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Abstract 

The US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS, formerly 
AERS) is a database that contains information on adverse event and medication error reports 
submitted to the FDA. Besides those from manufacturers, reports can be submitted from health 
care professionals and the public. The original system was started in 1969, but since the last major 
revision in 1997, reporting has markedly increased. Data mining algorithms have been developed 
for the quantitative detection of signals from such a large database, where a signal means a sta-
tistical association between a drug and an adverse event or a drug-associated adverse event, in-
cluding the proportional reporting ratio (PRR), the reporting odds ratio (ROR), the information 
component (IC), and the empirical Bayes geometric mean (EBGM). A survey of our previous 
reports suggested that the ROR provided the highest number of signals, and the EBGM the lowest. 
Additionally, an analysis of warfarin-, aspirin- and clopidogrel-associated adverse events suggested 
that all EBGM-based signals were included in the PRR-based signals, and also in the IC- or 
ROR-based ones, and that the PRR- and IC-based signals were in the ROR-based ones. In this 
article, the latest information on this area is summarized for future pharmacoepidemiological 
studies and/or pharmacovigilance analyses. 

Key words: adverse event; Adverse Event Reporting System; FAERS; database; data mining; signal; 
signal detection; proportional reporting ratio; reporting odds ratio; information component; em-
pirical Bayes geometric mean; pharmacoepidemiology; pharmacovigilance. 

Introduction 
The US Food and Drug Administration (FDA) 

Adverse Event Reporting System (FAERS, formerly 
AERS) is a database that contains information on ad-
verse event and medication error reports submitted to 
the FDA [1-3]. The database is designed to support the 
FDA's post-marketing safety surveillance program for 
drug and therapeutic biologic products [1-3]. Its 
structure adheres to the international safety reporting 

guidance issued by the International Conference on 
Harmonisation, ICH E2B [1-3]. Adverse events and 
medication errors are coded using terms in the Med-
ical Dictionary for Regulatory Activities (MedDRA) 
terminology [4]. The reports from manufacturers are 
either expedited, which must be submitted within 15 
days, or periodic [1-3]. Reports can also be submitted 
by health care professionals and the public through 
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the “MedWatch” program [1-3]. The original system 
was started in 1969, but since the last major revision in 
1997, reporting has markedly increased [5, 6]. To date, 
the FAERS is the largest repository of spontaneously 
reported adverse events in the world with more than 
4 million reports [5, 6]. The FDA releases the data to 
the public, and public access offers the possibility to 
external researchers and/or pharmacovigilance ex-
perts to explore this data source, that is, allows con-
ducting pharmacoepidemiological studies and/or 
pharmacovigilance analyses. 

Pharmacoepidemiology is defined as the study 
of the use and effects of drugs in large numbers of 
people, whereas pharmacovigilance is the science and 
activities relating to the detection, assessment, under-
standing and prevention of adverse effects or any 
other drug-related problems [7-9]. The FAERS data-
base is useful for analyzing associations with adverse 
events, but if used for pharmacovigilance, where early 
and timely detection is important [10-13], has two 
major deficiencies [14-16]: the lag time from collection 
to public release of the data, and the form in which the 
data are released, i.e., ASCII or SMGL files, which is 
not readily amenable to query or analysis [14-16]. 
Additionally, spontaneous reports can have missing 
data, and more than 2 reports can be submitted for 
one patient (duplicated reports) [17]. Through an at-
tempt to address these shortcomings, a novel system, 
named the CzeekV system, has been developed by Dr. 
Okuno in collaboration with Kyoto Constella Tech-
nologies Co., Ltd., Japan, and we have employed to 
evaluate the safety profiles of several drugs [18-26]. 
Data mining algorithms are applied for the quantita-
tive detection of signals [17, 27-30], where a signal 
means a statistical association between a drug and an 
adverse event or a drug-associated adverse event, 
including the proportional reporting ratio (PRR) [31], 
the reporting odds ratio (ROR) [32], the information 
component (IC) given by a Bayesian confidence 
propagation neural network [33], and the empirical 
Bayes geometric mean (EBGM) [34]. In this article, the 
4 methods will be compared in terms of the signal 
contents, and the latest information on this area is 
summarized for future investigations. 

FAERS database  
A data set consists of 7 data tables; patient de-

mographic and administrative information (DEMO), 
drug/biologic information (DRUG), adverse events 
(REAC), patient outcomes (OUTC), report sources 
(RPSR), drug therapy start and end dates (THER), and 
indications for use/diagnosis (INDI). The drugs in the 
DRUG table are assigned as any of primary suspect, 
secondary suspect, concomitant, or interacting. The 

adverse events in the REAC table are coded using the 
preferred terms (PTs) in the MedDRA. It should be 
noted that there are a number of duplicated entries 
and the data occasionally contain misspelling and 
miswords. In our previous reports [18-26], input data 
were taken from the public release of the FAERS da-
tabase from the first quarter of 2004 through the end 
of 2009, and the total number of reports used was 
2,231,029. Prior to data mining, duplicated reports 
were deleted according to the FDA's recommendation 
of adopting the most recent CASE number, resulting 
in a reduction in the number of reports from 2,231,029 
to 1,644,220. Several adverse events coded by PT 
terms and several drugs can be listed in a report. All 
drug names were unified into generic names by a 
text-mining approach, because FAERS permits the 
registering of arbitrary drug names, including trade 
names and abbreviations. Spelling errors were de-
tected by a spell checker software, GNU Aspell, and 
carefully confirmed by working pharmacists. The 
total number of errors was 223,239. Foods, beverages, 
treatments (e.g. X-ray radiation), and unspecified 
names (e.g. beta-blockers) were omitted for this study, 
and the total number of omissions was 164,384. Con-
sequently, a total of 22,017,956 co-occurrences were 
found in 1,644,220 reports, where a co-occurrence was 
a pair of a drug and an adverse event, and they were 
the basis for the signal detection. Of the 1,644,220 re-
ports used for data mining, gender data were availa-
ble for 1,520,994 (92.5%); 605,271 (36.8%) for males 
and 915,723 (55.7%) for females. Age data were 
available for 1,084,999 reports (66.0%), and the aver-
age (±SD) was 52.7±23.2 years.  

Data mining algorithms  
Data mining algorithms have been developed to 

identify drug-associated adverse events (signals) that 
are reported more frequently than expected by esti-
mating expected reporting frequencies on the basis of 
information on all drugs and all events in the database 
[17, 27-30]. For example, PRR [31], ROR [32], IC [33], 
and EBGM [34] are widely used, and indeed, cur-
rently employed by the Medicines and Healthcare 
products Regulatory Agency (MHRA), UK, the 
Netherlands Pharmacovigilance Centre, the World 
Health Organization (WHO), and the FDA, respec-
tively. All of these algorithms calculate signal scores, 
i.e., the values for PRR, ROR, IC, and EBGM, to assess 
whether a drug is significantly associated with an 
adverse event or not. These calculations or algo-
rithms, so-called the disproportionality analyses or 
measures, however, differ from one another in that 
the PRR and ROR are frequentist (non-Bayesian), 
whereas the IC and EBGM are Bayesian. 
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A two-by-two contingency table is the frame-
work for analysis (Table 1). The number of 
co-occurrences of interest is defined as n11. The 
number of co-occurrences with a drug of interest, but 
without an adverse of interest, is defined as n10, and 
the number n01 is assigned to those without a drug of 
interest, but with an adverse event of interest. The 
number of co-occurrences without either is as n00, 
and using them, the PRR and ROR are defined as: 

PRR = [ n11 x ( n01 + n00 ) ] / [ n01 x ( n11 + n10 ) ] 

ROR = ( n11 x n00 ) / ( n10 x n01 ) 

The expected number of co-occurrences of in-
terest, n11(expected), is defined as: 

n11(expected) = [ ( n11 + n10 ) x ( n11 + n01 ) ] / ( n11 
+ n10 + n01 + n00 ) 

The observed-to-expected ratio, n11/n11 (ex-
pected), is used for calculation of the IC and EBGM. 
The IC is a logarithmic metric of n11/n11 (expected) 
that is implemented in a Bayesian framework, and 
n11/n11 (expected) is known as the EBGM, when 
implemented within an empirical Bayesian frame-
work.  

In this section, only the scoring thresholds are 
given. The reader is referred to the articles for more 
extensive details on each statistical test [31-34]. Using 
the PRR, a signal is detected if the number of 
co-occurrences is 3 or more and the PRR is 2 or more 
with an associated χ2 value of 4 or more [31]. For the 
ROR, a signal is detected, if the lower limit of the 95% 
two-sided confidence interval exceeds 1 [32]. Signal 
detection using the IC is done using the IC025 metric, 
a lower limit of the 95% two-sided confidence interval 
of the IC, and a signal is detected if the IC025 value 
exceeds 0 [33]. Finally, for the EBGM, the EB05 metric, 
a lower one-sided 95% confidence limit of the EBGM, 
is used and a signal is detected when the EB05 is 
greater than or equal to the threshold value 2.0 [34]. In 
our studies [18-26], these 4 methods were used to de-
tect signals, and the adverse events were listed as 
drug-associated, when at least 1 of 4 indices met the 
criteria indicated above. 

In 2003, the Pharmaceutical Research and Man-
ufacturers of America-FDA Collaborative Working 
Group on Safety Evaluation Tools, consisting of stat-
isticians, pharmacoepidemiologists, and pharma-
covigilance professionals from the pharmaceutical 
industry and the FDA, reviewed the best practices for 
the use of these methods [28]. In summary, they stated 
that there is evidence that data mining may be useful, 
but the evidence is not sufficient to fully judge the 
value of data mining in pharmacovigilance, and that 
time and experience will reveal the value and utility 

[28]. It is important to understand both the strengths 
and weaknesses of data mining algorithms to mini-
mize their misapplication and misuse [27]. We rec-
ommend that readers refer to the many excellent re-
view articles on data mining algorithms published 
previously [17, 27-30].  

 

Table 1. A two-by-two contingency table for analysis. 

 With an ad-
verse event of 
interest 

Without an ad-
verse event of 
interest 

Total 

With a 
drug of 
interest 

n11 n10 n11+n10 

Without a 
drug of 
interest 

n01 n00 n01+n00 

Total n11+n01 n10+n00 n11+n10+n01+n00 
n11: the number of co-occurrences of interest. n11+n10: the total number of 
co-occurrences with a drug of interest. n11+n01: the total number of 
co-occurrences with an adverse event of interest. n11+n10+n01+n00: the total 
number of co-occurrences in the database. 

 
 

Comparison of 4 data mining algorithms 
In Table 2, an example of output data is provided 

to both familiarize readers with the analysis and show 
the differences between the 4 signal scores. These data 
are on the warfarin-, aspirin- and 
clopidogrel-associated haematemesis, and those on 
haemorrhage, haematoma, melaena and haemato-
chezia have already published previously [26]. The 
total number of warfarin-associated adverse events 
was 736, and 848 for aspirin and 838 for clopidogrel 
[26]. According to the number of co-occurrences, 
haematemesis ranked 56th among 736 warfa-
rin-associated adverse events, 13th among 848 aspi-
rin-associated ones, and 61st among 838 
clopidogrel-associated ones. The number of 
co-occurrences is an important index for monitoring 
the emergence of an adverse event, but is independent 
of the signal scores and/or performance of detection 
of signals. For example, haematemesis ranked 559th, 
375th, and 581st, respectively, according to the ROR 
score. Moreover, it should be noted that whether an 
adverse event is detected as a signal or not depends 
on the algorithm used for signal detection. Indeed, as 
shown in Table 2, based on the ROR and IC, the 
analysis indicated the association of these 3 drugs 
with haematemesis; however, it was not associated 
with warfarin when the PRR was used, and the EBGM 
failed to detect the associations for warfarin and 
clopidogrel.  
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Table 2. Signal scores for warfarin-, aspirin- and clopidogrel-associated haematemesis. 

Statins N PRR (kai2) ROR (95% two-sided CI) IC (95% two-sided CI) EBGM (95% one-sided CI) 
Warfarin 268 1.991 (131.982) 2.006 (1.778, 2.234) * 0.985 (0.811, 1.158) * 1.968 (1.778) 
Aspirin 332 6.469 (1525.210) * 6.566 (5.889, 7.244) * 2.661 (2.504, 2.818) * 6.425 (5.864) * 
Clopidogrel 235 2.254 (163.238) * 2.270 (1.995, 2.544) * 1.160 (0.975, 1.346) * 2.218 (1.991) 
N: the number of co-occurrences; PRR: the proportional reporting ratio; ROR: the reporting odds ratio; IC: the information component; EBGM: the empirical 
Bayes geometric mean; CI: the confidence interval. The asterisk (*) means statistically significant association, i.e., the adverse events are detected as signals.The 
data are on the associations with haematemesis, and those on haemorrhage, haematoma, melaena and haematochezia have already published previously [26]. 

 
 
The relationships between the 4 algorithms and 

numbers of signals are summarized in Table 3. This 
table was constructed using the data in our previous 
reports [19, 20, 22-26]. Among the 4 methods, the ROR 
provided the highest number of signals, and the 
EBGM the lowest. The difference in the number of 
signals can be explained by a higher rate of false pos-
itives or a lower ability to detect the signals. Without 
standards, one cannot know which the case is. Addi-
tionally, an analysis was done here using the data on 
warfarin, aspirin and clopidogrel, and it was indicat-
ed that all EBGM-based signals were included in the 
PRR-based signals, and also in the IC- or ROR-based 
ones, and that the PRR- and IC-based signals were in 
the ROR-based ones. In other words, the ROR-based 
signals could be stratified into 5 groups; the signals 
detected by the ROR only, the signals detected by the 
ROR and PRR, the signals detected by the ROR and 
IC, the signals detected by the ROR, PRR, and IC, and 
the signals detected by the 4 methods. If this rela-
tionship will be confirmed for other drugs, it can be 
concluded that the EBGM is the most conservative 
algorithm.  

Several studies have compared data mining al-
gorithms [32, 35-40]; however, as Bate and Evans re-
cently concluded [17], the different algorithms have 
slightly different properties and consequently one 
might be preferable in a particular application. If used 
for pharmacovigilance, the data mining algorithms 
should be assessed from the standpoint of early and 
timely signal detection [10-13]. There are limited pub-
lished comparative data, but recently, Chen et al. 
compared the timing of early signal detection with the 
PRR, ROR, IC and EBGM using the FAERS database, 
and concluded that the ROR showed the better per-
formance [10]. This does not conflict our finding 
mentioned above. 

Several strategies have been proposed to in-
crease the power to detect signals, and consequently 
to heighten pharmacovigilance, including integration 
with other databases [41] and removing already 
known drug-event associations [42]. Detecting signals 
not described in the prescribing information for a 
drug at the time of its approval, but supported by 

published evidence for an association (unlabeled 
supported signals), is important, and a high rate of 
detection of unlabeled supported signals is attained 
by data mining using higher level terms than the PT, 
i.e., the HLT or the Standard MedDRA Queries 
(SMQ), a group of PT terms [43]. New statistical 
methodologies will be continuously developed [44, 
45], and therefore we will not be able to draw a con-
clusion concerning which is best for some time. Prior 
to discussion, it is important to elucidate the differ-
ence in the table of adverse events listed as 
drug-associated.  

 

Table 3. Effects of 4 data mining algorithms on the number 
of signals (drug-associated adverse events). 

 PRR ROR IC EBGM 
Cisplatin 479 884 430 175 
Carboplatin 409 810 412 144 
Oxaliplatin 410 732 406 150 
Colistin 71 238 54 23 
5-Fluorouracil 461 864 441 161 
Capecitabine 411 802 395 146 
Pravastatin 218 701 285 19 
Simvastatin 192 744 399 30 
Atorvastatin 284 883 514 55 
Rosuvastatin 227 619 282 63 
Tigecycline 91 248 75 44 
Omeprazole 213 818 370 14 
Esomeprazole 194 743 317 17 
Warfarin 331 736 426 110 
Aspirin 348 848 377 100 
Clopidogrel 366 838 476 104 
PRR: the proportional reporting ratio; ROR: the reporting odds ratio; IC: the 
information component; EBGM: the empirical Bayes geometric mean. This 
table was constructed using the data in our previous reports [19, 20, 22-26], 
and the permission of replication was obtained from the publishers. 

 

Advantages of FAERS data mining 
It is well-accepted that a randomized, prospec-

tive, large-scale and long-term clinical trial is the best 
way to assess the association between a drug and an 
adverse event; however, such trials are not practical 
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due to great expenses of time and cost, especially for 
rare but clinically important adverse events [46, 47]. 
Data mining of the FAERS database might provide 
previously unknown, but clinically important associ-
ations, and give us useful suggestions to guide clinical 
decision making. Additionally, the FAERS database 
might be a useful tool for pharmaceutical companies’ 
post-marketing activities [48], and given an associa-
tion between pre-marketing data and post-marketing 
signal [49], the database might provide constructive 
suggestions about the method of pre-marketing data 
collection. 

Our studies suggested that FAERS data mining 
reproduced some well-established clinical associa-
tions, including cisplatin and nephrotoxicity [19], 
carboplatin and myelosuppression [19], oxaliplatin 
and peripheral sensory neuropathy [19], capecitabine 
and hand-foot syndrome [22], statins and muscular 
events [23], proton pump inhibitors and hypomag-
nesaemia [25], and antiplatelets and bleeding com-
plications [26]. These results indicate the usefulness of 
the database and algorithms used, but do not certify 
an ability to provide previously unknown, but clini-
cally important associations.  

In 2003, an editorial comment concerning the ef-
ficacy and safety of a drug, published in a respected 
scientific journal, had a considerable impact, since it 
claimed that no reliable data were provided by a 
manufacturer [50]. Debate about this issue continued 
in the journal until Meyboom and Edwards concluded 
that there was a need to improve and accelerate 
pharmacovigilance [51]. The FAERS database relies 
on reports not only from manufacturers but also from 
health care professionals and the public, and one ad-
vantage is that the database includes end-user as-
sessments. 

The coding of adverse events and medication 
errors using the PT terms in the MedDRA has con-
siderable advantages. For example, the terminology 
used to describe statin-associated muscular symp-
toms varies and therefore the incidence varies among 
reports [52, 53]. The National Lipids Association’s 
Muscle Expert Panel and other statin experts have 
emphasized the importance of standardizing related 
terms to allow reliable comparisons among studies 
and to improve care for statin users [53]. This does not 
apply only to statins, and the employment of 
MedDRA ensures higher quality results. 

In 2009, a pilot study performed by Hochberg et 
al. concerning drug-versus-drug comparisons found 
the rank-order of adverse event rates in the FAERS 
database to be consistent with the results of published 
studies, encouraging the use of the database for 
comparisons [54]. The number of reports with or 

without normalization by usage or sales during the 
corresponding period was used to compare drugs 
[55], but adverse events are underreported (discussed 
later), which might lead to incorrect conclusions [46, 
47, 56, 57]. To date, we have no evidence that the sig-
nal scores can be used to determine the rank-order of 
drugs in terms of risk. Indeed, they were calculated 
for several drugs in the same class, but a discussion 
about the difference in susceptibility to adverse events 
was pending [58-61]. 

Limitations of FAERS data mining 
In general, adverse events are underreported in 

spontaneous reporting systems [62-66]. The rate of 
reporting can vary with the particular adverse event 
[1], but averages just 6% [62]. Various factors can be 
determinants of underreporting, but the knowledge 
and attitude of health professionals seem to be most 
important [63]. Indeed, educational intervention was 
shown to improve the rate of reporting [64, 65]. A 
patient-targeted survey found that 87% of patients 
spoke to their physicians about a possible connection, 
but the physicians were more likely to exclude than 
affirm the possibility [66]. Pharmacists, nurse practi-
tioners, and physician assistants play an important 
role [67, 68], and more publicity for the FAERS data-
base and/or education should be considered to pro-
mote patient reporting [69]. Even though the report-
ing rate has dramatically improved, the FAERS data-
base is still not appropriate for estimating incidence 
rates, due to the absence of a denominator [1].  

The number of reports and signals, and the sig-
nal scores are influenced by various factors. The 
number of reports increases over the first 2 years after 
launching, and then starts going down [5, 6]. This is 
known as the Weber effect [70], although it is not al-
ways observed [71]. The number of signals and signal 
scores also possibly fluctuate during several years 
after launching, and the number of unlabeled sup-
ported signals depends on the time window after 
launching [72]. Generally speaking, reporting can be 
accelerated after a drug-associated adverse event is 
highlighted [73-75], and this is known as the notoriety 
effect [74]. Additionally, the notoriety for a drug can 
accelerate the reporting of other drugs in the same 
class, known as the ripple effect [74]. In contrast, sig-
nal scores can be suppressed by a large number of 
reports in which the same adverse event is connected 
with other drugs [76]. This is the masking or cloaking 
effect [76]. Close attention should be paid to the re-
sults of signal detection, especially for drugs launched 
only recently, and it is important to investigate a 
temporal axis, when planning a pharmacovigilance 
analysis [73]. 
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It should be noted that there is no credible 
counterfactual means, e.g., a randomized control 
group, to list signals, and therefore disease-oriented 
adverse events can be listed also. For example, 238 
colistin-associated adverse events included sepsis, 
pseudomonas infection, Acinetobacter infection, and 
influenza-like illness [20]. Generally, the results can be 
biased by unmeasured confounding factors; e.g., the 
association of a drug with an adverse event might be 
explained by those of other drugs which are often 
co-administered. Although a comparison of drugs in 
the same class can offset confounding factors, ena-
bling drug-versus-drug comparisons, a statistically 
well-organized methodology should be established to 
minimize their effects. 

The data mining algorithms are designed to 
identify bivariate associations, and the possibility that 
an adverse event occurred synergistically with more 
than 2 drugs is excluded. Harpaz et al. have recently 
analyzed the possibility of multi-item adverse event 
associations, i.e., associations relating multiple drugs 
to possibly multiple adverse events [77]. Multi-item 
associations are rarely reported but are important 
because they can indicate drug-drug interactions, and 
a total of 1,167 multi-item associations were identified 
using 162,744 reports [77]. Signal scores after stratifi-
cation by the presence or absence of co-administration 
might provide information about the drug-drug in-
teraction.  

Closing remarks 
The FAERS database has been used to analyze 

the safety profiles of various drugs. Additionally, the 
highly suspicious drugs to induce some serious ad-
verse events are listed by analyzing the FAERS data-
base, including torsades de pointes [78, 79] and Ste-
vens-Johnson syndrome/toxic epidermal necrolysis 
[80]. Several organizations maintain their own 
well-organized databases of spontaneously reported 
adverse events, and use them to analyze associations 
with drugs. The WHO Programme for International 
Drug Monitoring, starting in 1968, is a cornerstone of 
world-wide pharmacovigilance, and the Uppsala 
Monitoring Centre, Uppsala, Sweden, maintains the 
WHO Global Individual Case Safety Report Database, 
VigiBase [81-84]. In France, pharmacovigilance activi-
ties are carried out by 31 regional centers based in 
clinical pharmacology departments of university 
hospitals [85, 86], and the French Pharmacovigilance 
Database has been used to analyze the safety profiles 
of various drugs [87-91]. Additionally, two European 
databases, that is, the General Practitioners Research 
Database (GPRD) in the UK, and the PHARMO Rec-
ord Linkage System in the Netherlands, are also fre-

quently used for analytical studies [92]. In the near 
future, a device or infrastructure enabling real-time 
analysis at a doctor’s office or by a patient will be 
provided by information technology service compa-
nies. 

Data mining does not provide sufficient evi-
dence on causality, and merely suggests the necessity 
for well-organized clinical studies with respect to as-
sociations. The WHO defines a “signal” as “reported 
information on a possible causal relationship between 
an adverse event and a drug, the relationship being 
unknown or incompletely documented previously” 
[7, 8]; however, considerable ambiguity remains in the 
definition in reports [93-95]. Poluzzi et al. used the 
FAERS database to list drugs liable to induce torsades 
de pointes, and thereafter authorized reports were 
used as references to stratify the signals into expected 
and unexpected signals [78, 79]. Torsades de pointes is 
considered a designated medical event, i.e., a 
low-probability event with drug-attributed risk, and a 
case-by-case analysis is of primary importance [40]. 
As for unexpected signals, they emphasized the ne-
cessity for further investigation and close surveillance 
[78, 79].  

A debate recently published in a respected 
journal indicates both the advantages and limitations 
of data mining of spontaneously reported adverse 
event databases [96, 97]. de Boer emphasized that the 
disproportionality measures as used in spontaneous 
reporting databases have important limitations and 
more advanced way might generate new relevant 
knowledge worth publishing [96]. In contrast, Mon-
tastruc et al. commented that none of the methods 
(e.g., case-control studies and cohort studies), if taking 
alone, should be considered as definitive for evaluat-
ing drug risk, and disproportionality studies appear 
to be important today, due to a growing demand for 
safer drugs [97]. A report in the FAERS database is a 
story, sometimes only a rumor, but numerous reports 
can reflect reality. With larger numbers of faithful 
reports, the FAERS database and other spontaneously 
reported databases should help to optimize pharma-
cotherapy.  
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