not
correspond to structure in the original tree space),
whereas a typical CCA map simply depicts a separate,
approximately hyperspherical cloud corresponding to
each “reasonable” cluster, with no clear evidence of any
further structure (Smith 2021).

Number of Dimensions

RE, path, and information-theoretic tree spaces have
particularly high intrinsic dimensionalities (median ~
5; Fig. 3g). Correspondingly, in the great majority of
data sets considered herein, two-dimensional mappings
exhibit low («0.95) trustworthiness and continuity
values. Mapping additional dimensions depict distances
more accurately and often reveals additional structure
(Figs 4 and 5): it is not uncommon for a single high
dimension of tree space to account for 50% of the
variance in stratigraphic fit (Fig. 5). In contrast, the lower
dimensionalities of quartet (3.8), KC (2.7), and SV (2.5)
tree spaces indicate that these spaces might often be
mapped to three or even two dimensions with little
distortion. But even with these metrics, two dimensions
are enough to produce mappings with high values
(>0.95) of trustworthiness and continuity only where
the number of distinct tree topologies within the tree
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space is minimal (<30). A third dimension is enough
to attain these values only in a minority of cases, and
never in data sets containing trees with twenty or more
leaves; the majority of analyses require at least four
to five dimensions for a trustworthy and continuous
representation (Figs 3c and 4a).

The intrinsic dimensionality of a space also reflects
properties of the data sets under examination. Under
all distance metrics, it is negatively correlated with the
log ratio of the number of characters to the number of

taxa (r2=0.1—0.24,P <1073; Supplementary Fig. S1).
Dimensionality correlates positively with the total
number of taxa in RF space (rZ%O.l,P<1O’3), and
negatively in quartet space (>~0.1,P<1073), but
displays no significant correlation in other metric
spaces. Tree space dimensionality is positively
correlated with the number of unique trees under
the RF (r2=0.24,P<1073) and information-theoretic
(r2=0.11—-0.14, P <10~3) distances, and (more weakly)
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the path and KC distances (1’2 <0.03,P=0.03—0.04);
but no such correlation exists under the SV and quartet

distances.

When analyzing the distribution of phylogenetic trees,
three decisions prove highly consequential: the distance

DiscussioN

Distance Metric

metric used to construct a tree space; how clusters are
identified; and how tree space is visualized.

Tree spaces are defined with reference to an under-
pinning distance metric. Fundamentally, a distance

metric should afford smaller distances to trees that
are more similar with respect to the properties under
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consideration—different metrics can impose profoundly
different tree spaces (Fig. 1), so a tree space will only
be illuminating if its underlying metric is relevant to its
application.

Robinson—Foulds spaces.—The properties of the RF dis-
tance that produce poor performance in a range of
practical settings [Table 1; Steel and Penny (1993); Smith
(2020a)] are particularly relevant to the construction
of tree spaces: its low resolution imposes an over-
quantized and thus “gappy” space; its ready saturation
means that even quite similar trees can be assigned the
maximum distance; and its sensitivity to the relocation of
a single group or leaf means that a subset of otherwise
similar trees will be allocated unrepresentatively large
distances. In part, the high intrinsic dimensionality of
RF tree spaces (Fig. 3g) reflects the distortions necessary
to accommodate these phenomena. Correspondingly,
the RF mappings analyzed in this study often contain
artifacts, fail to depict structures that are apparent under
other metrics, recover weaker clustering structure, and
are highly distorted (Figs 1-3). As such, it is difficult
to be confident that interpretations of RF tree spaces
accurately represent any meaningful aspect of tree
similarity.

Euclidian vector-based spaces.—At first blush, tree spaces
defined on Euclidian vector-based metrics look like
promising alternatives—particularly with regard to the
high fidelity of their low-dimensional mappings (Figs 1-
3). The particularly low intrinsic dimensionalities of the
KC and SV metrics (Fig. 3g) allow the majority of their
tree space structure to be represented in three or even
two dimensions (Fig. 3¢, e). These two metrics also stand
out for the clear definition of their clustering structure
(Fig. 2a—d), even if this maps less faithfully into few
dimensions (Fig. 3a, b).

However, such clustering structure often fails to
correspond to artificial structure known to character-
ize the true distribution of trees (Table 1, “cluster
recovery”). Lower intrinsic dimensionalities seem to be
accomplished by downplaying phylogenetic differences
between trees, resulting in simplistic spaces whose
structures emphasize the contribution of tree shape. A
substantial proportion of the variance in KC distances
reflects the degree of tree balance (Table 1), meaning
that KC tree spaces are often dominated by a single
dimension that discriminates balanced from unbalanced
trees (as in Fig. le), independently from how leaves
happen to be labeled. The contribution of tree shape to
the path and SV metrics, though more nuanced, resultsin
comparable behavior. Because the relative contributions
of phylogenetic and shape-based factors are not explicit
in the definition of these vector-based metrics, it is
difficult to disentangle their contribution to the structure
of tree space. Consequently, Euclidian vector-based tree
distances, and the KC metric in particular, are poorly
suited to questions of evolutionary relationships.

Quartet and  information-theoretic ~ metrics—Though
each have subtly different emphases, quartet and
information-theoretic distances increase monotonically
as tree topologies undergo increasing amounts of
deformation (Table 1), making them inherently relevant
to questions concerning the similarity of evolutionary
relationships between cladograms (Smith 2020a). The
MS, PI, and CI distances produce broadly similar
tree spaces with similar clustering, dimensionality,
and mapping characteristics (Figs. 1-3), so are treated
together here. Quartet tree spaces exhibit a more
pronounced clustering structure (Fig. 2a-d) and a lower
intrinsic dimensionality (Fig. 3g) than information-
theoretic tree spaces, meaning that they can produce
more information-rich maps using fewer dimensions
(Fig. 3).

In many cases, being able to obtain a tree space
that discriminates clusters more readily and which
requires one fewer dimension to obtain a given level
of trustworthiness and continuity will more than offset
the slightly poorer performance of the quartet metric
against the benchmarks of Smith (2020a) and Table 1,
and justify its significantly greater running time—
measured in hours rather than minutes for many of the
data sets examined here. On the other hand, clusters
obtained using information-theoretic distances are typ-
ically rendered more faithfully in mappings. Confidence
that interpreted structure genuinely characterizes the
underlying trees will be greatest if its presence can be
demonstrated in both quartet and information-theoretic
tree spaces, which offer complementary views on the
phylogenetic similarity of trees.

Clusters

One motivation for tree space analysis is the identifica-
tion of subsets of trees that are more similar with respect
to the evolutionary histories they imply. This objective
is most readily met when the distance from which
clusters are calculated measures that property directly.
Clusters identified through the visual inspection of
two-dimensional tree space mappings will group trees
according to mapped distances, which are an opaque
function of original tree-to-tree distances, distorted in
a manner that is particular to each mapping technique
and influenced by all other tree-to-tree distances under
consideration. Such clusters thus have no straight-
forward interpretation in their own right, except as
approximations to the clustering structure imposed by
the original, undistorted distances.

My results show that clusters derived from mapped
distances are poor approximations to clusters based on
measured distances. In the majority of RF, SV, and quar-
tet tree spaces in which “reasonable” or better structure
is present in both original and mapped spaces, clusters
derived from original versus mapped distances differ
substantially in their constitution (median VI > 0.2 bits;
Fig. 3a). Mapping a tree space into two dimensions using
PCoA consistently exaggerates clustering structure,
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causing a mean increase in silhouette coefficient of 0.3
(Fig. 2a,b)—enough that maps may depict “reasonable”
or even “strong” structure where original, undistorted
distances exhibit only “weak” structure that “may not
be genuine.” Correspondingly, many mappings depict
multiple clusters that lack “reasonable” support in
the underlying tree space (Fig. 2c,d). It is therefore
inadvisable to assume that clusters interpreted from
two-dimensional mappings represent genuine structure.
Even if such clusters sometimes happen to group trees
with certain characteristics in common, it is difficult to
see how they would be preferable to a clustering derived
from a direct and explicit measure of those specific
characteristics.

Where a tree space does exhibit clustering structure,
a secondary objective is to assign trees to clusters
in a fashion that minimizes overlap between clusters,
thus maximizing the silhouette coefficient. Hierarch-
ical clustering usually performs best against this cri-
terion (Fig. 2h), though partitioning around medoids
and K-means clustering occasionally produce the best-
defined clustering. Differences between the clusterings
recovered by different methods tend to be relatively
small (Fig. 2f), and which method is most appropriate
will depend on the specific structure within a given
data set and the emphases of the particular clustering
methods: for example, K-means and PAM are very
effective when clusters are consistent shapes or sizes, but
can produce unexpected results when this assumption
is violated (MacKay 2003; Hastie et al. 2009). Such
factors may contribute to the poor performance of
spectral clustering in these data sets (Fig. 2f-h), despite
its accurate recovery of pre-defined clusters of trees
in other settings (Gori et al. 2016): the geometry of
these artificial tree spaces may align better with the
strengths of spectral clustering. Though the use of a
single clustering method is unlikely to mislead, the
application of multiple methods provides additional
opportunities to maximize the silhouette coefficient, and
thus to better appreciate the clustering structure of a tree
set.

Visualizing Tree Spaces

Different mapping techniques have different motiv-
ations, and thus differ markedly in the structure they
depict. Mapping has an order of magnitude more impact
on the clustering structures perceived—the easiest
aspect of structure to quantify—than the measurement
of tree distance or the method of cluster detection
(Figs 2e—f and 3a,b).

PCoA, Sammon, and Kruskal-1 mappings have a
similar philosophy: they seek to minimize the stress
induced by a mapping by minimizing a measure of
distortion that penalizes mismatches between original
and mapped distances. Interpretation of such mappings
is straightforward: mapped distances are approximately
proportional to the true distances between trees. (This
does not mean that mapped areas are proportional to

original hypervolumes—see Mammola (2019).) In line
with this common principle, and despite the poten-
tial shortcomings of PCoA (Lee and Verleysen 2007),
these methods often result in very similar mappings—
consistent with some other results from simulated and
real data sets (van der Maaten et al. 2009; Ekman and
Blaalid 2011). As PCoA is significantly faster to calculate,
its status as the most widely used mapping method
seems justified.

CCA mapping likewise seeks to minimize stress—but
the cost function employed aims not to faithfully reflect
original distances, but rather to produce a “revealing rep-
resentation” of the data, with an emphasis on facilitating
the visual recognition of clustering (Demartines and
Herault 1997). The clear depiction of clustering structure
seems here to be obtained by largely discarding other
aspects of tree space structure. In contrast to the results
of Wilgenbusch et al. (2017), CCA-mapped distances
exhibited lower correlation with original distances, and
CCA mappings exhibited lower trustworthiness and
continuity than PCoA, Sammon, and Kruskal-1 map-
pings (Fig. 4). This difference may reflect idiosyncrasies
of the tree sets being examined: for example, the
Wilgenbusch et al. (2017) tree sets cluster according to the
gene from which trees had been inferred, so emphasizing
the distinction between clusters captures relatively more
of the variation in tree-to-tree distances than in data sets
with weak clustering structure.

Diffusion mappings and Laplacian eigenmappings
attempt to identify a lower-dimensional manifold that
underlies the high-dimensional space; the poor perform-
ance of explicitly manifold-learning methods relative to
other mapping techniques (Fig. 4) suggests that the sets
of optimal trees examined herein are not associated with
any manifold, or sample the manifold at too low a density
for its inferred structure to improve mapping (Venna
et al. 2010).

Finally, t-SNE obtains very high levels of trustworthi-
ness and continuity, at the expense of a weak correlation
between mapped and original distances (Fig. 4). As such,
the interpretation of t-SNE mappings is not intuitive:
distances between clusters, and the sizes of clusters,
may not be representative; and t-SNE mappings can
display apparent structure in data sets known to be
homogeneous (Wattenberg et al. 2016). These proper-
ties characterize many of the t-SNE maps generated
herein (see for example studies 20, 36, 89 in Smith
2021), meaning that the capacity of t-SNE mapping to
represent local structure must be weighed against the
danger of misinterpretation. This risk can be reduced
by exploring different values of the “perplexity” and
“epsilon” parameters that govern the structure of t-SNE
mappings, and comparing results to a PCoA mapping.

Dimensionality.— Tree spaces inherently exist in many
dimensions. More trees tend to produce more com-
plicated structure with more intrinsic dimensions, as
previously noted by Wilgenbusch et al. (2017), and
observed here under the RF and information-theoretic
distances. Tree sets derived from data sets with a
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low character:taxon ratio also tend to exhibit higher
dimensionalities, perhaps because matrices containing
fewer characters constrain relationships less decisively:
a broader posterior distribution of tree topologies will
encompass a larger region of tree space and thus
encounter more distortion when mapped (just as a map
of the globe is more distorted than a cartographic map
of a smaller region).

The dimensionality of tree space is also influenced
by the choice of distance metric (Fig. 3). Whereas tree
spaces with more intrinsic dimensions have the capacity
to contain more sophisticated and instructive structure,
they are harder to faithfully depict in few dimensions.
This trade-off does not have a natural optimum, as the
utility of a tree space is not a simple function of its
dimensionality. KC and SV tree spaces obtain a low
dimensionality by downplaying phylogenetic aspects
of tree similarity. Although mappings produced after
discarding relevant features of tree space may be less
distorted, this is unlikely to compensate for the concom-
itantloss of information: at the extreme, a dimensionality
of zero can be obtained by a metric that assigns all pairs
of trees a distance of zero. On the other hand, the mere
fact that more dimensions are present need not make
a tree space more instructive: a metric that assigns all
pairs of trees a unit distance can produce a meaningless
tree space with many dimensions. Analogously, the
low sensitivity and rapid saturation of the RF distance
(Table 1) mean that it allocates many tree pairs identical
scores, potentially increasing the number of dimensions
necessary to map RF spaces without distortion (Fig. 3c—
e) withouta corresponding gain in utility. In contrast, the
lower dimensionality of quartet tree space relative to tree
spaces defined by information-theoretic distances seems
not to reflect a substantial difference in how well the met-
rics measure the phylogenetic similarity of cladograms
(Table 1). Consequently, the lower amount of distortion
introduced when quartet spaces are mapped (Fig. 3c—
f) is a reason to prefer this distance for visualization,
so long as examination of higher dimensions of both
quartet and information-theoretic spaces confirms that
a low-dimensional mapping adequately summarizes
structure.

Even under the quartet distance, however, the majority
of data sets require more than 3 (median: 5) dimensions
to attain levels of trustworthiness and continuity greater
than 0.95 (Fig. 3c). Humans are less able to perceive
metric distances in three-dimensional visualizations
than in two dimensions (Kjellin et al. 2010), and three-
dimensional displays are ineffective for estimating relat-
ive positions (Tory et al. 2006). Mappings that require
multiple dimensions may thus fail in their objective
of making distances easier to visualize. Wilgenbusch
et al. (2017) take the more optimistic position that
two-dimensional mappings capture the most important
aspects of tree space structure, including clustering. In
practice, I suspect that individual data sets each occupy
their own position between these extremes. Although
two-dimensional maps tend to exaggerate the degree of
clustering—leading to the misidentification of clusters

(Figs 1d, 2a—d, and 3a,b), and in some cases, the failure to
depict aspects of tree space structure that are relevant to
interpretation (Fig. 5)—whatever structure is portrayed
by a two-dimensional plot can at least by deciphered
at a glance, in contrast to more cognitively taxing
portrayals of higher-dimensional space, which must still
ultimately be perceived through the two dimensions of
the retina. The potential for misinterpretation can be
reduced by plotting the MST (e.g., Fig. 1d), by marking
clusters that are statistically supported by the original
distances, by evaluating how well a low-dimensional
mapping conveys tree-to-tree distances, and by carefully
examining higher dimensions for evidence of additional
structure.

Recommendations

In summary, commonly used practices are generally
inadequate for the interpretation of the phylogenetic
tree spaces explored herein. The KC and RF metrics do
not directly measure trees’ phylogenetic similarity; their
associated tree spaces are poorly suited to phylogenetic
questions. Clusters identified by visual inspection of
mappings are likely to misrepresent the true structure
of a tree set. Two dimensions are seldom sufficient
to convey the full structure of tree space, and two-
dimensional mappings should be viewed with suspicion
unless shown to exhibit high values of continuity and
trustworthiness; a low correlation between original and
mapped distances indicates that the interpretation of a
mapping may require additional care.

The 128 tree sets studied herein include multiple
examples where standard practice would lead to invalid
conclusions. For instance, Wright and Lloyd (2020)
correctly interpret the RF space of trees from Yates (2003)
(Fig. 1a; cf. fig. 1C in Wright and Lloyd (2020)) as exhib-
iting no relationship with stratigraphic congruence—
yet a strong relationship is present in all other metric
spaces (see Fig. 1b and Smith (2021)). Similarity, two-
dimensional mappings of Russell and Dong (1993) or
Xu et al. (2018) tree spaces (Fig. 5) contain no hint of
the significant correlation with stratigraphic congruence
that exists in higher dimensions. Strong clustering in
the mapped RF space of trees from Fischer et al. (2016)
is entirely an artifact of mapping: no corresponding
structure exists in the original distance matrix. These
are not isolated instances, but examples that illustrate
recurrent patterns evident across all examined studies;
and there is no obvious reason that the tree sets
analyzed here should be particularly intractable to tree
space analysis. With the caveat that “landscapes” of
trees selected using different optimality criteria or from
different sources of data may exhibit different properties,
these results raise serious concerns over the validity of
previous presentations of tree spaces.

To minimize artifacts when analyzing the distribution
of cladograms, I recommend that tree space analysis
employs the CI or quartet distances—ideally, both. These
distances are sensitive to differences in the evolution-
ary relationships implied by cladograms, but not to
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factors such as tree shape that are irrelevant to most
phylogenetic questions. Information-theoretic distances
(particularly the CI distance) measure the similarity
between cladograms more effectively than the quartet
distance and have a higher intrinsic dimensionality.
Insofar as this higher dimensionality denotes a more
information-rich tree space, the CI distance is well suited
to the identification of clusters of trees; moreover, these
clusters tend to retain their identity when mapped. On
the other hand, the lower dimensionality of quartet tree
space means that it suffers less distortion when mapped.
Structure evident in both metric spaces might warrant
additional confidence.

Except where clustering is conducted for a separate
purpose (Gori et al. 2016)—for instance, when using
clusterings to generate summary trees (Stockham et al.
2002)—clusters should be identified objectively from
original tree distances. The clustering with the highest
silhouette coefficient can be considered the best repres-
entation of the underlying structure, provided that this
coefficient is high enough to indicate that the structure
is meaningful (>0.5). Hierarchical clustering often finds
the best clustering, but as the optimal method depends
on the nature of clustering structure, I encourage the
use of multiple clustering methods. Depicting the best
clustering on mappings (as in Fig. 1g—i) reduces the
potential for misinterpretation where mappings do not
reflect the structure of the original tree space.

The optimal mapping method will depend on the
purpose of the visualization. PCoA maps—which tend
to closely resemble Sammon and Kruskal mappings, but
are much faster to compute—tend to reproduce original
tree-to-tree distances most faithfully, making them easy
to interpret, while also depicting structure consist-
ently (high trustworthiness and continuity); as such,
they are an obvious choice for instructive mappings.
Alternatively, t-SNE maps emphasize local structural
relationships, though their interpretation can be counter-
intuitive; whereas CCA maps depict cluster membership
while downplaying other structural features.

Whichever mapping method is employed, it is import-
ant to evaluate the quality of the mapping: high (>0.95)
values of the trustworthiness and continuity measures
are desirable, as is a good correlation with original
distance metrics. Even if MSTs can help to visually assess
the degree of distortion, it is not possible to be confident
that any apparent structure is genuine unless the quality
of a mapping is explicitly documented. Of course, these
metrics will be invalid, and distances misrepresented,
unless plotting software is configured to plot x and y
axes to the same scale.

These recommendations are drawn from a limited
sample of morphological data sets; it is likely that tree
sets obtained from different data sets using different
methods will occupy tree spaces with different prop-
erties. Nevertheless, the degree to which methodolo-
gical decisions can influence the interpretation of tree
space represents a strong argument for conducting and
documenting basic checks to establish that presented

results truly represent the underlying structure of the
high-dimensional tree space.

To facilitate best practice in the construction,
evaluation, and interpretation of tree space, I have
produced a “point-and-click” graphical interface
within R—installed wusing install.packages
("TreeDist’) and launched by executing the
command TreeDist::MapTrees (). This software
allows users to upload trees, select tree distance,
mapping and clustering methods, and generate high-
dimensional mappings, with real-time evaluations
of mapping and clustering quality to ensure that
interpretations truly reflect the underlying distribution
of phylogenetic trees.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http:/ /dx.doi.org/10.5061 /dryad.kh1893240.
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