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Abstract Retroviruses are classified as exogenous and

endogenous retroviruses according to the mode of trans-

mission. Endogenous retroviruses (ERVs) are retroviruses

which have been integrated into germ-line cells and

inherited from parents to offspring. Most ERVs are inac-

tivated by deletions and mutations; however, certain ERVs

maintain their infectivity and infect the same host and new

hosts as exogenous retroviruses. All domestic cats have

infectious ERVs, termed RD-114 virus. Several canine and

feline attenuated vaccines are manufactured using RD-114

virus-producing cell lines such as Crandell-Rees feline

kidney cells; therefore, it is possible that infectious RD-114

virus contaminates live attenuated vaccines. Recently,

Japanese and UK research groups found that several feline

and canine vaccines were indeed contaminated with

infectious RD-114 virus. This was the first incidence of

contamination of ‘infectious’ ERVs in live attenuated

vaccines. RD-114 virus replicates efficiently in canine cell

lines and primary cells. Therefore, it is possible that

RD-114 virus infects dogs following inoculation with

contaminated vaccines and induces proliferative diseases

and immune suppression, if it adapts to grow efficiently in

dogs. In this review, we summarize the incidence of con-

tamination of RD-114 virus in live attenuated vaccines and

potential risks of infection with RD-114 virus in dogs.

Endogenous retroviruses (ERVs)

Retroviruses enter host cells via binding of the envelope

proteins with the host receptor(s). After entering the cells,

viral RNA is reverse-transcribed into DNA and then the

DNA is integrated into the host genome to be a provirus.

Viral RNA is transcribed from the provirus and the struc-

tural and enzymatic proteins of the virus are synthesized

from the transcribed viral RNA.

Retroviruses are classified as exogenous and endoge-

nous retroviruses according to the mode of transmission

[14]. Usually, exogenous retroviruses infect somatic cells

but not germ-line cells, and they are transmitted horizon-

tally by infection via viral particles. On the other hand,

ERVs are retroviruses which have been integrated into

germ-line cells. ERVs behave like normal genes and are

inherited from parents to offspring as Mendelian’s law.

ERVs occupy about 10 % of mammalian genomes and are

mostly inactivated by deletions and mutations [14, 15,

17, 27]. However, a limited number of ERVs maintain

their infectivity and infect new hosts as exogenous retro-

viruses [6].

Exogenous retroviruses are classified into seven gen-

era, i.e., alpharetrovirus, betaretrovirus, gammaretrovirus,

deltaretrovirus, epsilonretrovirus, spumaretrovirus and
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lentivirus. ERVs are divided into at least three classes I, II

and III [14]. Class I ERV is closely related to exogenous

counterparts of gammaretrovirus and epsilonretrovirus.

Class II and III ERVs are similar to alpharetrovirus and

betaretrovirus, and spumavirus, respectively.

Feline ERVs

All domestic cats have an infectious ERV, termed RD-114

virus [4, 12, 32]. RD-114 viral genomes have not been

detected in large felids, such as lions and pumas [4].

RD-114 virus is closely related to baboon endogenous

retrovirus (BaEV) in env region, but is distantly related to

BaEV in gag-pol region, and is considered to be a

recombinant virus between a feline ERV, termed FcEV, in

gag-pol region and BaEV in env region [47]. BaEV is also

a recombinant virus between a Papio cynocephalus ERV,

termed PcEV, and a simian type D virus [19]. The gag-pol

regions of both RD-114 virus and BaEV are closely related

to gammaretroviruses (class I ERV), and the env region is

closely related to betaretroviruses (class II ERV).

ERVs and pathogenicity

Generally, ERVs do not induce diseases in the original

hosts. However, there are several incidences where ERVs

exhibit pathogenicity; for example, ERVs of AKR mice

induce lymphoma in the host [31]. Recently, it was found

that replication activity of mouse ERVs was resurrected in

Rag-/- deficient mice, which had no mature B- and T-

lymphocytes, and in mice deficient in Toll-like receptors 3,

7 and 9 (TLR3, TLR7 and TLR9) triple deficient mice

(TLR3-/-, TLR7-/-, TLR9-/- deficient mice) [52, 53]. In

addition, activated ERVs in TLR3-/-, TLR7-/-, TLR9-/-

deficient mice induced lymphoma in the host [53]. These

reports suggest that infectious ERVs can exhibit oncoge-

nicity in the host. Moreover, certain ERVs infect a new

host and exhibit pathogenicity; for example, gibbon ape

leukemia virus (GALV) that induces lymphoma in gibbons

is considered to originate from an ERV of Asian rodents

(Mus caroli, Mus cervicolor and Vandeleuria oleracea) [3,

18]. Recently, it was reported that an endogenous koala

retrovirus (KoRV) is biologically active and may be

associated with neoplastic diseases and immune suppres-

sion in koalas [39, 41–43]. The origin of KoRV is still

unknown at present, although partial retroviral sequences

closely related to KoRV and GaLV were found in an

Australian rodent (http://espace.library.uq.edu.au/view/

UQ:244963) and a bat (Megaderma lyra) [9]. Intrigu-

ingly, KoRV could transmit to rats by experimental

infection and induced fibrosarcoma [10, 11].

Contamination of ERVs in human vaccines

Mice, pigs, cats, and chickens have infectious ERVs [6, 34].

In previous studies, it was reported that MMR vaccines

(measles, mumps and rubella vaccines) and yellow fever

vaccines that were propagated in chicken embryos were

contaminated with endogenous avian leukosis viruses

(ALVs) and endogenous avian retroviruses (EAVs), which

originate from chicken embryonic fibroblast substrates

[16, 45]. It is unknown whether contaminated endogenous

ALV and EAV are infectious ERVs, because these studies

only detected the viral RNA, proteins and reverse trans-

criptase (RT) activities in vaccines using RT-polymerase

chain reaction (PCR), immunoblotting and the RT assay,

respectively (16, 45). Nevertheless, no evidence was found

that these ERVs had infected humans by vaccination

[16, 45].

Contamination of animal vaccines with ‘infectious’

RD-114 virus

Many live attenuated vaccines for animals are manufac-

tured using feline cell lines which may produce infectious

RD-114 virus (Table 1). Therefore, it is possible that

infectious RD-114 virus contaminates these vaccines [24].

We developed RT-PCR and realtime RT-PCR to detect

RD-114 viral RNA and the LacZ marker rescue assay to

detect infectious RD-114 virus in vaccines [37, 49]. When

we examined feline live attenuated vaccines purchased in

Japan (Vaccines F/g1, F/h2 and F/d3) for the presence of

infectious RD-114 virus by the LacZ marker rescue assay,

a vaccine manufactured by one company (Vaccine F/g1)

was contaminated with infectious RD-114 virus (Table 2)

[25]. The Japanese regulatory authority, National Veteri-

nary Assay Laboratory (NVAL), also confirmed this find-

ing independently [30]. In addition, we also confirmed that

three products of ‘canine’ live attenuated vaccines pur-

chased in Japan (Vaccines C/a1, C/a2 and C/b3), manu-

factured using ‘feline’ cell lines, were contaminated with

infectious RD-114 virus (Table 2) [25]. The titers of RD-

114 viruses in the contaminated vaccines were 1,800, 1,000

and 1.8 50 % tissue culture infective dose (TCID50)/dose,

respectively (Table 2). Copy numbers of RD-114 viral

RNA were also estimated by real-time RT-PCR. We found

that 4.59107, 9.79107 and 8.39106 copy number/dose of

RD-114 viral RNAs were present in Vaccines C/a1, C/a2

and C/b3, respectively (Table 2) (unpublished data).

Another research group in the University of Glasgow also

confirmed that feline and canine live attenuated vaccines

purchased in the United Kingdom were contaminated with

infectious RD-114 virus using immunoblot analysis and RT

assay [25]. In addition, we found that two canine live
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attenuated vaccines (Vaccines C/f8 and C/f9) produced

using ‘non-feline’ cell lines (Table 1) were contaminated

with infectious RD-114 virus (Table 2) [49]. The infectious

titers of RD-114 virus in contaminated vaccines were 180

and 10,000 TCID50/dose, respectively and the copy num-

bers of RD-114 viral RNAs were 2.19108 and 5.09108

copies/dose respectively (Table 2) [49]. The NVAL also

confirmed these findings independently [29].

Possible contamination routes of RD-114 virus in live

attenuated vaccines

Several feline cell lines such as CRFK cells, MCC cells

and FER cells produce infectious RD-114 virus [2, 7, 33,

38, 48]. Therefore, if the vaccine strains of feline and

canine viruses are propagated in RD-114 virus-producing

feline cell lines, RD-114 virus contaminates live attenuated

vaccines (Fig. 1). Moreover, RD-114 virus infects and

proliferates efficiently in human, canine and mink cell lines

[2, 36, 49, 51]. Therefore, when seed stock viruses are

contaminated with infectious RD-114 virus and the vac-

cines are produced using RD-114 virus-permissive cell

lines, RD-114 virus may contaminate live attenuated vac-

cines, irrespective of the species origin of the cell lines

(Fig. 1). Actually, as mentioned above, two canine live

attenuated vaccines (Vaccines C/f8 and C/f9) produced

using ‘non-feline’ cell lines were contaminated with

infectious RD-114 virus (Table 2) [49]. These vaccines

contained an attenuated canine parvovirus type 2 (CPV-2)

(Table 1) and many CPV-2s have been attenuated using

CRFK cells [26]. When we examined CPV-2 stock viruses

in an assay laboratory of a Japanese vaccine company for

the presence of infectious RD-114 virus, seven out of

eighteen CPV-2 vaccine stocks were contaminated with

infectious RD-114 virus [50].

Table 1 List of cell lines for live attenuated vaccines purchased in Japan

Virus Vaccine IDa

C/a1 C/a2 C/b3 C/c4 C/c5 C/d6 C/e7 C/f8 C/f9

Canine distemper virus Ab A S S Unknown S C A S

Canine adenovirus type 2 P P C C Unknown n.a. C C C

Canine parvovirus A A C F (CRFK) Unknown F C M M

Canine parainfluenza virus F (CRFK) F (CRFK) C C Unknown n.a. C n.a. S

Canine coronavirus F (CRFK) F (CRFK) F n.a. Unknown n.a. F n.a. n.a.

Virus Vaccine ID

F/g1 F/h2 F/d3

Feline herpesvirus F Unknown F

Feline calicivirus F Unknown F

Feline panleukopenia F Unknown F

This information is indicated in each product catalog and on theNVAL homepage (http://www.nval.go.jp/asp/asp_dbDR_idx.asp)

A, avian cell line; C, canine cell line; F, feline cell line; M, mink cell line; P, porcine cell line; S, simian cell line; n.a., not applicable
a Each vaccine sampled was assigned an anonymized code (F/1, C/1, etc.). The first letter before the slash indicates the species (i.e., F/ for cats

and C/ for dogs). The lower case letter after the slash indicates the manufacturer. The number indicates the specific type of vaccine
b Species of the cell line used for vaccine production

Table 2 Contamination of live attenuated vaccines purchased in

Japan with RD-114 virus

Vaccine IDa RNA copy number/doseb TCID50/dosec

C/a1 4.59107 1,800

C/a2 2.8-9.79107 1,000

C/b3 8.39106 1.8

C/c4 BGL n.t.

C/c5 BGL n.t.

C/d6 BGL n.t.

C/e7 BGL n.t.

C/f8 2.19108 180

C/f9 5.09108 10,000

F/g1 BGL 1.8

F/h2 BGL n.t.

F/d3 BGL n.t.

BGL, background level; n.t., not tested
a Codes used to anonymize the vaccines used. Details of codes are

described in Table 1
b Copy numbers of RD-114 viral RNA were measured by real-time

RT-PCR
c Infectious titers of RD-114 virus were measured by LacZ marker

rescue assay and expressed as 50 % tissue culture infectious dose

(TCID50)
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Potential risks of infection with RD-114 virus in dogs

RD-114 virus efficiently infects canine cell lines and pri-

mary cells [36, 51]. It is important to identify viral recep-

tor(s) in predicting viral tropisms and pathogenicity. In

human cell lines, it is found that the receptor for RD-114

virus is a sodium-dependent neutral amino acid transporter,

termed ASCT [35, 40]. Humans have two types of ASCT

molecules, termed ASCT1 and ASCT2 [1, 46]. The

homology between ASCT1 and ASCT2 is about 57 % [1,

46]. Both human ASCT1 and ASCT2 function as RD-114

receptor, but the virus utilizes ASCT2 more efficiently than

ASCT1 [20]. In humans, ASCT1 is ubiquitously expressed

in tissues [1], whereas the expression of ASCT2 is limited

in various tissues, and the expression level of ASCT2 also

varies among tissues [13, 46]. Recently, we identified

canine ASCT1 and ASCT2 as RD-114 virus receptors [50].

RD-114 may infect a variety of tissues in dogs, although

the distribution of ASCT1 and ASCT2 in dogs is unknown

at present. Actually, in a previous study, X-linked severe

combined immunodeficiency was corrected in dogs by

intravenous injection of concentrated RD-114-pseudtyped

retrovirus vector encoding the interleukin-2 receptor c
chain [44]. These data indicate that RD-114 virus can

infect bone marrow cells in dogs. However, Narushima and

coworkers [28] at NVAL reported that RD-114 proviral

DNA was not found in dogs inoculated with RD-114 virus

subcutaneously. Unfortunately, they only investigated

RD-114 provirus in quite limited tissues (lymph nodes,

spleen and bone marrow) and peripheral blood, and the

sensitivity of the one-step PCR to detect RD-114 proviral

DNA was obscure. Recently, we also investigated whether

RD-114 virus infects dogs by experimental infection.

When four dogs were inoculated with high titer of RD-114

virus, RD-114 proviral DNA was detected in blood cells,

mesenteric lymph nodes, spleens and testes (Yoshikawa

et al., unpublished). In addition, anti-RD-114 antibodies

and neutralizing antibodies were detected in the inoculated

dogs (Yoshikawa et al., unpublished).

In human cells, human ASCT2 is a functional receptor for

pathogenic retroviruses, such as simian retrovirus (SRV) 1,

2, 3, 4 and 5, avian reticuloendotheriosis virus, and duck

spleen necrosis virus [35]. It is known that SRV-1, SRV-2

and SRV-3 induce a fatal immunodeficiency in some

macaque species (Celebes and rhesus macaques) [21–23]. In

a previous study, we confirmed that both SRV-2 and SRV-3

can utilize canine ASCT2 as a receptor ([51], unpublished

data). Intriguingly, RD-114 virus has an immunosuppres-

sive domain in transmembrane envelope protein and the

amino acid sequence (LQNRRGLDLLTAEQGGI) of the

domain is identical with that of SRV-3 [5, 8]. Therefore,

RD-114 virus may induce immunosuppression as well as

proliferative diseases such as leukemia/lymphoma, if it

adapts to replicate efficiently in dogs.

Concluding remarks

Japanese and UK research groups and the NVAL con-

firmed that several feline and canine vaccines were

RD-114 virus vaccine virus 

RD-114 non-producer 

RD-114 producer 

CRFK cells Non-feline cells 
Stock Virus (RD-114 producer) 

Fig. 1 Possible contamination

routes of infectious RD-114

virus in live attenuated

vaccines. Infectious RD-114

virus may contaminate vaccines

manufactured using RD-114

virus-producing cells. Several

canine parvoviruses are isolated

and attenuated using CRFK

cells producing infectious RD-

114 virus. Therefore, infectious

RD-114 virus may contaminate

canine live attenuated vaccines

produced using ‘non-feline’ cell

lines when seed stock viruses

were contaminated with

infectious RD-114 virus

402 R. Yoshikawa et al.

123



contaminated with infectious RD-114 virus. This was the

first incidence of contamination of ‘infectious’ ERVs in

live attenuated vaccines. Quite importantly, RD-114 virus

grew efficiently in cells of dogs which are vaccinees. In

future studies, it is necessary to examine the expression

profiles of canine ASCT1 and ASCT2 in dogs and deter-

mine the principal target of RD-114 virus by experimental

infection with high doses of RD-114 virus. Because RD-

114 virus does not have any oncogenes, RD-114 virus does

not induce acute/subacute proliferative diseases such as

fibrosarcoma in dogs. Therefore, after experimental infec-

tion of dogs with RD-114 virus, it is necessary to monitor

infected dogs for a long period. Even if RD-114 virus does

not proliferate in dogs after experimental infection, we

cannot dismiss the risk of infection with RD-114 virus in

dogs completely. Canine attenuated vaccines are inocu-

lated in several million dogs per year around the world, and

RD-114 virus may mutate and acquire more infectivity/

productivity in dogs. Therefore, although the risks posed by

RD-114 virus are still unclear at present, it is desirable to

develop the means to produce RD-114 virus-free vaccines

and exclude RD-114 virus-contaminated vaccines.
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