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Abstract Fragile X syndrome (FXS) is the most common
inherited form of intellectual disability and is caused by a
CGG repeat expansion at Xq27.3 on the FMR1 gene. The
majority of young boys with FXS display poor attention
and hyperactivity that is disproportionate to their cognitive
disability, and approximately 70% meet diagnostic criteria
for attention-deficit/hyperactivity disorder. Psychopharma-
cology is employed with 82% of young males 5–17 years
of age, with stimulant medication as the most common
medication prescribed. This study evaluated the effects of
stimulant medication on the academic performance, atten-
tion, motor activity, and psychophysiological arousal of
boys with FXS, as well as the concordance of effects within
individuals. Participants in this study included 12 boys with
FXS who were treated with stimulants. Participants
completed videotaped academic testing on two consecutive
days and were randomly assigned to be off stimulants for

1 day and on stimulants the other day. On each day, multiple
measures including academic performance, behavior
regulation, and psychophysiological arousal were collected.
Approximately 75% of participants performed better on
attention and academic measures, and 70% showed improved
physiological regulation while on stimulant medication. A
high degree of concordance among measures was found.
Lower intelligence quotient (IQ), but not age, correlated with
greater improvements in in-seat behavior. IQ and age did not
relate to on-task behaviors. The frequency and magnitude of
response to stimulant medication in boys with FXS is higher
than those reported for most children with non-specific
intellectual disabilities and autism spectrum disorder.
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Introduction

Fragile X syndrome (FXS) is the most common inherited
form of intellectual disability, caused by a CGG trinucleo-
tide repeat expansion on the fragile X mental retardation 1
(FMR1) gene at Xq 27.3. The FMR1 gene is associated
with production of FMR1 protein (FMRP) that appears
essential for normal brain functioning (Tsiouris and Brown
2004). Individuals with 50–200 CGG repeats have the
fragile X premutation. Approximately 1:256 females are
premutation carriers who have a 50% chance of transmit-
ting FXS to their children, with the chance of expansion to
the full mutation increasing across generations. The full
mutation describes persons with >200 CGG repeats with
prevalence estimates of 1:4,000 males and 1:8,000 females
that are affected (Backes et al. 2000). Females are typically
more mildly affected given random X-inactivation.
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Phenotypic characteristics of FXS

Distinct physical, cognitive, and behavioral character-
istics are associated with the FXS full mutation. Physical
features include a long, narrow face, prominent ears,
hyper-extensible joints, and machroorchidism (Tsiouris
and Brown 2004). While cognitive abilities vary, most
males have a moderate intellectual disability (Hagerman et
al. 1994). Common behavioral features of children with
FXS include inattention, impulsivity, social anxiety, gaze
aversion, obsessive–compulsive disorder-like and persev-
erative behaviors, aggression, self-injury, and stereotypies
(Bailey et al. 1998; Berry-Kravis and Potanos 2004;
Hagerman et al. 2002).

The primary symptom cluster of problem behaviors in
children with FXS is attention-deficit/hyperactivity disorder
(ADHD), and approximately 59–70% of individuals with
FXS meet Diagnostic and Statistical Manual of Mental
Disorders (DSM) criteria (Backes et al. 2000; Baumgardner
et al. 1995; Sullivan et al. 2006; Turk 1992). ADHD is a
pervasive feature in FXS, affecting the broad cognitive
spectrum of boys with borderline to normal intelligence
quotient (IQ) scores (Staley-Gane et al. 1996). Studies
indicate that the prevalence of ADHD in FXS is higher
than rates of 7–33% for children with non-specific
intellectual disability (Baumgardner et al. 1995) and is
independent of mental age (Sullivan et al. 2006) and IQ
(Baumgardner et al. 1995).

Gender, age, and molecular markers are associated with
the prevalence and severity of ADHD in children with FXS.
Consistent with community samples, ADHD is more
prevalent and severe in boys than girls with FXS (Sullivan
et al. 2006; Freund et al. 1993). Also, ADHD is more
prevalent in FXS at younger ages, with motor activity
becoming less severe during late childhood and adoles-
cence and attention problems persisting over time (Fryns
1985; Hagerman 2002). The underlying mechanisms
associated with ADHD in FXS are unknown; however,
FMRP reduction has been associated with decreased
attention in children with FXS (Loesch et al. 2004) and
increased physiological arousal (Miller et al. 1999),
suggesting that FMRP may be a molecular marker of the
underlying pathophysiology of attention deficits in FXS.
Lower FMRP levels are associated with neuroanatomical
changes including enhanced dendritic branching and im-
mature spines (Comery et al. 1997; Weiler and Greenough
1999), as well as altered dopamine and norepinephrine
pathways (Hagerman et al. 2002; Weiler and Greenough
1999; Wang et al. 2008, 2010). Enhanced dendridic
connections and potential dopamine deficits have been
proposed as possible mechanisms through which stimulant
medications reduce electrodermal responsiveness in indi-
viduals with FXS (Hagerman et al. 2002).

Psychopharmacologic treatment in FXS

Although recent advances have been made with regard to
the development of treatments to reduce or reverse the
symptoms of FXS (Hayashi et al. 2007; Zeier et al. 2009),
most studies of targeted drugs to alter the FXS phenotype in
humans are in early phases of clinical trials or have not
been replicated (Berry-Kravis et al. 2008, 2009; Bilousova
et al. 2009; Erickson et al. 2011; Paribello et al. 2010;
Torrioli et al. 2008, 2010). Thus, despite these promising
advances, an etiology-specific psychopharmacologic treat-
ment in FXS is not currently available due, in large part, to
insufficient controlled treatment studies and heterogeneity
within FXS.

Treatment in FXS often targets symptom improvement
and is multi-modal including behavioral, special educa-
tional, and non-FXS specific psychopharmacological
methods (Tsiouris and Brown 2004; Berry-Kravis and
Potanos 2004). Surveys estimate that 82–91% of boys
with FXS 5–18 years of age use one or more medications
(Berry-Kravis and Potanos 2004; Amaría et al. 2001).
Stimulants are generally well tolerated in FXS and are the
most commonly prescribed medication in boys with FXS
(Berry-Kravis and Potanos 2004), with over two thirds of
survey respondents reporting treatment with stimulants
(Amaría et al. 2001). Despite their common use, only one
published study has evaluated the influence of stimulant
medication on behavior in children with FXS. Using a double-
blind placebo-controlled crossover design, Hagerman et al.
(1988) reported that 10 of 15 children (13 boys, two girls)
with FXS showed increased attention and improved social
skills when taking methylphenidate (e.g., Ritalin) compared
to dextroamphetamine (e.g., Dexedrine) and placebo. Am-
phetamine was associated with more side effects, including
mood lability and irritability. Preliminary results from an
unpublished study of dextroamphetamine in 24 children with
FXS or other developmental disabilities reported a 50%
response rate with note of increased side effects such as
elevated anxiety and irritability (Riley et al. 2000). Hagerman
et al. (2002) examined the electrodermal responses both on
and off stimulants (methylphenidate, dextroamphetamine) in
19 children with both ADHD and FXS (15 males, four
females) and a comparison group of 17 age- and IQ-matched
children (13 males, four females). Although baseline
responses were comparable across groups, the children with
FXS displayed a more normalized electrodermal response
when taking stimulants that was not shown by the
comparison group, suggesting that children with FXS may
be more responsive to stimulant treatment than children with
non-specific intellectual disability and ADHD. Notably,
interpretation of these findings is complicated due to
concurrent use of other medications by approximately one
third of the comparison and subjects with FXS.
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In summary, the majority of young boys with FXS display
poor attention, impulsivity, and hyperactivity that interfere
with their social and academic performance. Psychopharma-
cologic treatment using stimulants is widespread; however,
there are few treatment studies regarding the use of stimulants
to treat children with FXS. Existing published studies are
limited by small samples that combine genders, fail to control
for multiple medications, or heavily rely on parental or
clinical ratings. Given reports that stimulant response may be
more heterogeneous in children with intellectual disability
and ADHD and is associated with increased side effects
(Aman et al. 1996, 2003; Pearson et al. 2004; Scahill and
Pachler 2007), additional study of stimulant medication
treatment response in FXS is essential to identifying variables
common and unique to FXS that can inform psychopharma-
cological phenotypes for specific disorders (Hagerman 1999).
Two research questions guided the present study. First, what
are the effects of stimulant medication on attention, motor
activity, academic performance, and physiological arousal in
children with FXS? Second, what is the relationship among
the observed changes in these variables within individuals?

Method

Participants

Participants were recruited from an ongoing, longitudinal
neuropsychological study of attention, memory, and exec-

utive function in fragile X syndrome (Ornstein et al. 2008).
Procedures were in accordance with the Helinski Declara-
tion and were approved by the University of North Carolina
at Chapel Hill Institutional Review Board (IRB). Informed
consent was obtained from the parents of all children and
video tapes were archived in secured storage for future
analyses in accordance with IRB procedures. The present
study included 12 boys with a mean age of 8 years,
5 months (range 5–11 years) with full mutation FXS. All
participants were boys currently prescribed stimulant
medication (Methylphenidate or Dextroamphetamine) for
attention deficits by their community-based medical prac-
titioner. The mean nonverbal IQ for these subjects was
56.92 (range 42–76). See Table 1 for participant descrip-
tions and medication information.

Diagnoses of ADHD were not collected, as the primary
focus of this study was the effects of stimulant treatment
regardless of formal diagnosis, with ADHD features
conceptualized as a continuum of behaviors. However, as
part of the broader longitudinal study, parents completed the
Child Behavior Checklist (CBCL; Achenbach et al. 2001;
Achenbach 1991), a widely-used parent report of internal-
izing and externalizing symptoms for preschool (ages
18 months–5 years) and school-age (6–18 years) children.
Two CBCL subscales measure attention problems. On the
Attention Problems subscale, which measures global
problem behaviors related to attention, participants had an
average T-score of 65 (range 53–75), with 50% falling in
the borderline range (n=6) and 17% falling in the clinically

Table 1 Subject characteristics

Age (years) IQ Medication Dose CBCL T score % Time attending % Time out of seat

DSM-ADHD Attention
problems

On
medication

Off
medication

On
medication

Off
medication

5 76 Methylphenidate 0.10 mg/kg A.M. 58 66a 64 80 84 57

6 76 Methylphenidate 0.10 mg/kg A.M. 69a 75b 92 57 35 8

6 73 Dextroamphetamine 0.025 mg/kg A.M. 50 53 68 59 1 0

7 54 Methylphenidate 0.10 mg/kg A.M. 58 64 98 58 0 37

8 48 Methylphenidate 0.05 mg/kg A.M. 56 57 85 73 0 0

9 68 Methylphenidate 0.15 mg/kg A.M. 58 67a 92 92 42 17

9 60 Dextroamphetamine 0.30 mg/kg A.M. 58 66a 85 96 1 2

9 48 Dextroamphetamine 0.10 mg/kg A.M. 51 55 88 80 0 0

10 42 Methylphenidate 0.20 mg/kg A.M. 50 57 87 58 <1 0

10 52 Methylphenidate 0.45 mg/kg daily 60 71b 55 38 0 0

10 44 Dextroamphetamine Dailyc 66a 66a 93 69 2 32

11 42 Methylphenidate 0.25 mg/kg A.M. 62 67a 91 93 0 11

CBCL T scores ranges: normal (<65)
a Borderline (65–69), CBCL T scores range
b Clinical (>69), CBCL T scores range
c Dosage for one participant was missing due to incomplete parent report
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significant range (n=2). On the DSM-ADHD scale, which
uses items specifically aligned with DSM-IVADHD criteria
to screen for a potential ADHD diagnosis, participants had
an average T-score of 58 (range 50–69) with 17% falling in
the borderline range (n=2) and none in the clinically
significant range (see Table 1). Notably, the attention
problems subscale has demonstrated relatively high diag-
nostic accuracy (Chen et al. 1994; Ebesutani et al. 2010),
and both the attention problems and DSM-ADHD subscales
have been shown to significantly discriminate children with
ADHD from children with other disruptive behavior
disorders (Ebesutani et al. 2010). See Table 1 for CBCL
DSM-ADHD and attention problems subscales scores.

Measures

Multiple measures of treatment efficacy were obtained
including behavioral, academic performance, and physiolog-
ical arousal.

Behavior: attention and motor activity Attention and motor
activity were coded from direct observation of videotaped
assessment sessions. Each session consisted of administra-
tion of a standardized academic achievement test lasting
approximately 30 min. Attention was defined as being on-
task (i.e., active engagement in answering the questions) or
off-task (i.e., not following instructions, making comments
unrelated to the test). Motor activity was defined as either
being in-seat or out-of-seat during test administration. For
both attention and motor activity, continuous coding was
used based on 3-s interval. The percent of time boys were
attending and were in their seat were the two dependent
variables.

Academic performance Academic performance was mea-
sured using comparable, yet distinct forms (forms A and B),
of the Woodcock–Johnson Psycho-Educational Battery–
Revised (WJ-R; Woodcock et al. 1990). The broad
knowledge cluster score was used rather than math and
reading scores because the majority of participants could
not achieve a basal on those subtests. The WJ-R provides
standard scores, age and grade equivalents, and W scores.
W scores are equal-interval derived Rasch scores with a
mean of approximately 500 for fifth graders (Woodcock et
al. 1990). Test–retest reliabilities for the clusters exceed
0.86 for all age groups (Sattler 1990). The dependent
variables for academic performance were the age equiva-
lent and W scores on the broad knowledge cluster.

Physiological arousal Heart activity was collected using
the Mini-Log 2,000 Wand edited with MxEdit (Mini Mitter
Company 2000; Porges 1994). Sessions started with a
10-min adaptation period (i.e., subjects were shown an

age-appropriate videotape). The last 5 min of the adaptation
period was used as a baseline. Immediately following the
baseline, the participants completed the academic testing.
Dependent variables for heart activity included inter-beat-
interval (IBI) and vagal tone for three conditions: baseline,
academic testing, and modulation (baseline–academic test-
ing). Data from two subjects were not available because
one subject refused to wear the equipment, and data from
one subject contained an excessive number of artifacts.

Intelligence quotient Nonverbal mental age was measured
using the Leiter International Performance Scale-Revised
(Leiter-R; Roid and Miller 1997). According to the test
publishers, the internal consistency of the Leiter-R ranges
from 0.87 to 0.93 (Roid and Miller 1997). A brief IQ
score was derived from four subtests in the visualization
and reasoning battery (figure ground, form completion,
sequential order, and repeated patterns).

Procedures

Participants were assessed on consecutive days and were on
medication for 1 day and off medication for the other day.
The order of medication status was altered sequentially,
starting with the first participant off medication the first day
and alternating with each subsequent participant to prevent
order effects; thus, half of the boys were on medication on
the first day, and half were on medication on the second
day. Based on parental report, all children were medication
free for a minimum of 12 h prior to the onset of the “off
medication” condition to ensure that effects of the stimulant
were removed given their short half-life. A child psychia-
trist with expertise in psychopharmacological treatment of
children with FXS was a consultant for these decisions (see
Acknowledgements). Trained research assistants used The
Noldus Observer software (Noldus Information Technology
2003) to code the participant behavior. Behavioral coders
were blind to treatment status and were therefore not
informed as to whether the participants were on or off
medication in the videos. Coders were trained to 0.80
reliability or higher (based on a 1-s window of agreement)
before coding began, and reliability was maintained at 0.80
or better for 20% of the data. Reliability estimates were
0.88 for attention and 0.99 for motor activity.

Analyses

Data were analyzed using both paired t tests and non-
parametric Wilcoxon tests due to the small sample size and
non-normal distributions. These two tests produced com-
parable results across analyses, thus only paired sample t
tests are reported in text. See Table 2 for descriptive
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statistics and a comparison of paired sample t tests and
nonparametric Wilcoxon test results. Correlational analyses
were used to evaluate the relationship of change scores in
participants’ behavior (on medication–off medication) with
age and IQ. Observed and expected concordance were
calculated and compared to inform the independence of
effects across variables.

Results

Effect of stimulant treatment

Attention Results indicated that participants were more
attentive when they were on medication, t (11)=2.70,
p=0.02. Examination of individual profiles revealed that
nine of the participants (75%) showed improved attention,
two participants showed decreased attention and one
showed no change. Within the group showing improved
attention, the average percent improvement was 35% (range
15–68%). Using guidelines from previous research (Aman
et al. 2003; Pearson et al. 2004), eight participants showed
moderate improvement (>15%), and five participants
showed significant improvement (>30%; see Fig. 1). Change
scores in percentage of on-task behavior did not correlate
with age (r=−0.001, p=0.99) or IQ (r=−0.23, p=0.47).

Motor movement There was no difference in motor
activity when participants were on medication t (11)=
0.001, p=0.99. Although case 10 represented an outlier
with an unusually high rate of out-of-seat time, the
difference between groups was still nonsignificant when
the outlier was removed from analyses (p=0.65). Individ-
ual profiles showed that three participants (25%) showed
decreased activity, six showed no change, and three
showed increased activity while on medication. Change
scores in percentage of on-task behavior did not correlate
with age (r=−0.39, p=0.20). However, there was a
positive correlation between IQ and change score of
percent of time spent out-of-seat (r=0.67, p=0.02), with
higher IQ corresponding with higher increases in of out-

of-seat behavior. However, due to the nonsignificant group
differences in motor movement on and off medication, the
small sample size, and the descriptive nature of correla-
tional analyses; this result should be interpreted with
caution.

Academic performance W scores, t (11)=2.89, p=0.015,
and age equivalents, t (11)=3.15, p=0.009, on the broad
knowledge cluster of the WJ-R were higher when partic-
ipants were on medication. Individual profiles suggested
that nine of the participants (75%) improved in both the W
and age-equivalent scores, two declined in performance and
one showed no change.

Physiological arousal Results indicate that baseline IBI and
mean IBI during the WJ-R were not different on medication
(all p>0.05). However, modulation of IBI was greater when
on medication, t (9)=2.54, p=0.03. Individual profiles
suggested that seven of the participants (70%) had
lengthened IBI when on medication, contributing to the
significant group difference in modulation. Baseline vagal
tone, mean vagal tone during the WJ-R, and vagal
modulation were not different based on medication status
(p>0.05 for all measures). Individual profiles suggested
that six participants (60%) displayed increased vagal tone
when on medication, with four displaying decreased vagal
tone.

Independence of effects across variables

Similar to the model set by Pearson et al. (2004), we
compared individual patterns of concordance among
attention, academic performance, and physiological
arousal to determine whether medication-related change
occurs independently within each variable. For these
analyses, participants who improved across all three
measures were identified as positively concordant (n=5),
and participants who did not improve were identified as
negatively concordant (n=1). Participants with inconsis-
tent response patterns (n=4) or missing data (n=2) were

Paired sample On medication Off medication Paired sample test Wilcoxon test

M SD M SD t p z p

Percent on task behavior 83.05 13.42 69.81 16.54 2.69 0.02 −2.20 0.03

Percent out of seat 13.92 26.38 13.87 18.54 0.0009 0.99 −0.36 0.72

WJ-R W score 456.83 19.04 450.25 19.34 2.89 0.02 −0.23 0.02

WJ-R age equivalent 64.08 19.29 57.67 18.22 3.15 0.009 −2.45 0.01

Interbeat interval 23.50 20.27 3.50 20.97 2.54 0.03 −1.89 0.06

Vagal tone 0.22 1.40 −0.10 0.54 0.67 0.52 −0.36 0.72

Table 2 Behavior, academic
performance, and physiological
arousal regulation results
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excluded from the analyses. In an independent sample,
the expected concordance rate is calculated by multiply-
ing the positive response rate (RR) across variables. In
our sample, the expected concordance across attention
(RR=0.75), academic performance (RR=0.75), and phys-
iological arousal (RR=0.70) is calculated as 0.75×0.75×
0.70=0.39. The actual concordance rate in our sample is
0.6, indicating these three variables may not be operating
independently. Paired comparisons revealed unexpectedly
high observed concordance across attention and academic
performance (expected=0.56, observed=0.67), attention
and physiological arousal (expected=0.53, observed=
0.70), and academic performance and physiological
arousal (expected=0.53, observed=0.70). Although all
observed concordance rates were higher than expected,
comparisons involving physiological arousal showed the
most elevated rates, suggesting arousal may significantly
relate to measures of academic performance and attention
in our sample.

Discussion

The majority of boys with FXS display poor attention and
elevated activity compared to typically developing and age-
and IQ-matched controls. Stimulant medication is widely
prescribed to treat these symptoms, yet few extant studies
examine treatment efficacy. Treatment efficacy in boys with
FXS is critical given that most children have intellectual
handicaps compounded by poor attention disproportionate
to their mental age. This study examined multiple indices of

treatment efficacy and their concordance, the magnitude of
treatment response, and predictors of treatment response in
young boys with FXS to increase understanding of the
efficacy of stimulant medication.

Our results suggest a response rate of 75% for improved
attention when young boys with FXS were on stimulant
medication. Our rate is remarkably consistent with
previous response rates of 67% for teacher checklists of
attention (Hagerman et al. 1988) and 75% for parent
surveys (Berry-Kravis and Potanos 2004). In children with
ADHD without co-morbid intellectual disability, the re-
sponse rate to stimulant medication treatment is 75% (Group
MToAGMC 2004). In contrast, response rates cluster at 50%
for children with ADHD and autism spectrum disorder
(Scahill and Pachler 2007; Handen and Gilchrist 2006) or
non-specific intellectual disability (Aman et al. 1996, 2003;
Pearson et al. 2004) with a higher than expected rate of side
effects reported in most studies (Barkley et al. 1990; Handen
et al. 2000; Research Units on Pediatric Psychopharmacol-
ogy (RUPP) Autism Network 2005). Thus, results from
previous research in this area (Hagerman et al. 1988;
Berry-Kravis et al. 2003) and the present study suggest
that boys with FXS respond favorably to stimulant
medication with response rates approximating that of
typically developing children with ADHD exceeding rates
reported for children with non-specific intellectual disabil-
ity and autism spectrum disorder.

In addition to identifying a 75% response rate in
improved attention in our sample, we report that 89%
(n=8/9) showed moderate gains and 56% (5/9) showed
significant gains. As with response rates, the magnitude

Out of Seat- Off MedsOut of Seat- On MedsOn Task- Off MedsOn Task- On Meds
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Fig. 1 Box plots of attention
and activity. The box spans the
25th to 75th percentile and the
median is indicated as a line
within the box. Results did not
significantly differ between
analyses conducted with and
without the outlier (asterisk)
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of gains found in FXS is similar to levels described in
children with ADHD and no co-morbid condition (MTA
Cooperative Group 2004), yet is higher than levels of
significant gains ranging from 37% to 44% for children
with non-specific intellectual disability of approximately
the same age and dose of methylphenidate (Aman et al.
2003; Pearson et al. 2004). To our knowledge, this is the
first study to examine the magnitude of response and the
association among measures as treatment effect to
stimulant medication in FXS.

Unlike these positive effects of stimulants on attention,
we did not find a reduction in motor activity when boys
were on stimulant medication, consistent with the single
behavioral observation study of stimulant medication use in
boys with FXS (Hagerman et al. 1988). While our results
could reflect our narrow definition of motor activity,
Hagerman et al. (1988) used multiple measures of motor
activity including an actometer and behavioral observa-
tions of fidgeting and out-of-seat activity and found no
differences across medication conditions. A lack of
treatment effect on motor activity could reflect the age
range of our subjects, as hyperactivity decreases with age
in FXS (Berry-Kravis and Potanos 2004) and reduced
motor activity in response to stimulant medication treat-
ment might be specific to young children (Handen et al.
1999) or certain tasks (Aman et al. 2003).

We found a response rate of 75% for improved academic
performance in our sample and an association between
attention and academic performance. Our research is the
first to examine the effect of medication on academic
performance in FXS, demonstrating that stimulants may
improve attention and academic performance. It is impor-
tant to note that our study demonstrated improved academic
performance rather than improved learning, which would
have to be evaluated using a longitudinal well-controlled
design. However, our standardized measure of academic
performance may be seen as a more direct or functional
outcome compared to lab-based measures (e.g., continuous
performance measures) that are often criticized as having
questionable generalizability to “real world” settings. Given
the importance of academic performance in determining
educational and vocational opportunities, our findings
suggest that stimulant medication may enable boys with
FXS to perform to their best ability on standardized or
classroom based exams. Therapeutic services and educa-
tional programming decisions are often based on test
results, making our findings particularly relevant.

We also report increased physiological regulation of IBI,
but not vagal tone, with stimulus medication treatment. IBI
is influenced by both parasympathetic and sympathetic
activity, whereas vagal tone indicates parasympathetic
activity (Vaughan Van Hecke et al. 2009). Thus, our results
are consistent with previous research suggesting stimulant

medication affects sympathetic arousal in individuals with
FXS (Hagerman et al. 2002). These findings lend support to
a general pattern of blunted arousal regulation that has been
increasingly reported in association with poor cognitive
outcomes in children and adults with FXS (Kwon et al.
2001; Roberts et al. 2001, 2008). Unlike work with children
with non-specific intellectual disability and ADHD that
reflects independence of cognitive and behavioral function
(Pearson et al. 2004), our results suggest that arousal
regulation, attention, and academic performance are inter-
related in FXS.

The hypoarousal model for children with ADHD
(without intellectual disability) suggests that their baseline
arousal levels are generally low, and stimulants work to
increase arousal to normal levels resulting in improved
cognitive and behavior regulation (Lawrence et al. 2005;
Oades et al. 2005). In contrast, FXS is associated with
hyperarousal and exaggerated responsivity (Miller et al.
1999; Roberts et al. 2001; Hessl et al. 2001), which is not
generally associated with children with intellectual disabil-
ities (Zentall and Zentall 1983). In both previous research
(Hagerman et al. 2002) and the present study, baseline
levels of arousal do not appear affected by stimulant
medication. Rather, a normalized degree of arousal modu-
lation is reported, which contrasts to results showing an
increase in baseline arousal in children with non-specific
intellectual disabilities (Aman et al. 2003). Thus, stimulant
medication is associated with increased arousal in children
with ADHD and non-specific intellectual ability, whereas
stimulant medication is associated with reduced arousal
hyper-reactivity in FXS. This relationship is reflected in our
finding that stimulants are associated with cardiovascular
modulation of sympathetic (IBI), not parasympathetic
(vagal tone), arousal in children with FXS. While clearly
speculative, arousal dysfunction may be one of the primary
variables that discriminates stimulant treatment effects in
children with FXS and ADHD to other children with
ADHD with and without disabilities. This conclusion is
partially supported by evidence of the inter-relationship of
arousal to attention and academic performance in this study
and is directly supported by the work by Hagerman et al.
(2002) showing that arousal regulation was the treatment
outcome that differentiated children with FXS/ADHD from
children with non-specific intellectual disability and
ADHD.

Previous work has shown that younger children and
those with more severe intellectual disabilities were less
responsive to stimulant medication treatment (Aman et al.
2003). Although we found a positive correlation between
IQ and increased out-of-seat behavior on medication, the
lack of group differences in motor movement across
medication status indicate this result may reflect the
heterogeneity of our small sample rather than a clinically
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meaningful effect. We did not find a relationship between
chronological age with stimulant medication treatment nor
did we find a relationship between IQ and on-task behavior
in our sample, despite the similar mean IQ levels
chronological ages between our study and existing work
(Aman et al. 2003). However, the range of IQs and age was
considerably more varied in other studies and the samples
were larger (Aman et al. 2003), suggesting that our findings
may be limited by our small sample size and relative
homogeneity of IQ and age.

Limitations and future directions

While this study included a well-defined sample using
multiple indices of objective treatment effects, there are a
number of limitations. First, the sample is small, limiting
our analyses and generalizability. In addition, we did not
include a comparison group or restrict medication use to
one type of stimulants. Our subjects were also on a
relatively low dose of medication (mean of 0.19 mg/kg,
range of 0.05–0.45 for methylphenidate), we did not have
dosage information for one participant, and dosage was not
a control variable in the design. Future studies should
include a larger sample of boys and a sufficient sample of
girls to draw gender comparisons. Additionally, the differ-
ential effects of medication across ADHD subtypes should
be evaluated. Finally, longitudinal studies with a double-
blind placebo-controlled crossover design and multiple
dose levels of medication are needed to examine efficacy
of stimulant and other medication treatment effects.

Summary and implications

Preliminary evidence from our current study and existing
work contribute information towards the development of a
psychopharmacological phenotype for FXS based on the
supposition that specific gene dysfunction may lead to
specific neuroanatomical and neurochemical changes
(Hagerman 1999). Specifically, we report a response rate
of 70–75% in attention, academic performance and arousal
regulation, a high concordance across multiple measures,
and a significant gain in performance as treatment outcomes
of stimulant medication in our sample of boys with FXS. In
the case of FXS, we hypothesize that the FMR1 gene
dysfunction leads to FMRP reduction and abnormal
dendritic pruning associated with abnormal functioning of
the prefrontal cortex resulting in poor attention and
hyperarousal. While preliminary, our findings and others
suggest that stimulant medication treatment outcomes in
FXS may be unique in terms of a higher response rate,
greater magnitude of response, and greater concordance
among measures compared to outcomes for children with
autism spectrum disorder and non-specific intellectual

disabilities. While replication is needed, these findings
contribute to the development of a psychopharmacological
phenotype for FXS that could help guide treatment efforts
(Hagerman 1999).
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