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Abstract: Fibroblast growth factors (FGFs) are a large family of secretory molecules that act through
tyrosine kinase receptors known as FGF receptors. They play crucial roles in a wide variety of cellular
functions, including cell proliferation, survival, metabolism, morphogenesis, and differentiation,
as well as in tissue repair and regeneration. The signaling pathways regulated by FGFs include
RAS/mitogen-activated protein kinase (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase
(PI3K)-protein kinase B (AKT), phospholipase C gamma (PLCy), and signal transducer and activator
of transcription (STAT). To date, 22 FGFs have been discovered, involved in different functions in
the body. Several FGFs directly or indirectly interfere with repair during tissue regeneration, in
addition to their critical functions in the maintenance of pluripotency and dedifferentiation of stem
cells. In this review, we summarize the roles of FGFs in diverse cellular processes and shed light on
the importance of FGF signaling in mechanisms of tissue repair and regeneration.
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1. Introduction

FGFs are a family of cell-signaling proteins produced by different types of cells.
The first members of the fibroblast growth factor (FGF) family (FGF1 and FGF2) were
discovered in the 1970s and were initially named acidic and basic FGF, respectively [1].
FGFs can affect the proliferation of multiple cells, including endothelial cells, neurons,
chondrocytes, smooth-muscle cells, melanocytes, and adipocytes [2]. They are involved
in a variety of biological processes, including cellular proliferation, survival, metabolism,
morphogenesis, differentiation, embryonic development, angiogenesis, tissue repair, and
regeneration [3]. FGFs trigger signaling by interacting with tyrosine kinase receptors,
known as FGF receptors (FGFRs). The FGFR family of receptor tyrosine kinases, discovered
in the 1970s, consists of four transmembrane receptors: FGFR1—4 [4]. Each of them contains
three extracellular immunoglobulin-like binding domains, followed by a transmembrane
domain and an intracellular domain constituting a two-part tyrosine kinase [5]. For signal
transduction by most FGFs, their binding to coreceptors, either Klotho proteins or heparan
sulfate (HS) proteoglycans, on the target cell surface is necessary too [6].

At present, 22 FGFs (i.e., ligands) are known, of which 18 interact with and induce the
dimerization of FGFRs. Upon stimulation, these receptors activate downstream signaling
cascades through their intracellular domains. In the absence of ligand, the inactive configu-
ration of an FGFR kinase is allosterically autoinhibited by its hinge region and activation
loop. In the presence of an extracellular ligand, FGFR dimerizes and autophosphorylates.
Thus, it launches several signaling pathways, e.g., phospholipase Cy (PLCy), PI3K-AKT,
and RAS-MAPK cascades [5]. FGFs are expressed in a variety of tissues and show dif-
ferential expression according to metabolic requirements. Multiple isoforms of FGFs and
FGEFRs exist because of alternative splicing and alternative translational initiation sites.
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The expression of FGFs is also regulated at the epigenetic and post-translational levels,
including phosphorylation, glycosylation, ubiquitination, and cellular trafficking [7].

Dysregulated FGF signaling contributes to many diseases, including multiple cancer
types, skeletal system defects, developmental diseases, chondrodysplasia, corneal neovas-
cularization, and X-linked hypophosphatemic rickets [8], as shown in Figure 1. FGF21 has
been proposed to be a potential biomarker for mitochondrial diseases [9]. Aberrant activity
of different types of FGF can result in developmental disorders [10,11]. FGF23 is expressed
at a high level in bone cells, particularly in osteoclasts. The expression of FGF23 has been
found to be upregulated in bone disorders and chronic kidney disease as well [12-15].
Cancer-associated fibroblasts are activated fibroblasts that serve as a key component of the
tumor microenvironment [16]. They trigger the MEK-extracellular signal-regulated kinase
(ERK) pathway and modulate MMP7 through FGFR4 to stimulate cancer cell growth and
angiogenesis [17]. Moreover, an FGF is hypothesized to contribute to the development of
chemoresistance in cancer cells [18]. Therefore, it is clear that aberrant FGF activity can
cause several cancers because of ligand or receptor overexpression or somatic mutations in
FGFR genes.
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Figure 1. Diseases associated with FGFs dysregulations. Abnormalities in FGF signaling can lead to
dwarfism syndrome [19], skeletal dysplasia [20], limb abnormalities [21], mitochondrial diseases [9],
cancers, skin diseases [22], and developmental disorders [11].

Angiogenesis is one of the key regulators of wound healing. Blood vessels transport
nutrients, oxygen, and immune cells which speed up the process of the wound healing
process. The presence of mature blood vessels is very helpful for boosting tissue repair.
Both acidic and basic FGF (bFGF) are involved in angiogenesis in particular ways. bFGF
has been found at a high level in acute wounds and promotes wound healing and tissue
remodeling [8]. It has also been demonstrated by in vivo studies that treating wounds with
FGF speeds up the process of tissue repair. FGF can also be administered through biomate-
rials and different polymers for tissue repair and regeneration [23-25]. Consequently, the
role of FGFs in the healing of wounded tissues appears to be indispensable, and multiple
research articles have confirmed that FGFs play a part in tissue repair and regeneration
and highlight the interplay between FGFs and other critical signaling molecules. These
new insights into the functions of FGFs in tissue repair and regeneration are summarized
in this review.
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2. Fibroblast Growth Factor Family

Growth factor effects were first identified in 1939 by Trowell and Willmer, who ob-
served mitogenic activity in the saline extract of a chick [26]. In 1973, Armelin reported
that pituitary extracts are capable of stimulating the growth of 3T3 cells [27]. In 1974,
Denis Gospodarowicz demonstrated that the active ingredient of the pituitary extract is an
FGF [28]. In 1989, Burrus et al. coined another name for FGF—heparin-binding growth
factor—and suggested that the active ingredient obtained by Trowell and Willmer (1939) in
their experiment on the saline extract from the chick was FGF, along with other growth
factors [29]. With the identification of heparin as a cofactor, the purification of FGF1 and
FGF2 became possible. The first FGFR was discovered soon after the identification of the
role of heparin in FGF transport between cells. It has also been found that some FGFs do
not bind to HS. Rather, another protein, Klotho protein, had a higher affinity for this specific
type of FGE. Mechanisms underlying the regulation of FGF activity include HS binding, N-
terminal alternative splicing, homodimerization, and site-specific proteolytic cleavage [30].
HS binding not only determines the mode of action of an FGF but also influences the
activity of other paracrine ligands from the same subfamily. The HS glycosaminoglycan
binding site consists of a $1-2 loop and is located inside the FGF core [31].

Members of this family are 150-300 amino acid residues in length and consist of a core
region composed of six identical subunits of 120 amino acid residues. The core subunit
is highly conserved, with 30-60% homology between FGFs. FGFs usually have a mass
of 18 kDa; however, it may be as low as 7 kDa for FGF1 and as high as 389 kDa in the
case of FGF5 [2]. In mammals, the FGF family consists of 22 members divided into seven
subfamilies, as presented in Table 1.

Table 1. FGF members and their distribution in subfamilies.

Subfamily Members

FGF1 subfamily FGF-1, FGF-2

FGF4 subfamily FGF-4, FGF-5, FGF-6

FGF7 subfamily FGF-3, FGF-7, FGF-10, FGF-22
FGF8 subfamily FGF-8, FGF-17, FGF-18

FGF9 subfamily FGF-9, FGF-16, FGF-20

FGF11 subfamily FGF-11, FGF-12, FGF-13, FGF-14
FGF19 subfamily FGF-19, FGF-21, FGF-23

The subfamilies are classified based on sequence and structure. Initially, during evolu-
tion, the ancestors of FGF subfamilies arose, which then gave rise to three to four members
later. Their exact evolutionary history is unknown [32]. On the basis of the mode of action,
the seven subfamilies of FGF are divided into three categories: autocrine, paracrine, and
endocrine. Out of the seven subfamilies of FGF, six belong to the intracrine/paracrine
mode of action, while one (FGF19) belongs to the endocrine mode of action (Figure 2) [33].
Intracrine FGFs, as the name suggests, are intracellular molecules and are not secreted
extracellularly. However, paracrine FGFs are extracellular proteins and bind to the FGFRs
through heparin or heparan sulfate. Endocrine FGFs interact with FGFR with the help of
another cofactor, Klotho proteins. Their binding affinity with heparan sulfate is relatively
lower [34].
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Figure 2. FGFs’ classification according to their mode of actions.

3. Receptor Activation Mechanism

An FGFR is comprised of three extracellular immunoglobulin-like domains (D1-D3),
a single-pass transmembrane domain, and a cytoplasmic tyrosine-kinase domain. A linker,
called the acid box, is located between D1 and D2 (Figure 3). The acid box, as its name
indicates, is acidic and has a serine-rich sequence, which is a hallmark of FGFRs [31]. The
acid box and D1 domain are thought to function in receptor autoinhibition, whereas the
D2-D3 domains of an FGFR are essential for ligand binding and specificity. Multiple FGFR
isoforms have been documented. Exon skipping and alternative splicing are the primary
mechanisms reported to generate isoforms [31]. Two isoforms of FGFR1-3 are generated
through alternative splicing and are often termed IlIb and Illc. Epithelial cells express
FGEFR Illb, whereas FGFR Illc is usually expressed by mesenchymal cells. The FGFR4 gene
does not undergo alternative splicing; therefore, it does not have isoforms [35]. FGFs 11-14
do not interact with FGFRs because these ligands are intracellular proteins [36]. The known
interactions of FGFs with FGFRs are listed in Table 2.

1gD1

Acid Box

Nucleus

Targetgenes and
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Figure 3. FGF signaling pathway. When a ligand interacts with an FGFR, it causes conformational
changes in the receptor, leading to receptor dimerization and thus FGFR activation. When FGFR is
activated, FRS2a is phosphorylated, causing FGFR substrate to attach to the Src Homology 2 (SH2)
domain-containing adaptor growth factor receptor-bound protein 2 (GRB2). GRB2 binds SOS, GRB2-
associated-binding protein 1 (GAB1), and Casitas B-cell lymphoma (Cbl) protein via the SH3 domain
and stimulates Ras/Raf and mitogen-activated protein kinases (MAPK), including ERK, p38, and
JNK. In addition to MAP kinases, STAT, PI3K, and PLCy pathway is also activated.
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Table 2. Interaction of FGF with their receptors.

Growth Factor Interacting with the Receptor References
FGEFR1 IIIb, FGFR1 Illc, FGFR2 IlIb, FGFR2 Illc,

FGF1 FGFR3 IIIb, FGFR3 Illc, FGFR4 [37-40]
FGFR1 IIIb, FGFR1 Illc, FGFR2 Illc, FGFR3 IIIc,
FGF2 FOFRA [40-43]
FGF3 FGFR3 [44]
FGFR2 IIIb, FGFR1 Illc, FGFR2 Illc, FGFR3 IIIc,

FGF4 FOFRA [45,46]
FGF5 FGFR3 Illc [35]
FGF6 FGFR1 Illc, FGFR2 Illc, FGFR3 Illc, FGFR4 [47]
FGF7 FGFR2 IIIb [47]
FGF8a FGFRI1 [48]
FGF8b FGFR2 Illc, FGFR3 Illc, FGFR4 2]
FGF8c FGFR3 IlIc, FGFR4 2]
FGF8f FGFR2 Illc, FGFR3 IIIb, FGFR3 Illc, FGFR4 2]
FGF9 FGFR1 IIIb, FGFR2 IlIb, FGFR3 [38]
FGF10 FGFR2 [49]
FGF15 FGFR4 [50]
FGF16 FGFR1 Illc, FGFR? Illc, FGFR3 IIIb, FGF3 Illc [47]
FGF17b FGFR2IIIc, FGFR3IIIc, FGFR4 2]
FGF18 FGFFR3 [51]
FGF19 FGFR4 [52]
FGF20 FGFRI1 [53]
FGF21 FGFR1, FGFR2 [39]
FGF22 FGFR1 IIIb, FGFR2 ITIb [47,54]
FGF23 FGFR1 IlIc, FGFR2 Tllc [47,54]

Ligand binding induces conformational changes in FGFRs, thus causing receptor
dimerization and activation. Upon this activation, the phosphorylation of FGFR substrate a
(FRS2a) occurs, leading to the binding of FRS2a to Src homology 2 (SH2) domain-containing
adaptor growth factor receptor-bound protein 2 (GRB2). Next, GRB2 binds through its
SH3 domain to SOS, GRB2-associated-binding protein 1 (GAB1), and the Casitas B-cell
lymphoma (CBL) protein, subsequently stimulating Ras, Raf, and mitogen-activated pro-
tein kinases (MAPKSs), including ERK, p38, and JNK. The phosphoinositol-3 kinase (PI3K)
pathway is also launched by an FGFR, activating AKT. FGFRs stimulate and phosphorylate
PLCy as well, as shown in Figure 3 [55]. As a consequence of FGFR engagement, the
phosphorylation of signal transducer and activator of transcription (STAT) also occurs.
Multiple other mechanisms activate FGFRs, including mutation, translocation, or gene
amplification. Increased levels of a circulating FGF can also result in FGFR triggering [56].
Although evidence is lacking, some mechanisms of negative feedback regulation of FGF
signaling have been proposed. Members of a similar expression to the FGF (SEF) family
can inhibit the signaling of an FGFR by interacting with its cytoplasmic domain. It has
been suggested that FGFRL1 (atypical FGFR, also known as FGFR5) may serve as a ligand
trap, dimerize with other transmembrane FGFRs, and prevent autophosphorylation or
raise the turnover rate of other FGFRs [57].

HSs are unbranched carbohydrate chains composed of disaccharide repeats of N-
substituted glucosamine and glucuronic acid that are frequently sulfated at numerous
positions on their sugar residues. HSs can be in the form of unconjugated chains or be
a part of HS proteoglycans by their conjugation to amino acids. HSs are involved in
cellular growth, development, homeostasis, adhesion, and anticoagulation [58,59]. The
roles of HS and heparan sulfatases in cancers and viral diseases have been investigated
extensively. It has been reported that HS facilitates virus entry and can serve as a receptor
for viral attachment [60,61]. HS abnormalities have been implicated in solid tumors
and hematological cancers because it promotes oncogenesis by enhancing tumor cell
proliferation, metastasis, and dedifferentiation, as well as angiogenesis [62]. The expression
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of HS is controlled by modifications and an enzyme responsible for its synthesis. Abnormal
expression of HS-modifying enzymes alters HS structure and expression [63]. Structural
studies suggest that HS can be modified at its principal FGF-binding sites and hence
influences FGF activity in a tissue-specific manner [64].

HS promotes the binding of FGF to FGFR and stabilizes the signal-transducing dimer
by enhancing protein—protein interactions at the dimer interface. Upon dimerization, the
tyrosine transphosphorylation of intracellular kinase domains takes place, upregulating
kinase activity, and leading to the formation of docking sites and phosphorylation of
downstream signaling molecules. All of these signaling events ultimately affect signal
transduction and the regulation of gene expression [65].

Autocrine/Paracrine and Endocrine Signaling in Different FGF

The effects of autocrine and paracrine FGFs are localized. HS can serve as a cofactor
by mediating the binding between an FGF and FGFR during paracrine or autocrine FGF
signaling. By contrast, a heparin-binding domain is absent in endocrine FGFs. Endocrine
FGFs, as the name indicates, act as hormone-like signaling molecules; the absence of the
HS-binding domain facilitates their respective functions [66]. These FGFs have a low
affinity for HS, so they move away from cells, thus acting as hormones. Their receptor
binding is mediated by Klotho proteins [67]. There are three main Klotho proteins: «-
Klotho, $-Klotho, and y-Klotho. «-Klotho and (3-Klotho are crucial for the formation
of endocrine FGFR complexes. Endocrine FGFs include FGF21, FGF15/19 (FGF15 in
mice, FGF19 is its human ortholog), and FGF23. FGF21 is a starvation hormone that
initiates a stress response by stimulating the sympathetic nervous system. FGF15/19
regulates the metabolic response to feeding and is a satiety hormone. It is involved in
bile acid homeostasis and is considered to be a transversal metabolic coordinator [68].
FGF23, aside from being a phosphaturic hormone, serves as an important regulator of
calcium and sodium reabsorption in the kidney [69]. Additionally, it functions in bone
mineralization and is thought to regulate alkaline phosphatase expression. Usually, FGF23
is transmembrane-x-Klotho or soluble-x-Klotho dependent; however, bone mineralization
is independent of «-Klotho [70]. Therefore, Klotho proteins are crucial for the regulation of
metabolic processes in mammals [71].

4. FGF Mediation of Tissue Repair and Regeneration

Some of the major roles of FGFs are tissue repair and regeneration. In the FGF family,
FGF2 (also known as bFGF) has been the protein of choice for improving wound healing
in humans. FGF proteins are powerful mitogens that participate in both normal growth
and wound healing. Among these proteins, bFGF is the most extensively studied one, with
a recognized role in epithelial- and mesenchymal-cell proliferation as well as a putative
function in angiogenesis [72]. Robson et al. have used bFGF, granulocyte-macrophage
colony-stimulating factor (GM-CSF), or a placebo to treat 61 pressure ulcers; the ulcers
treated with bFGF alone showed the best healing in terms of wound closure and contained
higher levels of bFGF, PDGF, and TGF1 in the wound fluid [73]. Ohura et al. reported
similar findings, claiming that the treatment of pressure ulcers with exogenous bFGF results
in faster healing [74].

Acidic FGF, also known as FGF], is a well-known and well-structurally characterized
member of the FGF family, with structure, binding receptors, and physiological functions
similar to those of bFGF. FGF1, FGF7, and FGF10 are three other FGF proteins that have a
role in wound healing [75].

4.1. General Mechanisms of Tissue Repair and Regeneration

Tissue repair is a complex physiological process that involves multiple cell types,
including keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets [76]. It
begins with the formation of a platelet plug to prevent blood loss. This process is a part of
hemostasis. After fibrin matrix formation, the next step is inflammation, which protects
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the wounds from infection and removes debris. Neutrophils arrive at the site of damage in
response to proinflammatory cytokines. If the induced immune response is insufficient,
then the repair may be inefficient. After neutrophils, monocytes arrive and differentiate
into macrophages. Given that macrophages are phagocytes, they clear debris and any
neutrophils present at that site, a process known as efferocytosis.

The next stage is proliferative, in which the wound gap is closed by keratinocytes
and blood vessels are reformed via angiogenesis [77]. Fibroblasts deposit granulation
tissue at the site of the initial fibrin clot; then, growth factors are released by platelets,
endothelial cells, leukocytes, and fibroblasts [78]. These events not only attract immune
cells and fibroblasts to the wound but also stimulate cellular proliferation and induce
angiogenesis. Furthermore, they promote the secretion of cytokines and growth factors
from surrounding cells. Growth factors participating in wound healing include granulocyte
colony-stimulating factor (G-CSF), transforming growth factor (TGF), platelet-derived
growth factor (PDGF), FGFs, vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), keratinocyte growth factor (KGF), and GM-CSF. It has been demonstrated
that growth factors stimulate collagen deposition and are involved in the secretion of
collagenases, which degrade collagen during its remodeling [79]. Additionally, regulatory
T cells are important for the final stages of wound healing. Re-epithelization proceeds
in parallel to the above-mentioned phases; in response to the production of cytokines,
epithelial cells migrate to the border of the wound to close it [80].

The last stage of tissue repair is remodeling (maturation), which is responsible for
reshaping and reorganizing the deposited extracellular matrix to recover the structure of
the respective normal tissue [81]. The remodeling process may take a few days to several
years [82]. During the remodeling, the various types of cells that are involved in the earlier
stages of wound healing disappear [83]. Initially deposited type III collagen is replaced by
type I collagen [79]. Tight cross-linking between collagen fibers ensues, which increases
the tensile strength of the scar [84]. The remodeling process may take a few days to several
years [80].

4.2. Fibroblast Growth Factor in Regeneration

Organ regeneration is frequent in most invertebrate phylae, particularly in Cnidarians,
unlike in vertebrates [85]. The earliest appearance of FGF has been observed in Cnidarians,
the most ancient metazoans. Hydra belongs to phylum Cnidaria, and has a tubular body
with a simple nervous system consisting of multiple subsets of neurons [86]. Hydra, in
fact, possesses four putative FGF genes [87]. FGF and VEGF regulate the development of
the nervous system and blood vascular system [88]. Another study reported that VEGF
and FGF mediate the regeneration of hypostomes and tentacles in hydra [89]. In Hydra
vulgaris, a particular pharmacologic inhibitor of FGFR inhibited head regeneration [89,90].
Planaria flatworms have been found to have an FGF homolog. In planarian Dugesia japonica,
fsf gene-encoding Djfgf was identified, which is expressed in auricles in the head and
pharynx. FGF expression was shown to be higher in the cells around the wound during the
early stages of planarian regeneration after injury. In planaria, during head regeneration,
there was a particularly high induction of FGF expression [91].

FGF signaling has been investigated in echinoderms as well. In the sea cucumber
Stichopus japonicus, which lives in the coastal waters of Korea, Japan, China, and Russia [92],
HS treatment with or without FGF2 enhances neural stem-cell proliferation in a dose-
dependent manner at concentrations of 200-800 ng/mL without inducing apoptosis [93].
In the regenerating tissues of the sea star Asterias rubens, a heparin-binding polypeptide was
discovered with a structure similar to that of mammalian FGF2 and the ability to induce
proliferation in mammalian cells [94]. FGF signaling is essential for skeleton formation in
regenerating arms of the brittle sea star Amphiura filiformis [95].

Lower vertebrates, such as fish and amphibians, have greater regenerative capacity
than higher vertebrates [96]. The zebrafish (Danio rerio) and the urodele amphibian axolotl
(Ambystoma mexicanum) are two excellent models for elucidating organ regeneration, es-
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pecially the function of FGFs [90]. In 2000, Poss et al. demonstrated that a specific FGFR
antagonist inhibits caudal fin regrowth in zebrafish. The suppression of the development
of the blastema, i.e., the mass of actively growing, undifferentiated cells at the site of
amputation, is responsible for this phenomenon [97].

The overexpression of a dominant-negative mutant of FGFR1 can have a similar effect.
It was reported that FGF20 is required for zebrafish fin regeneration [98]. The regeneration
of the spinal cord, liver, heart, lateral line neuromast hair cells, rod photoreceptor cells, and
an extraocular muscle in the zebrafish also require FGF signaling [99,100]. It was shown
that bone morphogenic protein (BMP), FGF, Wnt, Notch, Shh, and Nodal-TGF-f3 signaling
cascades are essential for the appropriate development of a regenerated tail, according to
experiments on small-molecule inhibitors and heat shock-inducible inhibitory proteins;
these requirements are similar to those of early embryonic patterning [101]. An FGF
inhibitor hinders the regeneration of the Xenopus tadpole tail, and increased production of
FGF8 was registered in regenerating larval limbs of the African frog, Xenopus, and axolotl.
In axolotls and newts, the application of FGF2, FGF8, and BMP?7 to skin lesions causes
ectopic development of the limbs rather than ordinary wound healing. Nerves are required
for limb regeneration in axolotls. The FGF8 generated in the axolotl’s spinal ganglia was
shown to promote the regeneration of limbs via long axons [102,103]. FGFs are important
for organ regeneration in invertebrate and lower-vertebrate models.

4.3. The Role of FGFs in Tissue Repair

Higher vertebrates, unlike invertebrates and lower vertebrates, have almost no ability
to regenerate organs, with rare exceptions, such as the regeneration of amputated digits in
mice during early postnatal development and liver regeneration after partial resection. In
contrast, higher vertebrates efficiently regenerate tissues after a mechanical injury, burn,
chemical damage, and FGF signaling plays a key part in these processes. In mice, the
complete deletion of Fgf2 or simultaneous knockout of Fgfr1 and Fgfr2 in keratinocytes
significantly delays wound healing [104].

In oligodendrocytes, the simultaneous deletion of Fgfr1 and Fgfr2 reduced the heal-
ing of demyelinated wounds in the mouse spinal cord. The deletion of Fgfr2 in mouse
urothelium was shown to prevent urothelial regeneration after cyclophosphamide-induced
injury [105]. After a bleomycin-induced injury, FGF2 knockout mice had poor epithelial
recovery in the lungs [106]. Another study showed that FGF2 also decreases bleomycin-
induced lung fibrosis in mice with inducible FGF2 expression [107]. In adult sheep, an
effect of FGF2 expression was observed when it was injected into defective knees in the
form of a recombinant adeno-associated virus vector. These data support the notion that
recombinant FGF2—when administered by an appropriate gene delivery method—has the
potential to enhance osteochondral repair [108].

Recombinant FGFs induce tissue repair in animal models, particularly in mice and
rats [109]. In this context, FGF1 or FGF2 hastens the healing of skin wounds, diabetic ulcers,
spinal cord damage, and bone fractures. Recombinant FGF proteins or genetic constructs
coding for them have been used in these studies [110-113]. Healing efficiency is improved
by FGF mutants with higher activity and stability, as well as by FGF administration using
slow-releasing gels. FGFs have been approved for clinical wound-healing use in China and
Japan [114]. There are several recent extensive studies on the use of recombinant FGFs for
tissue repair.

4.4. Endocrine FGFs in Repair Processes

The involvement of canonical (secreted HS proteoglycan—binding) FGFs in tissue
repair has been extensively documented. Nonetheless, the roles of intracellular FGF11-
14 and hormonelike FGF15/19, FGF21, and FGF23 in this process have received less
attention. Intracellular FGFs can induce tissue repair. FGF11, a factor that is generated
under hypoxic conditions, boosts in vitro angiogenesis and stimulates osteoclasts’ bone-
resorbing activity [115]. Hypoxia-induced FGF11 also interacts with HIF1—the primary
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transcription factor involved in the hypoxia response—to increase its stability [116]. In
addition, several studies have shown that hormone-like FGFs stimulate tissue repair.
Knocking down the expression of their coreceptor Klotho delays cutaneous wound healing
and strengthens the production of proinflammatory cytokines in a mouse model [117].
FGF21 increases functional recovery from a spinal cord injury by inhibiting injury-induced
cell autophagy, implying that the systemic injection of FGF21 may be beneficial for spinal
cord injury repair [118]. Finally, FGF15-deficient mice possess a significantly reduced
ability to repair the liver after a partial resection [119].

4.5. Cell Processes Underlying the Stimulation of Tissue Repair by Fibroblast Growth Factor

FGFs regulate various components of the cell phenotypic important for effective tissue
repair, as published in numerous in vitro and in vivo experiments. The role of FGF in tissue

repair is shown in Figure 4.
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Figure 4. Role of FGF in tissue repair processes.

4.5.1. Self-Renewal and De-Differentiation

Tissue repair can be implemented via the partial dedifferentiation of differentiated
cells, which increases their proliferation and migration. The cells are dedifferentiated to
form pluripotent stem cells for the regeneration of damaged organs [120]. FGFs have long
been known to effectively induce dedifferentiation. Kleiderman et al. recently showed that
adding recombinant FGF2 to nonproliferating cultures of stem cell-derived murine astro-
cytes induces their proliferation and conversion to neurogenic stem cells [121]. Murota and
colleagues have found that in a skin wound treated with recombinant FGF2, wound-edge
keratinocytes undergo an enhanced epithelial-mesenchymal transition (EMT): a dediffer-
entiation process accompanied by the overexpression of EMT transcription factors like
SNAI2, the decreased expression of epithelial marker E-cadherin, and the overexpression
of EMT-specific transcription factors such as SNAI2. As a consequence, wound healing is
expedited [122].

Saera-Vila et al. have reported that extraocular muscles of the zebrafish can be dedif-
ferentiated by a myocyte dedifferentiation method. Nevertheless, when FGF signaling was
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inhibited, caspase 3 expression decreased, and cell proliferation decreased. These events
point to the possibility that an FGF is involved in dedifferentiation. When MEK is inhibited
by U0126, the effect is similar to that of FGF inhibition. In addition, ERK2 is upregulated
when tissue regeneration begins after muscle injury. All this evidence suggests that FGFs
partake in extraocular muscle regeneration [100].

In pathological conditions, FGF-induced cell dedifferentiation also occurs. Although
FGFs cause vascular smooth muscle cells to dedifferentiate from a contractile to a synthetic
phenotype in vitro, atherosclerotic plaques show stronger FGFR signaling and a lower
expression of contractile proteins in smooth muscle cells. Chen et al. discovered that
FGF and TGF signaling pathways have an antagonistic relationship in the mechanism
controlling the smooth muscle cell phenotype [123]. In their study, FGF signaling induction
inhibited TGF signaling and resulted in the synthetic phenotype in smooth muscle cells,
whereas FGF signaling inhibition increased TGF signaling and yielded the contractile
phenotype. Furthermore, the elimination of FRS2 in the context of the smooth muscle cell
phenotype significantly reduced neointima development after carotid ligation. Although
the smooth muscle cell phenotype and myofibroblasts have similarities, FGF2 inhibits the
differentiation of fibroblasts into myofibroblasts [123].

4.5.2. Effect on Proliferation

In vitro and in vivo, HS proteoglycan-binding FGFs stimulate both proliferation and
migration in a wide range of cell types. The presence of relevant FGFRs on a target cell’s
surface is necessary for these actions. FGFs influence migration and proliferation through
different mechanisms for the activation of different pathways. For instance, the launch of
the migratory pathway is mediated by the SRC and p38 MAPK signaling cascades. On
the other hand, if a pathway promoting proliferation is to be activated, ERK activation
is necessary [108]. In a mouse model, FGF2 has been found to function in angiogenesis,
migration, and proliferation through KDM2B-miR-101-EZH2 signal transduction [124].

Mammalian adult muscles have an excellent regenerative ability, with healing medi-
ated by stem cells known as satellite cells, which are also required for physiological muscle
growth. In mammals, these cells become activated after muscle damage, re-enter the cell
cycle, and proliferate rapidly for a short period [125]. MiR-29a enhances the FGF2-induced
proliferation of muscle progenitor cells and is a key target of FGFR signaling in muscle
progenitor cells. Strategies that target miR-29a may be effective at maintaining muscle
mass under certain conditions involving abnormal FGF2 signaling, e.g., during aging [126].

4.5.3. Suppression of Cell Senescence and Apoptosis

Cellular senescence can be caused by internal and external factors. One of the main
internal factors is telomere shortening, a critical determinant of cell lifespan that is involved
in the aging process as well. Telomere shortening leads to the onset of DNA damage
and hence cell senescence [127]. Telomerase is the enzyme responsible for maintaining
telomere length and thus is crucial for the genetic stability of those cell types that undergo
large numbers of divisions [128]. Conversely, cells that do not express telomerase cannot
undergo an unlimited number of divisions; otherwise, they may become unstable. In
this context, the p53, p21, and pRb pathways are activated, leading to growth arrest and
cell senescence. The length of telomeres in laboratory mice is much greater than those
in humans [129]. The human telomerase catalytic subunit (hnTERT) regulates telomere
homeostasis, genomic stability, cell proliferation, and tumorigenesis. It induces an FGF
and downregulates p52, thereby inhibiting apoptosis [130]. FGF has been found to inhibit
cellular senescence in mesenchymal stem cells. An FGF helps maintain the multipotency of
cells and acts as a mitogen via ERK1/2 stimulation [131]. Zou et al. reported that FGF2
expression in human embryonic stem cell culture systems can be manipulated to create cells
with longer telomeres, which may be beneficial for regenerative medicinal applications
of human embryonic stem cells [132]. When human umbilical vein endothelial cells are
grown with bFGE, they can attain a normal lifespan by upregulating telomeres [133].
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Senescence and apoptosis are critical for the removal of precursor cells that do not
follow a skeletogenic mechanism. Digit formation is an example of embryonic remodeling
through cell degeneration, which proceeds via senescence and caspase-dependent apop-
tosis. Epigenetic regulators, Ubiquitin-like with PHD and RING Finger domain (UHRF)
genes including Uhrfl and Uhrf2, are expressed in proapoptotic regions. UHRFs modulate
cell differentiation, promote apoptosis, induce cell senescence, and are regulated by an
FGF [134]. Page et al. reported that when FGF2 is added to a culture medium, it extends the
in vitro lifespan of human fibroblasts and boosts the production of the stemness transcrip-
tion factors OCT4, SOX2, and NANOG [135]. In bone-derived mesenchymal stem cells,
FGF2 inhibits cellular senescence through the PI3K-AKT-MDM2 pathway, promoting cell
proliferation [136]. In developing limbs, oxidative stress promotes the expression of BTG2,
which induces cell-cycle arrest and caspase-mediated apoptosis, regulating senescence
marker expression at the transcriptional level. Nevertheless, FGF2 and IGF1 downregulate
Btg2 [137]. Jung et al. have reported that HS, as a cofactor of FGFs, is crucial for preventing
cell senescence. They suggested that FGFR1-mediated AKT signaling is important for
premature senescence in an HS-dependent manner. Accordingly, inhibition of FGFR1 or
AKT downregulates p53 and p21, causing cells to exit cellular senescence and enter an
apoptotic state [138].

The effects of FGFs on apoptosis have been investigated for a long time. The inhibition
of apoptosis was studied by Chow et al. in 1995, when they reported the suppression of
apoptosis and induction of differentiation by an FGF in fiber cells of the mouse lens [139].
In 1996, FGF4 was found to hinder apoptosis in dental mesenchymal cells [140]. FGF2
has been shown to protect small-cell lung cancer cells from apoptosis by enhancing the
expression of the anti-apoptotic proteins XIAP and Bcl-XL. This effect is mediated by the
formation of a complex of B-Raf, PKCe¢, and S6K2. In this way, FGF2 induces chemore-
sistance in small-cell lung cancer cells [141]. In a study on non-small cell lung cancer, the
inhibition of FGF signaling by FGF trapping and treatment with erdafitinib (a tyrosine
kinase inhibitor) caused apoptosis in FGF-dependent human squamous cell carcinoma
cells [142]. FGF2 has also been found to suppress apoptosis in neuronal cells by upreg-
ulating PI3K signal transduction. On the other hand, PD173074, a pan-FGFR inhibitor,
attenuates the antiapoptotic effects of recombinant FGF2 by downregulating p-AKT and
BCL2, thereby ultimately upregulating BAX [143]. In renal progenitor cells, an FGF is
responsible for the inhibition of apoptosis caused by the loss of Wilms tumor repressor 1,
Wt1, which is required for progenitor survival [144].

4.5.4. Regulation of Inflammation

Inflammation induced by trauma is an integral part of the reparative process, in which
both resident and invading inflammatory cells help regenerate the affected tissue. FGFs
have long been known for their ability to control inflammation. FGF2 promotes proin-
flammatory cytokine production by primary human aortic smooth muscle cells and their
conversion from a contractile to secretory phenotype, according to Qi and Xin [145]. The
kinase activity of FGFR1 is required for the cytokine-induced activation of proinflamma-
tory nuclear factor kappa B (NF-«kB) signaling in hepatic stellate cells [146]. In prostate
cancer cells, FGFR1 is also necessary for NF-kB signaling enhancement, which is dependent
on TAK1 kinase stability [147]. TNF-o expression is promoted by FGF7 in immortalized
human keratinocytes via the FGFR2-AKT-NF-«B signaling axis [148]. FGF2 increases
the interleukin 13 (IL-13)-dependent production of a pro-inflammatory protein called
substance P and its receptor, NKI1R, in human articular chondrocytes [149]. In this regard,
it is worth noting that NF-«B signaling and IL-1 expression are both required for the
formation of the FGF memory.

Inflammatory cells, such as T lymphocytes and macrophages, infiltrate tissues when
stimulated by FGF2. After kidney ischemia-reperfusion injury, the transgenic overexpres-
sion of FGF1 in endothelial cells promotes macrophage infiltration [150]. Meij et al. have
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demonstrated that the transgenic overexpression of FGF2 in cardiomyocytes increases
T-lymphocyte infiltration into the heart after treatment with isoproterenol [151].

Several research groups have reported anti-inflammatory effects of FGF1 in vivo, in
contrast to the evidence of NFB-mediated proinflammatory effects of FGFs. The over-
expression of FGF2 in the rat hippocampus using herpes simplex virus, for example,
attenuates the IL-13 overexpression associated with experimental epileptogenesis [152].
In mice, the injection of FGF1 or FGF2 reduces inflammatory responses associated with
acute pancreatitis [153]. FGF1 treatment diminishes both TNF-oc and IL-6 release in a
mouse model of diet-induced obesity; this phenomenon was attributed to a reduction in
proinflammatory JNK signaling. It is possible that the effects of FGFs on inflammation are
influenced by the dose and duration of recombinant FGF administration as well as by the
tissue environment [154].

However, FGF23, known as phosphaturic hormone, is regulated by inflammatory
cytokines and in turn upregulates the inflammatory cytokines. This vicious cycle, when
activated, results in the uncontrolled production of inflammatory cytokines as well as
FGF23. As a result of the production of these factors, tissue injury occurs. Along with
the localized effect, distant tissues are also damaged [155]. It has been proposed that
downregulation of TNF-« can help in reducing the level of FGF23 and hence cope with the
consequences [156]. According to a study published by Yanucil et al., an FGFR4 blockade
can be a safe alternative to FGF23 inhibition in order to deal with chronic inflammation
in patients with chronic kidney disease [157]. Another study published by Grabner et al.
suggested that FGF23 was not able to induce inflammatory effects in FGFR4 knockout mice
and that the inflammatory effects of FGF23 were reduced by using an FGFR4-blocking
antibody [158].

4.5.5. Induction of Angiogenesis

Angiogenesis is the formation of new blood vessels from the existing vasculature.
Angiogenesis plays a major role in wound healing. The angiogenic response is needed to
deliver immune cells, remove debris, and provide nutrients for tissue regeneration [159].
Vasculogenesis is the formation of new blood vessels from mesoderm-derived heman-
gioblasts [160]. FGFs are considered angiogenic factors and play a key role in neovascu-
larization by mediating vascular assembly and sprouting [161]. In endothelial cells, the
binding of FGF2 to FGFR1 initiates a proangiogenic complex program [162]. The function
of FGFs as proangiogenic factors has already been established in vitro and in vivo. In
epithelial cells, migration and capillary morphogenesis are stimulated upon the binding of
an FGF to FGFR1 when epithelial cells are cultured on a collagen gel. Furthermore, this
event launches the PI3K pathway [163]. In a mouse model, an FGF was found to be crucial
for the development of coronary vessels. An FGF initiates the Hedgehog signaling cascade,
which regulates VEGEF signal transduction [164]. FGFs also interact with other growth
factors and chemokines and facilitate the formation of blood vessels and arteries [165]. In
corneal neovascularization, both acidic and basic FGFs are detectable in capillaries and
corneal stromal cells. It has been suggested that anti-FGF and anti-FGFR antibodies can
serve as good therapeutics against corneal neovascularization [166]. Because angiogenesis
is a hallmark of cancer, FGFs are regarded as major therapeutic targets in cancer [167].

4.5.6. FGF Impact on Protease Expression

Proteases are protein-degrading enzymes that are important for wound healing and
tissue repair processes [168]. FGFs are essential for wound healing and tissue repair because
they regulate multiple proteases by enhancing their expression, resulting in extracellular-
matrix remodeling and promoting angiogenesis. FGF2 gene introduction into HT-1376
cells upregulates matrix metalloproteinases (MMPs) 2 and 9. Antisense oligonucleotides
against FGF2 downregulate MMP2 in KoTCC-1 cells [169]. In hepatic stellate cells, an FGFR
inhibitor alleviates apoptosis, inflammation signs, and MMP9 expression [170]. In another
study, it was documented that the stimulation of FGFR1, but not FGFR2, leads to the
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production of proteases [161]. MMP1 and MMP13 are upregulated by FGF2 overexpression
in human chondrocytes [171]. In a rat cell model of ethyl-N-nitrosourea-induced mammary
adenocarcinoma, FGF1 promoted MMP9 expression by activating the PI3BK-AKT pathway
and increasing the DNA-binding affinity of NF-kB and AP-1 (i.e., activating protein 1) [172].
On the other hand, MMPs facilitate cancer cell metastasis. FGF2 enhances MMP9 activity
through Ras stimulation, while MMP2 remains unaffected, in MCF-7 cells [173].

5. Conclusions

Increasing evidence suggests that FGF is involved in the regulation of the regeneration
and repair process. In invertebrates and lower vertebrates, FGF is crucial for regeneration,
whereas in higher vertebrates, it mediates the mechanisms of wound healing and tissue
repair. FGFs stimulate tissue repair by maintaining pluripotency and help with self-
renewal. They also stimulate proliferation and inhibit cell senescence and apoptosis. FGF
induces angiogenesis and upregulates protease expression and helps in tissue repair and
wound healing.

China and Japan have focused on utilizing the potential of FGF for wound healing,
particularly in the case of surgical wounds, including skin grafts, obstetric wounds, and
surgical incisions, and for the treatment of burns and ulcers [174-176]. FGF1, FGF2, FGF4,
FGF7, FGF16, FGF21, and FGF23 have been found to have good therapeutic outcomes for
diabetic foot ulcers [177]. From the literature reviewed above, it seems that FGF can serve
as a very promising therapy for tissue repair. There are no reports about the adverse effects
of FGF on wounds and tissues. Further studies can be conducted to investigate adverse
effects and clinical trials can be launched for investigating the efficacy of FGF in humans.
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Abbreviations

AP-1 activating protein 1

bFGF basic fibroblast growth factor (FGF2)
EGF epidermal growth factor

ERK extracellular signal-regulated kinase
FGF fibroblast growth factor

G-CSF granulocyte colony-stimulating factor
GM-CSF  granulocyte macrophage colony-stimulating factor
HS heparan sulfate

IL-13 interleukin 13

IL-6 interleukin 6

JNK ¢-Jun N-terminal kinase

KGF keratinocyte growth factor

MAPK mitogen-activated protein kinase
MMP matrix metalloproteinase

NF-«B nuclear factor kappa B
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PDGF  platelet-derived growth factor
PI3K phosphoinositol-3 kinase

SEF similar expression to FGF
STAT signal transducer and activator of transcription
TGF transforming growth factor

TNF-«  tumor necrosis factor alpha
VEGF  vascular endothelial growth factor
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