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A B S T R A C T   

The diagnosis of Coronavirus Disease 2019 (COVID-19) exploiting machine learning algorithms based on chest 
computed tomography (CT) images has become an important technology. Though many excellent computer- 
aided methods leveraging CT images have been designed, they do not possess sufficiently high recognition ac
curacy. Besides, these methods entail vast amounts of training data, which might be difficult to be satisfied in 
some real-world applications. To address these two issues, this paper proposes a novel COVID-19 recognition 
system based on CT images, which has high recognition accuracy, while only requiring a small amount of 
training data. Specifically, the system possesses the following three improvements: 1) Data: a novel redesigned 
BCELoss that incorporates Label Smoothing, Focal Loss, and Label Weighting Regularization (LSFLLW-R) tech
nique for optimizing the solution space and preventing overfitting, 2) Model: a backbone network processed by 
two-phase contrastive self-supervised learning for classifying multiple labels, and 3) Method: a decision-fusing 
ensemble learning method for getting a more stable system, with balanced metric values. Our proposed sys
tem is evaluated on the small-scale expanded COVID-CT dataset, achieving an accuracy of 94.3%, a precision of 
94.1%, a recall (sensitivity) of 93.4%, an F1-score of 94.7%, and an Area Under the Curve (AUC) of 98.9%, for 
COVID-19 diagnosis, respectively. These experimental results verify that our system can not only identify 
pathological locations effectively, but also achieve better performance in terms of accuracy, generalizability, and 
stability, compared with several other state-of-the-art COVID-19 diagnosis methods.   

1. Introduction 

By April 10, 2022, the total number of confirmed cases of Corona
virus Disease 2019 (COVID-19) in the world had exceeded 400 million, 
of which the number of deaths had exceeded 6 million. The major ob
stacles in controlling the spreading of COVID-19 are the asymptomatic 
infection, slow detection speed, and high infectivity. Now, the main 
method of detecting COVID-19 is the Reverse Transcription-Polymerase 
Chain Reaction (RT-PCR) test. However, due to the slow detection 
speed, the shortage of diagnostic kits, and the sharp increase in the 
number of infected people, the detection efficiency becomes very low. In 
addition, the sensitivity of the RT-PCR testing kits is not high, which 
means that the efficiency of detection will be further compromised due 
to the false-negative problem. 

At present, many automatic systems based on medical images using 
Artificial Intelligence (AI) technologies to detect COVID-19 have been 
developed. Given a medical image, a proposed model or system needs to 
correctly classify it, that is, to identify whether it has the pathological 

features of COVID-19. Many AI detection methods are developed based 
on X-rays images [1–5]. While previous studies have shown that chest 
Computed Tomography (CT) scans exhibit clear radiological features of 
COVID-19 patients. Besides, CT devices are very popular [6]. Therefore, 
utilizing CT images to diagnose COVID-19 is a feasible and promising 
solution. Some studies have developed related COVID-19 diagnostic 
methods on basis of CT images [7–17]. The research work conducted in 
Refs. [3,7,10,11] requires that, the employed datasets need to contain a 
large number of training images, which is generally difficult to be ach
ieved, in practice. While the datasets utilized in Refs. [5,7,15] are not 
publicly available. These undisclosed data hinder the further AI research 
for COVID-19 detection using medical images. For addressing these two 
problems, in Ref. [16], He et al. develop the first publicly accessible 
small COVID-19 chest CT dataset containing 746 images, by extracting 
the CT images from over 760 preprints in medRxiv and bioRxiv. And 
they develop a complex but high-accuracy method to detect COVID-19. 
And in Ref. [8], joint learning and multi-task learning are used to 
identify COVID-19 by employing this dataset, however, with not ideal 
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recognition accuracy. In Ref. [12], due to the expansion of the dataset, 
the single-label binary classification task of the previous researches has 
been transformed into six-label binary classification task. This new 
classification task has greatly accelerated the training speed, and 
through this task, using a simple neural network can achieve very 
excellent recognition performance. In Ref. [4], A patch-based CNN is 
proposed, which has fewer trainable parameters. This feature can make 
the network be trained stably under small datasets. Although these 
studies have made good progress, they still have great limitations. The 
core problem lies in that, these methods are unable to simultaneously 
take into account the amount of training data and recognition accuracy, 
that is, using limited training data to achieve superior recognition 
performance. 

To address this challenge, we develop a novel deep ensemble 
learning system for COVID-19 detection based on chest CT scans, as 
shown in Fig. 1. The system is pretrained by taking advantage of the 
Contrastive Self-Supervised Learning (CSSL) paradigm [18], and mul
tiple regularizations are employed within it to optimize the solution 
space during supervised training. First, due to the fact that the dataset is 
very small, we carefully design and propose a pretrained backbone 
network to replace the classical neural network architecture utilized in 
Ref. [12]. We pretrain the backbone network by performing CSSL on a 
big chest CT dataset without using labels. Then, we perform CSSL on the 
COVID-CT dataset, without using labels. This two-phase pretraining can 
bring good representational learning ability to a neural network. 
Moreover, the dataset proposed by Liu et al. in Ref. [12] is a multi-label 
binary classification dataset, and there exists extreme class imbalance in 
some labels. Consequently, on the basis of completing the CSSL-based 
pretraining, when we carry out the downstream supervised training 
tasks, aiming at these characteristics of the dataset, we redesign the 
BCELoss by integrating a novel Label Smoothing, Focal Loss, and Label 
Weighting Regularization (LSFLLW-R) technique proposed by us. We 
introduce Label Smoothing [19] to prevent overfitting, Focal Loss [20] 
(FL) to solve the extreme imbalance within some labels, and label 
weighting to pay more attention to the main task (COVID-19 binary 
classification) in the loss function. The regularizations fully exploit the 
characteristics of the dataset. Finally, we further employ the Bagging 
ensemble learning method to improve the generalizability of the system. 
Through the experimental verification on the expanded COVID-CT 
dataset, our proposed system outperforms several other state-of-the-art 
methods in terms of accuracy and other important metrics. Our main 

contributions in this work are summarized as follows:  

• Considering the characteristics of the multi-label expanded COVID- 
CT dataset, we introduce a new cost-sensitive multiple regulariza
tions technique LSFLLW-R, composed of Label Smoothing, Focal 
Loss, and label weighting, into BCELoss, which is more conducive to 
the identification of COVID-19.  

• We employ the model pretrained by two-phase contrastive self- 
supervised learning as the backbone to facilitate the neural 
network to learn better representations.  

• We utilize the Bagging ensemble learning algorithm to prevent 
overfitting and improve generalizability.  

• We report the instability of the model trained without regularization 
on the expanded COVID-CT dataset, which can be alleviated by our 
proposed multiple regularizations technology LSFLLW-R.  

• We perform extensive experiments to demonstrate the effectiveness 
of our proposed system. It achieves an accuracy of 0.943, a precision 
of 0.941, a recall (sensitivity) of 0.934, an F1-score of 0.947, and an 
Area Under the Curve (AUC) of 0.989 on the expanded COVID-CT 
dataset. 

The rest of the paper is organized as follows. Section II reviews 
related works. Methodology and system framework are described in 
Section III. Section IV presents the experimental results and related 
analyses. In Section V, we conclude the paper and propose the prospect 
of future work. 

2. Related work 

The medical images such as CT and X-ray have played a great role in 
the struggle against COVID-19 [21]. And the fusion of AI technology and 
medical images further improves the power of the medical images. 
There are some excellent deep learning methods developed for the 
COVID-19 classification task using chest CT images. He et al. establish 
the first openly accessible COVID-19 chest CT dataset, i.e., COVID-CT, 
by extracting the CT images from over 760 preprints in medRxiv and 
bioRxiv and propose a deep learning method Self-Trans based on 
transfer learning and contrastive self-supervised learning [16]. Their 
method has achieved very good recognition accuracy (0.86) on this 
small CT dataset. However, this well-designed method needs many times 
of pretraining. Wang et al. propose a framework that performs joint 

Fig. 1. The overview and pipeline of the proposed system, which includes three phases, i.e., Phase 1: CSSL-based Pretraining; Phase 2: Training; Phase 3: 
Ensemble Learning. 
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learning of two datasets and performs multi-task learning consisting of 
classification task and supervised contrastive learning task to identify 
COVID-19 [8]. Their recognition accuracy (0.80) is not very high, but 
their method is cross-site. That is, in their study, they consider the 
different imaging conditions in the actual application scenarios. Liu 
et al. expand the dataset of [16] from 746 single-label CT images to 
six-label images [12]. They prove that these five additional labels can 
promote the training of main task. In addition, they also collect more CT 
images, so as to further improve the recognition accuracy. Their LA-DNN 
model greatly shortens the training time due to the addition of multiple 
auxiliary labels. Huang et al. point out that the method based on deep 
learning is difficult to deal with imprecise and uncertain information 
due to the low contrast of CT images, so they develop a classification 
network based on belief function using semi-supervised learning [9]. 
Ewen et al. propose a targeted self-supervised method, which makes the 
network architecture used by pretext tasks for self-supervision and 
downstream tasks unchanged, simplifying the experimental process, and 
enabling all layers of the network to gain benefits from self-supervised 
learning [17]. Mishra et al. combine the prediction results of several 
different deep CNN models to identify COVID-19 [13]. Among many 
competitive methods, this decision fusion method achieves the highest 
recognition accuracy (0.8834) on the COVID-CT dataset. 

3. Method 

Fig. 1 shows the overview of our established system for COVID-19 
detection. In this section, we first introduce the redesigned BCELoss. 
In the supervised training phase, the redesigned BCELoss will be inte
grated with the regularization technology LSFLLW-R, and then, both of 
them will play their roles, synergistically. We then introduce the pre
training method implemented in the CSSL-based Pretraining phase. 
Finally, the algorithm of the whole proposed system is given. 

3.1. BCELoss integrated with LSFLLW-R 

In the course of our research, we find that the characteristics of the 
dataset are not taken into account in the research work carried out by 
Liu et al. in Ref. [12]. Inspired by this discovery, we construct a new 
approach by integrating the loss function BCELoss with a specially 
designed regularization technology LSFLLW-R, from the perspective of 
data distribution and prior knowledge, after deep consideration and 
analysis. The proposed multiple regularizations in the BCELoss improve 
the performance by reducing the solution space. 

1) Label Smoothing: As a regularization technique, Label Smoothing 
is proposed in Ref. [19]. The authors hope that the prediction of the 
model will not be too confident to generalize well. In other words, 
the assignment of a full probability to the ground-truth label by the 
model may cause overfitting. Therefore, in order to make the model 
less extreme, the authors propose a mechanism to change the 
ground-truth label distribution. 

For a training example x in a K classification problem, considering 
that the ground-truth label of x equals t, its label distribution is: 

q(k|x) = δk,t =

{
1, k = t

0, k ∕= t
(1)  

where k ε {0, 1, …,K − 1}, δk,t is Dirac delta. Therefore, the Cross En
tropy (CE) is: 

CE = −
∑K− 1

k=0
log(pk) • δk,t = −

∑K− 1

k=0
log(pk)q(k) (2)  

pk = p(k|x) =
exp (zk)

∑K− 1

i=0
exp (zi)

(3)  

where zi are the unnormalized log-probabilities. Now, the authors use a 
new label distribution q′

(k|x) instead of the original label distribution 
q(k|x): 

q′

(k|x) = (1 − ε)δk,t + εu(k) (4)  

where q′

(k|x) is a mixture of the original ground-truth distribution q(k|x)
and the fixed distribution u(k), with weights 1 − ε and ε, respectively. 

In this paper, we follow the authors and use the uniform distribution 
u(k) = 1

K, so that: 

q′

(k) = (1 − ε)δk,t +
ε
K

(5) 

Thus, the CE has changed because of the change of label distribution. 
Note that, we use k ε {0,1,…,K − 1} instead of k ε {1,2,…,K} used by 
the authors in Ref. [19], which is for the unification of the later formula. 

2) Focal Loss: In the field of object detection, Lin et al. point out a 
fact that the object detectors with the highest accuracy are designed 
based on a two-stage approach popularized by R–CNN, and then a 
classifier is utilized to process a sparse set of candidate object loca
tions. On the contrary, the one-stage object detectors with a regular 
and dense sampling of possible object locations may be faster and 
simpler, but they lag behind the two-stage detectors so far, in accu
racy. Then, the authors discover that the extreme foreground- 
background class imbalance encountered during the training of 
dense detectors is the central reason [20]. 

For a training example x in a binary classification problem, consid
ering that the ground-truth label of x equals t, the authors first introduce 
a weighting factor α ∈ [0, 1]. 

αt =

{
α, t = 1

1 − α, t = 0
(6) 

So, the α-balanced CE loss is expressed as follows: 

CE(p, t) = CE(pt) = − αt log(pt) (7)  

where 

pt =

{
p, t = 1

1 − p, t = 0
(8)  

Fig. 2. R -label binary classification.  
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where p ε [0, 1] is the estimated probability for the class with label t = 1. 
And then, the authors add a modulating factor (1 − pt)

γ to the 
α-balanced CE loss, with a tunable focusing parameter γ ≥ 0. And the 
α-balanced variant of the focal loss is expressed as follows: 

FL(pt) = − αt(1 − pt)
γ log(pt) (9) 

We can find that, for a training example x, when pt→ 1, x is an easy 
sample. Because according to Eq. (8), when pt→1, x can be classified 
accurately. However, when pt→0, x is misclassified, so x is a difficult 
sample. Therefore, after the modulating factor is added, the loss of well- 
classified samples goes to 0, and a large number of easy samples will not 
drown the classifier. In contrast, for hard samples, the modulation factor 
is near 1, the weights of these samples in the loss function will become 

larger than those of easy samples. In short, the FL function prevents the 
vast number of easy negatives from overwhelming the detector during 
training. 

As a binary classification loss, BCELoss requires the network output 
to be processed by the Sigmoid function. Considering R labels, iε{0,1,… 
,R − 1}, R -label binary classification can be observed from Fig. 2. 

The loss of the i-th label is as follows: 

Li = − [ti log(pi) + (1 − ti)log(1 − pi)] (10)  

where pi is the output result of i-th neuron processed by the Sigmoid 
function. And ti ε {0,1} is the ground-truth label value of i-th label. 
Aiming at the problem of class imbalance in some labels, now we 
introduce FL into the loss of i-th label: 

Li = − [α(1 − pi)
γ ti log(pi) + (1 − α)pγ

i (1 − ti)log(1 − pi)] (11)  

And, according to Eq. (5), the Label Smoothing in binary classification 
can be expressed as: 

q′

(k) = (1 − ε)δk,y +
ε
K
= (1 − ε)δk,y +

ε
2
=

⎧
⎪⎨

⎪⎩

1 −
ε
2
, k = ti

ε
2
, k ∕= ti

(12)  

where k ∈ {0,1}. 
Therefore, in binary classification, the one-hot encoding is from 

(
0
1

)

to 

⎛

⎝

ε
2

1 −
ε
2

⎞

⎠ or from 
(

1
0

)

to 

⎛

⎝
1 −

ε
2

ε
2

⎞

⎠. 

However, in BCELoss, we use a neuron for binary classification. 
Because the output of a single neuron is the probability for the class with 
label ti = 1, we can convert by the following formula: 

ti =

⎧
⎪⎨

⎪⎩

1 −
ε
2
, ti = 1

ε
2
, ti = 0

(13) 

Now, we introduce Label Smoothing into the loss of i-th label as 
follows: 

Li =

⎧
⎪⎨

⎪⎩

−
[
α(1 − pi)

γ
(

1 −
ε
2

)
log(pi) + (1 − α)pγ

i

(ε
2

)
log(1 − pi)

]
, ti = 1

−
[
α(1 − pi)

γ
(ε

2

)
log(pi) + (1 − α)pγ

i

(
1 −

ε
2

)
log(1 − pi)

]
, ti = 0

(14) 

Although the task is a six-label binary classification one, our main 
goal is to determine whether the subject has COVID-19 based on the 
chest CT images. Therefore, we give the highest weight to the main task 
(the COVID-19 recognition task), and the weights of the other five 
auxiliary tasks are directly proportional to their correlation with the 
main task. In Ref. [12], the authors gave the plots of the pairwise re
lationships among the five lesions on classifying COVID-19. As exhibited 
in the plots, the incidence of CrPa, AirBr, and InSepThi with COVID-19 
are relatively high, that is to say, their potential correlation with 
COVID-19 may be stronger. Consequently, their weights should also be 
set relatively high. The redesigned BCELoss integrated with LSFLLW-R 
for the i-th label is as follows:  

where wi is the weight of the i-th label, and constant φ = 1e − 5 is 
introduced to let log (•) ∕= ∞. Now, we have obtained the loss of the i-th 
label of a single sample. Subsequently, we can average, sum or weight 
the losses of all labels as needed. 

FL is considered from the point of view within the label, and label 
weighting is considered from the point of view between labels. Both of 
them are cost-sensitive strategies. As far as we know, this new approach 
combining multiple regularizations technique with BCELoss is innova
tively constructed by us. By introducing LSFLLW-R into BCELoss, we 
achieve: 1) preventing a large number of negative samples in some la
bels from overwhelming the classifier, resulting in label failure and even 
poor impact on the network; 2) dividing the tasks into primary and 
secondary ones, and making the network more focused on the primary 
task, while the auxiliary tasks only served as facilitators, and 3) letting 
all labels be processed by Label Smoothing, and thus preventing over
fitting. Accordingly, LSFLLW-R promotes the recognition accuracy by 
smoothing the loss function from the perspective of data. 

3.2. An elaborately designed pretraining method 

Because the target dataset (expanded COVID-CT dataset) is a small- 
scale dataset, pretraining should be implemented to prevent overfitting. 
As the two most mainstream paradigms of pretraining, self-supervised 
learning and transfer learning are widely used. Recently, Contrastive 
Self-Supervised Learning (CSSL) [18], as a dominant self-supervised 
learning method, has shown strong results in Natural Language Pro
cessing (NLP) and Computer Vision (CV), even beyond transfer learning. 
With transfer learning paradigm, labels of the source task are utilized for 
pretraining, making the pretrained model more inclined to the label 
distribution of the source task, and, eventually, resulting in poor 
generalization performance of the model in fulfilling the target task 
[22]. While the unsupervised pretraining implemented in CSSL can 
alleviate this problem, due to the fact that it only uses data instances to 
mine useful information. And CSSL has achieved good recognition re
sults for the COVID-CT dataset [8,16,17]. In general, CSSL-based pre
training is less prone to overfitting. Based on the above analysis, we 
decide to conduct CSSL-based pretraining on the target dataset. 

Contrastive Self-Supervised Learning: In CV, CSSL usually adopts 
the Siamese architecture [23]. For the past few years, many CSSL 
methods of good performance have been successfully formed. The MoCo 
v1 and v2 methods [24,25] introduce a queue to store negative samples, 
which decouples the dictionary size from the mini-batch size. The 
SimCLR method [26] achieves a simpler end-to-end contrastive loss 

Li = − wi

⎧
⎪⎨

⎪⎩

[
α(1 − pi + φ)γ

(
1 −

ε
2

)
log(pi + φ) + (1 − α)(pi + φ)γ

(ε
2

)
log(1 − pi + φ)

]
, ti = 1

[
α(1 − pi + φ)γ

\
(ε

2

)
log(pi + φ) +

(
1 − α

)(
pi + φ)

(
1 −

ε
2

)
log(1 − pi + φ)

]
, ti = 0

(15)   
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mechanism by increasing the batch size, and by using the data 
augmentation and projection head techniques. The BYOL method [27] 
proposes a contrastive learning method without using negative samples. 
And the MoCo v3 and DINO methods [28,29] perform contrastive 
learning based on the Vision Transformer [30] model. 

Augmenting a given image x to obtain the augmented images xq and 
xk. xq is the query and xk is the key. Then, they are input into the encoder 
fq(xq; θq) and fk(xk; θk) parameterized by θq and θk, to obtain the repre
sentations q and k. For N images {xi}

N
i=1, with N being the number of 

samples in the randomly sampled minibatch, we can obtain the repre
sentations {qi}

N
i=1 and {ki}

N
i=1. A positive pair is composed of a query 

image and a key one generated from the same image, and correspond
ingly, a negative pair is composed of two augmented images generated 
from different images. The idea of CSSL is to enlarge the similarity of 
positive pairs and reduce the similarity of negative pairs to enable the 
model to learn excellent representations. Therefore, the pretext task of 
CSSL can be an instance discrimination task, which judges whether a 
sample pair is positive or negative. Typical contrastive loss functions are 
InfoNCE [31] and NT-Xent [26]. 

For a representation qj, the InfoNCE loss function is as follows: 

L = − log
exp

(
qj • k+

/
τ
)

exp
(
qj • k+

/
τ
)
+
∑K

i=1
exp

(
qj • ki

/
τ
) (16)  

And the NT-Xent loss function is as follows: 

L = − log
exp

(
sim
(
qj, k+

)\/
τ
)

∑N

i=1
I •
(
exp

(
sim
(
qj, ki

)/
τ
)
+ exp

(

sim

(

qj, qi

)/

τ
))

(17)  

sim( • ) =
qT

j • k+
⃦
⃦qj

⃦
⃦ • ||k+||

(18)  

where τ is a temperature parameter, k+ and q constitute the positive 
pair, I ∈ {0,1} is an indicator factor evaluating to 1 if j ∕= i, K refers to the 
number of negative samples, and Eq. (18) is the cosine similarity, which 
is used to measure the similarity of representations. 

Our CSSL-based pretraining process is illustrated in Phase 1 of Fig. 1, 
from which it can be clearly perceived that, a novel contrastive loss 
mechanism [24,25] is adopted, neither end-to-end nor memory bank. For 
the end-to-end mechanism, although it can update the encoders of query 
and key at the same time to maintain consistency, the dictionary size cannot 
be very large due to the limitation of GPU memory size. For the memory 
bank mechanism, it can support a large dictionary size and make the key 
encoder consistent. However, only updating the encoder of the query will 
make the query and key less consistent. Comprehensively considering the 
above analyses, we use the on-the-fly queue structure to store keys, so as to 
decouple the dictionary size from the batch size, and to obtain a larger 
dictionary size. Accordingly, in our COVID-19 classification research work, 
we can provide more negative examples to participate in contrastive 
learning, so as to facilitate convergence. Naturally, we use the InfoNCE loss, 
with reference to the MoCo method. At the same time, we perform the 
momentum update on both of the two encoders, to make the encoder of 
query and key, and the encoder of key and key consistent. Formally, the two 
encoders are denoted as fq(xq; θq) and fk(xk; θk), being parameterized by θq 

and θk. The specific momentum update rule is as follows: 

θq← θq − α ∂L

∂θq
(19)  

θk← mθk + (1 − m)θq (20)  

where m ε [0, 1) is a momentum coefficient and α is the learning rate. 
However, only implementing pretraining based upon the target dataset 

may not be sufficient. For injecting more knowledge into the model, 

similar to the research work conducted in Ref. [16], before pretraining on 
the target dataset, we pretrain the model on basis of a big Lung Nodule 
Analysis (LUNA) dataset1, by using the same pretraining method. The 
learning paradigm implemented in this stage can be regarded as either 
transfer learning or self-supervised learning. In this paper, we adopt the 
term self-supervised learning rather than transfer learning. Through the 
CSSL-based pretraining on the large-scale dataset, the model can acquire 
feature representations that are not biased towards labels of related source 
domain datasets. All in all, we provide the model pretrained by two-phase 
CSSL for the downstream supervised tasks. By means of the instance 
discrimination task, the feature space is constrained, and the model can 
further achieve intra-class cohesion and inter-class separation. 

And we introduce the Multilayer Perceptron (MLP) projection head 
proposed in SimCLR by Chen et al. of [26], that is, the embedded 
network g(•) in Fig. 1. By projecting hq and hk into low-dimensional 
space, hq and hk can form and maintain more information, that is, 
form a qualitative representation. Experiments show that the pretrained 
base models with unbiased feature representations is more conducive to 
further ensemble. Lastly, the results of the experiments conducted in 
Refs. [16,17] show that, DenseNet-169 [32] is more suitable for the 
COVID-CT dataset than the other convolutional neural network models. 
Therefore, we use the DenseNet-169 model pretrained on the ImageNet 
[33] dataset as the initialized model. 

Through feature reuse, a more compact model DenseNet is acquired, 
an efficient neural network, which alleviates the problem of vanishing- 
gradient and greatly reduces the number of parameters. The general 
structure of DenseNet is displayed in Fig. 3. The dense connectivity 
block is the most important structure in DenseNet. Within the block, the 
number of feature maps becomes more and more through multiple non- 
linear transformation and concatenation. For the i-th layer in the block, 
its output ui is obtained by the non-linear transformation after concat
enating all the feature maps of the previous layer: 

ui =Hi([u0, u1, u2,…, ui− 1])

where Hi(•) refers to the non-linear transformation of layer i and [u0, u1,

u2,…, ui− 1] is the concatenation of all the feature maps produced from 
layers 0, 1, …, and i-1. 

According to the different parameter settings, DenseNet can be 
distinguished as DenseNet-121, DenseNet-169, DenseNet-201 and 
DenseNet-161. In the DenseNet-169 model used in this paper, the first 
step is 7 × 7 convolution and 3 × 3 max pooling. Then, the non-linear 
transformation Hi(•) in each block can be designed as six continuous 
operations: BN-ReLU-Conv with kernel size 1 × 1 followed by BN-ReLU- 
Conv with kernel size 3× 3. The numbers of layers of the four blocks are 
6, 12, 32, and 32, respectively. Within each block, the output of each 
layer contains 32 channel feature maps. And the connecting part Tran
sition between two blocks is for down-sampling, which consists of 1 × 1 
convolution, followed immediately by 2 × 2 average pooling. 

To summarize, based on the DenseNet-169 model pretrained on the 
ImageNet dataset, we further perform CSSL-based pretraining on the 
large LUNA dataset, and then perform CSSL on the target dataset COVID- 
CT. In this way, the final pretrained model is obtained. It is worth noting 
that, the two-phase pretraining belongs to self-supervised pretraining, 
implying that dataset labels are not required. 

3.3. Overall system framework design 

The specific design and implementation details of our proposed 
system are presented in Algorithm 1, which corresponds to Fig. 1, pre
cisely. Specifically, for a given input image x, we use the data augment of 
same distribution to form two images, and then carry out two-phase 
contrastive learning is the first phase. The second phase is supervised 

1 https://luna16.grand-challenge.org/Data/. 
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training with the LSFLLW-R and ensemble learning techniques. The 
third phase is to adopt the plurality voting method for the classification 
results of multiple learners generated by ensemble learning. 

Ensemble Learning: The ensemble learning paradigm is generally 
constituted of two stages: 1) the generation of the individual base 
learners, and 2) the combination of these individual base learners, if the 
intermediate ensemble pruning stage is not taken into consideration 
here. An ensemble system can be composed of several homogeneous or 
heterogeneous member models, also known as individual base learners, 
as mentioned above. Homogeneous models are produced from multiple 
different executions of the same learning algorithm. These homoge
neous models can be generated by setting different parameter values of 
the learning algorithm, introducing random factors into the learning 
algorithm, or by manipulating training samples, attribute values of input 
variables and outputs of the model [34]. The most popular methods for 

generating homogeneous models are Bagging [35] and Boosting [36]. 
Heterogeneous models are produced by running different learning al
gorithms on the same dataset. Such heterogeneous models have 
different views about the data, because they hold different assumptions 
about the data. 

There are usually three combination strategies of the member models 
in an ensemble: the averaging method, the voting method, and the 
learning method. The averaging method is usually employed used for 
regression tasks, and the voting method is usually used for classification 
tasks. The learning method is a more powerful combination strategy. 
Stacking [37] is a classic representative of the learning method. 
Ensemble learning integrates the decisions of multiple member models, 
which can usually achieve obtain better generalization performance 
than a single learner, and can effectively avoid overfitting. 

Algorithm1. COVID-19 Recognition System 
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The plurality voting method, a type of voting method, makes an 
unweighted voting on the outputs of the member models in an ensemble. 
Assuming x represents an image input to the ensemble system, F(x) is the 
output of the ensemble by utilizing the plurality voting method. The 
following Eq. (21) calculates F(x), when the plurality voting method is 
implemented: 

F(x) = argmax
y

∑NL

i=1
I(hi(x) = y), y ∈ Y (21)  

where hi(x) is the classification decision of the i-th model, and i = {1,2,
…,NL}. NL denotes 

the number of generated base learners. I(•) represents the indicator 
function (I(false) = 0, I(true) = 1). And Y = {0,1,…,K − 1} is the set of 
class labels. 

In Phase 3 of Fig. 1, we employ the simple but efficient Bagging al
gorithm for ensemble learning. Bagging, also known as bootstrap 
ensemble learning, is a method of repeatedly sampling from the original 
sample set with replacement, according to uniform probability distri
bution. The Bagging method reduces the generalization error of the 
ensemble system by reducing the variance of the base learners. Bagging 
does not focus on processing any particular instances of the training 
data. With the Bagging method, each sample has the same probability of 
being selected. Therefore, when Bagging is applied to noisy data, it is not 
susceptible to model overfitting [38]. 

According to the principle of Bagging algorithm, on the basis of 
completing the CSSL-based pretraining, we randomly take some samples 
from the original training dataset at a certain rate each time to form a 
subset of training samples, and then, multiple base models are produced 
by implementing supervised training on these training subsets, using the 
BCELoss loss function integrated with LSFLLW-R. Finally, the plurality 
voting method is utilized to determine the final COVID-19 recognition 
results in accordance with the predictive results of all the base models. 

3.3.1. Datasets and metrics 
In this study, all the datasets involved are composed of chest CT 

images. 

a) A Part of the LUNA Dataset DL: In the first stage of CSSL-based pre
training, we leverage the big Lung Nodule Analysis (LUNA) database. 
The LUNA dataset is developed for LUNA16 challenge, which con
tains 888 CT scans. In order to be consistent with the study con
ducted in Ref. [16], we use the same 1000 CT images selected from 

the LUNA dataset by the authors of [16]. Note that, during pre
training, we do not use the labels of these 1000 images.  

b) Exp-COVID-CT [12] 2 DC: The training and testing processes of our 
proposed system are performed based upon this dataset. The dataset 
is an expansion of the COVID-CT dataset proposed by He et al. in 
Ref. [16].3 Therefore, the expanded dataset is abbreviated as 
Exp-COVID-CT, while the original COVID-CT dataset in Ref. [16] is 
abbreviated as Ori-COVID-CT, by us. The Ori-COVID-CT dataset 
consists of 349 COVID-19 CTs from 216 patients and 397 
Non-COVID-19 CTs. Table 1 details this dataset. It is a single-label 
dataset, that is, it only contains category information about 
whether or not the subjects corresponding to the CT images have 
COVID-19. Liu et al. point out that the radiological reports of the 
COVID-19 positive images are of great value [12]. After a compre
hensive statistical analysis of the entire text annotations, they found 
that there are five different lesions associated with COVID-19, 
including Ground Glass Opacity (GGO), Consolidation (Csld), 
Crazy Paving appearance (CrPa), Air Bronchograms (AirBr), and 
Interlobular Septal Thickening (InSepThi). Therefore, they expand 
the single-label dataset to a six-label dataset. In addition to the 
original single main label, five additional labels corresponding to the 
five lesions mentioned above are expanded into the dataset. Obvi
ously, only when the COVID-19 label of a CT image is 1, its additional 
five labels can be taken as 1. We count the number of samples with a 
label value of 1 (corresponding to positive cases) in each auxiliary 
label of the training dataset with the size of 425, which is shown in 
Fig. 4. It is worth emphasizing that: a) expanding the five additional 
labels do not result in a change in the number of images in the 
dataset. Therefore, datasets Exp-COVID-CT and Ori-COVID-CT have 
the same image, and b) these additional labels are only intended to 
aid in the training. Therefore, datasets Exp-COVID-CT and 
Ori-COVID-CT are equivalent when testing. And the Ori-COVID-CT 
dataset will be used in our later comparative experiments. And 

Table 1 
Dataset split.   

# images  # patients  

COVID Non-COVID All COVID Non-COVID 
Train 

Val 
Test 

191 234 425 130 105 
60 58 118 32 24 
98 105 203 54 42 

All 349 397  216 171  

Fig. 3. The overview of deep DenseNet framework.  

2 https://github.com/xiaoxuegao499/LA-DNN-for-COVID-19-diagnosis.  
3 https://github.com/UCSD-AI4H/COVID-CT. 
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Fig. 5 shows some examples of the LUNA, Ori-COVID-CT and 
Exp-COVID-CT datasets. 

c) Exp-COVID-CT* [12]: In order to achieve higher recognition accu
racy, Liu et al. continue to collect more CT images to form a larger 
dataset, which we call the dataset Exp-COVID-CT*. It contains 564 
COVID-19 CTs and 660 Non-COVID-19 CTs. It is also a six-label 
dataset. 

To compare various algorithms, we adopt five classical metrics, 
including accuracy (ACC), F1-score (F1), recall (REC), precision (PRE), 
and the Area Under the receiver operating characteristic Curve (AUC). 
Here, the ACC, F1, REC, and PRE are defined as, 

ACC =
TP + TN

TP + TN + FP + FN
(22)  

F1 = 2 •
precision • recall
precision + recall

(23)  

REC =
TP

TP + FN
(24)  

PRE =
TP

TP + FP
(25)  

where TP, TN, FP, and FN represent True Positive, True Negative, False 
Positive, and False Negative, respectively. 

4. Experiments 

4.1. Experiment setup 

The whole system is implemented in PyTorch. In the CSSL-based 
pretraining phase, our experiments are carried out with 4 Nvidia GTX 
1080Ti GPUs using data parallelism. For the supervised training with 
LSFLLW-R and the ablation experiments, we use a desktop equipped 
with Intel Xeon E5-2670 2.6 GHz CPU and 64 GB memory. Then, we 
carefully design LSFLLW-R. We set ε = 0.1, γ = 5, α = 0.5, and 
weight list = [3.5 × 5, 1.5, 1.5, 2.5, 2.5, 2.5]. The imbalance of some 
auxiliary labels can be reflected in Fig. 4, apparently, the main label and 
labels GGO and Csld are relatively balanced, therefore, we only apply 

Fig. 5. (a) Examples of unlabeled LUNA dataset (upper), two positive CT scans for COVID-19 and two negative CT scans for COVID-19 of the COVID-CT dataset 
(lower); (b) Examples of the positive CT scans for COVID-19 of the COVID-CT dataset and its corresponding five auxiliary labels. 

Fig. 4. The number of samples with a label value of 1 (corresponding to pos
itive cases) in each auxiliary label of the training dataset with the size of 425. 
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the FL of LSFLLW-R to the CrPa, AirBr, and InSepThi. According to the 
preliminary experiment, we set the number of base learners for 
ensemble learning NL = 3. Intuitively, this can be roughly explained as: 
our main task is binary classification and the regularized model is 
relatively stable, therefore, when NL = 3, the wrong samples can be 
discarded by plurality voting. When NL > 3, too many relatively stable 
models will be unprofitable, and even they might overwhelm the voting 
results and degrade the ensemble performance. We set the bootstrap 
sampling times m = 256. That is, the sampling rate is about 60.2%. Our 
method is repeated nine times, i.e., nine base models are trained. Then 
we select three models each time in sequence as an ensemble system, 
and finally, seven ensemble systems are obtained. All reported metric 
results are averages over these seven systems. 

4.2. Comparison with state-of-the-art methods 

Our experiments are based on the Exp-COVID-CT dataset proposed 
by Liu et al. in Ref. [12]. So, we directly compare our proposed method 
with the LA-DNN model in Ref. [12]. However, the research work con
ducted in Ref. [12] is pioneering, with no further well-designed method. 
And furtherly, a) as described in the related work, many researchers 
propose competitive state-of-the-art methods on the single-label 

Ori-COVID-CT dataset without additional disease labels, therefore, we 
also compare the results of our method on the Exp-COVID-CT dataset 
with the results of some state-of-the-art methods on the Ori-COVID-CT 
dataset, and b) we also compare the results of our method on the 
Exp-COVID-CT dataset with the results of LA-DNN on the 
Exp-COVID-CT* dataset with a large number of training images. 

Table 2 shows the experimental results of different methods. The 
REC and PRE of Self-Trans are not given in Ref. [16], but we find them 
on their GitHub. As shown in Table 2, We can make the following 
comparison and draw relevant conclusions:  

1) Compared with the LA-DNN on the Exp-COVID-CT dataset. On the 
Exp-COVID-CT dataset, as can be seen, the ACC of our proposed 
method is 0.943, the F1 is 0.947, the REC is 0.934, the PRE is 0.941 
and the AUC is 0.989. We achieve a huge improvement of 9.1% in 
ACC, 9.9% in F1, 7.7% in REC, and 7.7% in AUC.  

2) Compared with the LA-DNN on the Exp-COVID-CT* dataset. Our 
proposed method is implemented on the small Exp-COVID-CT data
set, while the results of LA-DNN on the larger Exp-COVID-CT* 
dataset are worse. This indicates that our proposed method is able 
to achieve competitive classification performances on the small-scale 
dataset.  

3) Compared with several state-of-the-art methods on the Ori-COVID- 
CT dataset. We compare our method implemented on the small 
Exp-COVID-CT dataset with five state-of-the-art baseline methods 
implemented on the Ori-COVID-CT dataset. We achieve 8.3%, 
14.3%, 13.3%, 5.96%, and 8.09% improvements in terms of ACC 
over the Self-Trans, the method proposed by Wang et al., Evidential 
Covid-Net, the method proposed by Mishra et al., and the method 
proposed by Ewen et al., respectively. 

The highest mean accuracy is observed for our method with 0.943. 
The above promising results can reveal that our design is effective. We 
further give the comparison diagram between our method and several 
competitive methods on the Ori-COVID-CT dataset. See Fig. 6. 

4.3. Evaluation of our method with ablation experiments 

In order to further evaluate and understand our proposed system, we 

Fig. 6. The classification performance of our proposed method and a variety of competitive methods.  

Table 2 
Results for COVID-19 classification of different methods on three datasets.  

Methods ACC F1 REC PRE AUC 

In Ori- 
COVID- 
CT 

Self-Trans [16] 0.86 0.85 0.79 0.92 0.94 
Wang et al. [8] 0.80 0.80 0.81 0.79 0.86 
Evidential 
Covid-Net [9] 

0.81 0.812 \ \ 0.875 

Mishra et al. 
[13] 

0.8834 0.867 \ \ 0.8832  

Ewen et al. [17] 0.8621 0.8704 \ \ 0.8609 
In Exp- 

COVID- 
CT 

LA-DNN [12] 0.852 0.848 0.857 \ 0.912 

In Exp- 
COVID- 
CT* 

LA-DNN [12] 0.877 0.868 0.874 \ 0.933 

Our method 0.943 0.947 0.934 0.941 0.989  
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conduct the following ablation experiments. The ablation experiments 
are divided into four groups of experiments by using the below three 
Sub-Methods and our proposed method, respectively.  

• Sub-Method 1: Pretrain on the ImageNet dataset. Then, fine-tune on 
the Exp-COVID-CT dataset using labels. The LSFLLW-R and the 
ensemble learning techniques are not utilized.  

• Sub-Method 2: Pretrain on the ImageNet dataset. Perform two- 
phase CSSL-based pretraining: apply CSSL on the LUNA dataset, 
and then on the Ori-COVID-CT dataset (Since the labels are not used 
in the pretraining stage, the Exp-COVID-CT dataset is equal to the 
COVID-CT dataset). Then, fine-tune on the Exp-COVID-CT dataset 
using labels. The LSFLLW-R and the ensemble learning techniques 
are not utilized.  

• Sub-Method 3: Pretrain on the ImageNet dataset. Perform two- 
phase CSSL-based pretraining: apply CSSL on the LUNA dataset 
and then on the Ori-COVID-CT dataset. Then, fine-tune on the Exp- 
COVID-CT dataset using labels and the LSFLLW-R technique, but 
not the ensemble learning technique.  

• Our method: Pretrain on the ImageNet dataset. Perform two-phase 
CSSL-based pretraining: apply CSSL on the LUNA dataset and then on 
the Ori-COVID-CT dataset. Then, fine-tune on the Exp-COVID-CT 

dataset using labels, and utilizing both the LSFLLW-R and the 
ensemble learning techniques. 

For Sub-Method 1 to Sub-Method 3, we conduct nine repeated ex
periments and report the average of each metric. For our method, 
experimental settings have been described in Section IV-A. 

The corresponding results of the ablation experiment are presented 
in Table 3. By comparing the results (0.805, 0.789, 0.760, 0.826, and 
0.878 for ACC, F1, REC, PRE, and AUC, respectively) of Sub-Method 1 
with the results of those state-of-the-art methods implemented on the 
single-label Ori-COVID-CT dataset in Table 2, we can observe that our 
proposed method better than the method proposed by Wang et al. [8], 
which indicates that the additional labels of the Exp-COVID-CT dataset 
are helpful for training. However, Sub-Method 1 is still inferior to the 
other methods. This implies that the improvement of the results due to 
the introduction of multiple labels is limited. The model will encounter 
bottlenecks. 

As shown in Table 3, some important observations can be summa
rized. First, by comparing the results of Sub-Method 2 with Sub-Method 
1, the two-phase pretraining helps the model improve ACC by 10.9%, F1 
by 12.1%, REC by 13.5%, PRE by 10.4%, and AUC by 9.9%. This 

Table 4 
Pairwise accuracy t-test results between our method and the SUB-METHODS.  

Methods Sub-Method 1 Sub-Method 2 Sub-Method 3 

p|H 1.8345e-11|1 0.0250|1 0.1479|0 

Note: H value of 1 indicates that the classification performance of our proposed 
algorithm is significantly superior to other methods when the t-test is conducted 
pairwise base on accuracy at a 5% significance level. 

Fig. 7. ROC curves of three Sub-Methods in the ablation experiments.  
Fig. 8. Grad-CAM visualizations of the three Sub-Methods in the six positive CT 
images for COVID-19. The images in Column (1) are the original data and those 
in Columns (2–4) correspond to the visualization results of the three Sub- 
Methods implemented in our ablation experiments. 

Table 3 
Results of our proposed method in the ablation experiments.   

ACC F1 REC PRE AUC 

Sub-Method 1 0.805 0.789 0.760 0.826 0.878 
Sub-Method 2 0.914 0.910 0.895 0.930 0.977 
Sub-Method 3 0.938 0.934 0.914 0.956 0.982 
Our method 0.943 0.947 0.934 0.941 0.989  
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observation can illustrate that, after CSSL, the model has excellent 
representational learning ability. Unbiased feature representations have 
rich semantic information, which greatly improves the model. Second, 
the Sub-Method 3 outperforms Sub-Method 2. The slight improvement 
reveals the superiority of LSFLLW-R. It imposes constraints through 
multiple regularizations and overcomes the unfavorable factors caused 
by data characteristics in the training process. Thus, the model can 
identify more difficult samples. To this end, through further ensemble 
learning, we achieve 0.5%, 1.3%, 2%, and 0.7% better than Sub-Method 
3 in average ACC, F1, REC, and AUC. But the PRE (0.941) yielded by our 
method is 1.5% worse than the Sub-Methods 3. We believe that, first of 
all, our ensemble has made progress in the four metrics, which is note
worthy. Additionally, the PRE of the three Sub-Methods is significantly 
higher than REC, which is an unbalanced performance. Therefore, 
although our PRE is not as good as Sub-Method 3, the results achieved by 
our method are more balanced across metrics (0.943, 0.947, 0.934, 
0.941, and 0.989 for ACC, F1, REC, PRE, and AUC, respectively), that is 
to say, through decision fusion, the model can be applied better in all 

cases and has better robustness. At the same time, in order to further 
prove the effectiveness of our proposed method, we implement the t-test 
significance test. Specifically, we conduct t-tests pairwise between our 
method and Sub-Methods at the significance level of 5%. The results are 
shown in Table 4. We see that our method is significantly superior to the 
Sub-Method 1 and 2 because the p-value is less than 0.05. But for Sub- 
Method 3, the H value is 0. The reason can be explained as follows: 
from Section IV-D, we can see that the ACC of the first model trained by 
Sub-Method 3 exceeds 95%, which is an outlier, better than our 
ensemble method. However, after using the mean value of multiple re
sults, our method is more stable and generalization is better. 

To evaluate the ablation process more intuitively, we obtain the ROC 
curves of the three Sub-Methods in Fig. 7. It can be seen that, as the 
ablation process being proceeded, the AUCs of the three Sub-Methods 
show an obviously increasing trend. 

And Fig. 8 shows the Grad-CAM [39] visualization results of the 
three Sub-Methods. Since our method is an ensemble learning process, 
only the visualization results of the Sub-Methods are shown. In order to 

Fig. 9. (a) Three metrics of nine models trained by Sub-Method 2 (upper) and corresponding box plot of the ACC (lower); (b) Three metrics of nine models trained by 
Sub-Method 3 (upper) and corresponding box plot of the ACC (lower). 
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better reflect the performance differences between different algorithms, 
we select a few images with manual annotation from the dataset, as can 
be seen from the first three CT images in column (1). Through visuali
zation, the three Sub-Methods have achieved good performance in the 
first three CT images. The visualization of the last three images shows 
that: 1) Sub-Method 1 without the LSFLLW-R and the ensemble learning 
techniques could not accurately locate the lesion area; 2) Sub-Method 3 
can better capture the lesion region, and the area of interest is smaller 
and more accurate, compared to that captured by method Sub-Method 2. 
They all validate the effectiveness of our design at each step. 

4.4. LSFLLW-R for model stability 

In nine repeated experiments of the same method, we also observe 
two interesting phenomena. First, we consider Sub-Method 2, i.e., we 
directly apply the pretrained model to the multi-label Exp-COVID-CT 
dataset for supervised fine-tuning without regularization. The results 
produce instability. The metric of one model is much lower than that of 
the other 8 models. Take ACC, F1, and PRE, for instance, we draw Fig. 9. 
(a). The lower is the corresponding box plot of the ACC. As can be seen, 
the three metrics of the fourth model are very poor. Compared with 
other models, there are great fluctuations. And the box plot clearly 
shows that the Sub-Method 2 yields the outlier of ACC. However, the 
model trained with LSFLLW-R is very stable. Fig. 9. (b) shows the same 
three metrics of the nine models generated by Sub-Method 3 and the 
corresponding box plot of the ACC. The difference between Sub-Method 
3 and Sub-Method 2 is the introduction of LSFLLW-R. By comparing 
Fig. 9. (a) and 9. (b), we can obviously find that the addition of LSFLLW- 
R makes the training or model more stable and robust. These results 
further validate that LSFLLW-R not only improves the diagnostic per
formance of the model, but also makes the training smoother. Second, it 
is worth noting that the first model of Sub-Method 3 achieves an ACC of 
0.966, which is much higher than that of our proposed method. How
ever, in terms of the average performance of the Sub-Method 3 and our 

proposed method, a single model is not representative. That is to say, the 
overall generalizability of the Sub-Method 3 is not as good as our pro
posed method. 

Based on the analysis in Sections B, C, and D above, first, the highest 
mean classification performance is achieved by our proposed method. 
Second, considering all metrics, our proposed method achieves the most 
balanced results. Third, the model we obtained is the most stable. 

5. Conclusions and future works 

When faced with challenge of computer-aided recognition of COVID- 
19, the existing methods usually cannot achieve adequately high 
recognition accuracy, while require a lot of training data, simulta
neously. Aiming at addressing these two issues, in this work, we build a 
high-performance COVID-19 recognition system on basis of the small- 
scale multi-label Exp-COVID-CT dataset. First, we leverage the two- 
phase CSSL-based pretraining to obtain a base model with good repre
sentation learning ability. Then, according to the characteristics of this 
dataset, we reasonably and skillfully design multiple regularizations to 
continuously optimize the solution space during the supervised training 
phase. Finally, through the specific ensemble learning technique, the 
generalizability, balance, and stability of the whole system are further 
improved. Our proposed system achieves promising COVID-19 recog
nition results on this small dataset, with the values of the accuracy, F1- 
score, and the AUC reaching 94.3%, 94.7%, and 98.9% respectively. 
Experimental results demonstrate that the developed system can locate 
the disease area precisely, exhibiting superior detection performance to 
several other several state-of-the-art COVID-19 recognition approaches. 

However, after careful and in-depth analysis, we find out that there 
exist two limitations in the proposed COVID-19 recognition system, 
required to be further ameliorated. The first limitation is that, from the 
initial model to the generation of the final system, our developed system 
needs relatively long training time, especially the two-phase CSSL pro
cedure. Besides, our presented system is established on the strength of a 
single dataset, which might ignore the heterogeneity of data caused by 
different imaging conditions, and might result in relatively imperfect 
classification performance on heterogeneous CT images. Ulteriorly, we 
compare the differences between our designed system and several other 
competitive state-of-the-art methods, with the differences being sum
marized in Table 5. 

As for the future work, directing at the above analyzed defects of our 
proposed system, data heterogeneity will be studied and considered in 
our future work. Additionally, we will focus on the research of more 
rational and effective strategy design for the self-supervised learning 
paradigm, so as to reduce the training time and mine more valuable 
information from the data itself in the case of a more limited amount of 
data. 
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