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ABSTRACT Mycobacteriophages Deby, LaterM, LilPharaoh, Paola, SgtBeansprout,
and Sulley were isolated from soil using Mycobacterium smegmatis mc2155. Genomic
analysis indicated that they belong to subclusters K1 and K5. Their genomic archi-
tectures are typical of cluster K mycobacteriophages, with most variability occurring
on the right end of the genome sequence.

Mycobacteriophages, viruses that selectively infect mycobacteria, such as Mycobac-
terium tuberculosis and Mycobacterium leprae, are of translational interest because

of their potential to counter the rising threat of antibiotic resistance among bacterial
pathogens (1). The vast genetic diversity among bacteriophages allows for them to be
categorized into clusters and subclusters based on nucleotide similarity (2, 3). Cluster K,
which contained 119 members as of October 2018 (http://phagesdb.org/clusters/K/), is
one of the only known clusters of mycobacteriophages able to infect M. tuberculosis,
the pathogen responsible for tuberculosis (4). Here, we report the novel genome
sequences of the five cluster K1 phages Deby, LaterM, LilPharaoh, SgtBeansprout, and
Sulley and of Paola, a cluster K5 phage.

The mycobacteriophages were all isolated by enrichment cultures of Mycobacterium
smegmatis mc2155 from soil samples collected in Los Angeles, CA, by students in the
SEA-PHAGES program (5). Viral DNA was extracted with the Promega Wizard DNA
clean-up kit (product number A7280), and sequencing libraries were prepared using an
NEB Ultra II kit with dual-indexed barcoding or a Titanium emulsion PCR (emPCR) kit.
Libraries were then pooled and run on an Illumina MiSeq platform or a GS FLX system,
yielding at least 30,000 single-end reads and at least 80-fold coverage for each genome
(Table 1). These reads were then assembled with Newbler version 2.9 with default
settings and in each case yielded a single-phage contig, which was checked for
completeness, accuracy, and phage genomic termini with Consed version 29, as
previously described (6). The phage genomes were linear, double-stranded DNA with
11 nucleotide 3= sticky overhangs. Genome sequence sizes ranged from 56,167 to
61,535 bp, and GC content varied between 65.0 and 67.1%, with an average of 66.4%,
which is slightly less than the average of cluster K phages (66.9%) (Table 1).

Genome annotation was performed with DNA Master (http://cobamide2.bio.pitt
.edu/) and PECAAN (https://pecaan.kbrinsgd.org/), which integrate both Glimmer (7)
and GeneMark (8) to predict potential open reading frames. ARAGORN (9) and
tRNAscan-SE (10) were used to detect the presence of tRNAs. Gene locations were
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curated with Phamerator, which compares phage genes and genomes, and Starterator,
which identifies conserved start sites (11). Gene functions were predicted with BLASTp
(12) against the PhagesDB (13) and NCBI databases (https://www.ncbi.nlm.nih.gov/
protein), as well as HHPred (14) and TMHMM (15).

Annotation revealed that the genome sequences of phages Deby, LaterM, Sulley,
and Paola contained 92 to 95 coding genes and one tRNAtrp, and LilPharaoh and
SgtBeansprout had 78 coding genes and no tRNAs. In line with other cluster K
mycobacteriophages, the left end of each genome was highly conserved among the
phages, whereas the right end of each genome was much more variable (4) and
contained the majority of genes without any known functions. The majority of the
structural and the assembly genes, such as the tape measure protein and major capsid
proteins, dominated the first 25 kb of the genome sequences. All phages contained lysis
cassettes with lysin A, lysin B, and holin genes, and a conserved integrase was found
downstream of the lysis cassettes in all phages, which suggests that they are all temperate
phages potentially capable of undergoing the lysogenic life cycle.

Data availability. GenBank accession numbers for the six mycobacteriophages
discussed in this paper are provided in Table 1.
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