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Abstract

The Debye-Hückel limiting law (DHL) has often been used to estimate rate constants
of diffusion-controlled reactions under different ionic strengths. Two main approxi-
mations are adopted in DHL: one is that the solution of the linearized Poisson-Boltz-
mann equation for a spherical cavity is used to estimate the excess electrostatic free
energy of a solution; the other is that details of electrostatic interactions of the
solutes are neglected. This makes DHL applicable only at low ionic strengths and
dilute solutions (very low substrate/solute concentrations). We show in this work that
through numerical solution of the Poisson-Nernst-Planck equations, diffusion-reaction
processes can be studied at a variety of conditions including realistically concen-
trated solutions, high ionic strength, and certainly with non-equilibrium charge distri-
butions. Reaction rate coefficients for the acetylcholine-acetylcholinesterase system
are predicted to strongly depend on both ionic strength and substrate concentra-
tion. In particular, they increase considerably with increase of substrate concentra-
tions at a fixed ionic strength, which is open to experimental testing. This
phenomenon is also verified on a simple model, and is expected to be general for
electrostatically attracting enzyme-substrate systems.
PACS Codes: 82.45.Tv, 87.15.Vv
MSC Codes: 92C30

1 Background
Electrostatically steered diffusion-reaction processes exist widely in chemistry and bio-

chemistry [1,2]. Ionic screening effects were first described by using the well-known

Debye-Hückel limiting law (DHL) [3]. The DHL implemented within transition state

theory [4] is still often used to estimate the kinetics of enzyme-substrate reactions.

E.g., the dependence of the rate constant on ionic strength for the diffusion-controlled

reaction of acetylcholine (charge = +1) catalyzed by acetylcholinesterase can be

described approximately by [5]:
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where kon, kon
0 and k H

on are second-order association rate constants at the specified

ionic strength I, zero ionic strength, and infinite ionic strength, respectively. zE and zI
are the charges of the enzyme and substrate involved in the interaction. The DHL says

that the rate constant (in an electrostatically-steered process) decays exponentially with

the increase of the square root of ionic strength, as is observed under some conditions

Lu and McCammon PMC Biophysics 2010, 3:1
http://www.physmathcentral.com/1757-5036/3/1

© 2010 Lu and McCammon This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

mailto:<?A3B2 tlsb=-.029w?>bzlu@lsec.cc.ac.cn<?A3B2 tlsb?>
http://creativecommons.org/licenses/by/2.0


[5-8]. However, because the DHL is based on an excess free energy described by the

linearized Poisson-Boltzmann model of an ionic solution, it is assumed that the ionic

species involved obey a Boltzmann distribution, i.e. are in an equilibrium state. The

contributions of solute-solute interactions to the excess free energy are ignored in the

theory. Moreover, in diffusion-influenced reactions, the substrate distribution is not in

an equilibrium state. Therefore, the DHL only applies for low ionic strengths, and very

dilute substrate concentrations. However, in real biological systems, the substrate con-

centration can be quite high; e.g., the acetylcholine concentration can reach about 300

mM when released from vesicles in synapses [9].

The finite concentration effect was recently studied using Brownian dynamics simu-

lation [10], and later theoretical work was done for the condition of weak substrate-

substrate interaction or low substrate density [11]. Both works are idealized studies for

spherical models of enzymes. Here, we use newer methods to compute the reaction

rates for more realistic models at diverse ionic and substrate concentrations. We show

that the results display a more complicated dependence of the reaction coefficient

upon the ionic strength and the substrate concentrations.

2 Methods
We use a continuum model to simulate the electrodiffusion processes. The theoretical

background is introduced in [8]. In the present work, the Poisson-Nernst-Planck equa-

tions are solved to determine the substrate flux driven by the full electrostatic field,

including the influence of substrate itself, salt ions (e.g., Na+ and Cl-), and the atomic

charges of the enzyme. Usually, we use three NP equations to describe the diffusion of

three mobile species (counterion, coion, and substrate) respectively in the PNP model:
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where pi(r) is the density distribution function of the diffusing particles of the i-th

species with diffusion coefficient Di and charge qi, rf is the fixed atomic charge distri-

bution on the enzyme, b is the inverse Boltzmann energy, ε is the dielectric coefficient,

j is the electrostatic potential determined by the Poisson equation. The flux is

J D p r r p ri i i    ( ( ) ( ( )) ( )). 

The reaction between the enzyme and the diffusing substrate is modeled by an

absorbing boundary condition on a reactive site represented by a molecular surface

patch. It is worth noting that this treatment is due to the fact that acetylcholinesterase

is considered a fast enzyme. But in the context of high concentration of acetylcholine,

ca. 500 mM, the simultaneously absorbing boundary condition may not be proper due

to limited diffusion speed. In such case, a more complicated boundary condition such

as Robin boundary condition, or inclusion of coupled ordinary partial differential equa-

tions can serve as a better description of the reaction event. The implementation of

these considerations would be a future direction. For consistency and convenience in

the setup of the computational model, a same absorbing boundary condition is used in

this work. The reaction rate v is determined by integrating the flux J of substrate
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particles at the reactive site, i.e., v = ∫J·ndS, and the rate coefficient (for steady-state) k

is defined as k = v
C , where C is the bulk substrate concentration. We note that the

DHL can be well reproduced in the continuum model when the substrate density is

not coupled into the full electric field [7,8,12]).

Calculations of steady-state rate coefficients are performed for the enzyme catalyzed

degradation of acetylcholine (ACh), which is an electrostatically steered diffusion-con-

trolled reaction [5]. ACh carries one positive unit of charge, and the enzyme, acetyl-

cholinesterase (AChE), carries a fixed charge of -7.61e. The partial atomic charge and

van der Waals radii are taken from the AMBER force-field [13]. In a synapse, there is

a certain background concentration of “spectator” ions (ca. 150 mM ionic strength),

and then additional ions (the ACh and its counterions) are released (initially ca. 300

mM ionic strength) as a vesicle opens. The actual system is of course non-steady, but

for initial steady-state calculations in this work, we focus on how the substrate concen-

tration affects the reaction rate coefficients. Suppose that there are only monovalent

ions in the salt, that C+ and C- are the total bulk concentrations of cation and anion

respectively, and that Csubs is the bulk concentration of substrate ACh. These bulk

concentrations are used as the outer boundary conditions of the diffusion domain in

solving the PNP equations [8]. Therefore, to make a closer connection with physiology,

it is reasonable to consider a neutrality condition of the bulk solution in this work as C

+ + Csubs - C- = 0. As a comparison, the condition C+ - C- = 0 will lead to quite differ-

ent results, which will be addressed later.

3 Results
The reaction rate coefficient is shown as a function of ionic strength (= “spectator” +

bulk substrate) for different prescribed substrate concentrations in Figure 1(a) and as a

function of bulk substrate concentration for different prescribed ionic strengths in Fig-

ure 1(b). The results show that the reaction rate coefficients strongly depend on both

ionic strength and substrate concentration. At very low substrate concentration, e.g., 1

mM or less, the results show asymptotic agreement with the DHL (see red line in Fig-

ure 1(a)). However, at moderate concentrations of the substrate, the curves are shifted.

A general trend is observed: the rate coefficient increases as the bulk/distant concen-

tration of substrate increases for a fixed overall ionic strength. For instance, for a fixed

ionic strength of 300 mM (C+ + Csubs = 300 mM), the rate coefficient is 1.36 × 1011

M-1min-1 for Csubs = 1 mM and is increased to 3.28 × 1011 M-1min-1 for Csubs = 300

mM. The physical origins of the observed behavior can be explained as follows. If sub-

strate concentration is not considered, as in most previous work based on the DHL,

the concentration of the counter ion of the enzyme, i.e., C+ here, is equal to the con-

centration of the coion, i.e., C+ = C-. The counter ions are attracted and concentrated

around the negatively charged active site, which serves to screen the Coulomb interac-

tion between ACh molecules and AChE, hence slowing the association. When Csubs is

considered in the PNP model, to maintain the same ionic strength, C+ needs to be

reduced by Csubs compared with that in the familiar Debye-Hückel theory. This leads

to a thinner counter-ion atmosphere around the active site, and it can not be compen-

sated by the additional substrate (ACh) density that is relatively low due to reactant

depletion that results from the absorbing boundary condition. In other words, in the

resulting non-equilibrium state, the sum of counter-ion density and ACh density near
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the active site is lower than that obtained with the Boltzmann distribution for a +1e

particle. The consequences are a reduced overall screening effect and thereby an

enhanced reaction rate.

The ionic atmosphere always screens the electrostatic interactions, and hence

reduces the rate coefficients. At very high ionic strength, due to strong ionic screening

effects, the electrostatic interactions become very weak. This is close to the pure diffu-

sion case, and all the rate constants for different substrate concentrations are close to

the pure diffusion-reaction rate constant.

4 Discussion
The phenomena observed above are expected to be general for attractive substrate-

enzyme systems, which can be illustrated with an idealized sphere model. Figure 1(c)

shows the results using an absorbing unit sphere with one positive charge +e located

in the center, and assuming that a substrate molecule brings a negative charge -e. We

note in passing that the results in Figure 1 suggest that, for each fixed substrate con-

centration, it may be possible to fit the rate coefficients to a DHL-like curve again.

As a comparison, if we use an aforementioned neutrality condition C+ - C- = 0 and

the substrate concentration is not counted into ionic strength as was done in our for-

mer work [12], very different trends will be found. The present results provide a more

complete and realistic of the biophysics of the ACh-AChE system.

However, it is worth pointing out an issue in this model that the reaction products,

choline and acetic acid that will ionize and generate acetate and a proton, are also

charged species. The distribution and diffuse of these added ionic species will definitely

affect the local ionic strength, hence the reaction rate coefficient. Therefore, a more
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Figure 1 Reaction rate affected by both ionic strength and substrate concentration. Reaction rate
coefficients for (a-b) ACh-AChE reaction system, (c) an absorbing unit sphere model system. p0 is bulk
substrate concentration; I is total ionic strength (spectator ions plus substrate).
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complete treatment of some enzymes that catalyze reactions of charged substrates

should include additional species such as charged products of the reaction in the

model. But this brings the methodology a new issue that is how to elaborate the cur-

rent PNP model to include the product diffusion originated from the reactive site,

which will lead to some additional lines of work in the future. Therefore, the present

work is limited to the case in which product concentrations are small, so that experi-

mental tests of the current model would need to be in the early steady-state regime.

5 Conclusions
To summarize, the DHL only applies to very dilute situations. Our numerical results

show that for electrostatically steered diffusion-controlled reaction processes, the rate

coefficients strongly depend on both ionic strength and substrate concentration. At the

same ionic strength, the current model predicts that increasing substrate concentration

results in significant increase in rate coefficients for the attractive substrate-enzyme sys-

tems in case the product concentration can be ignored (like in the early steady-state

regime). We are extending the theory and simulation methods to account for finite pro-

duct concentrations, which will allow for easier comparison with experiments.
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