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Abstract

Hypertension and osteoporosis are two major disorders, which interact with each other.

Specific genetic signals involving the fibroblast growth factor receptor-like 1 (FGFRL1) gene

are related to high blood pressure and bone growth in giraffes. FGFRL1 is associated with

cardiovascular system and bone formation. We performed an association study to investi-

gate the role of FGFRL1 in hypertension, osteoporosis, and height determination in humans.

In addition, we identified three kinds of phenotypes in fibroblast growth factor (FGF) genes

and examined their association with the FGFRL1 gene. We identified 42 SNPs in the

FGFRL1 gene associated with each trait. We then analyzed the potential functional annota-

tion of each SNP. The FGFRL1 gene was found to be associated with height, hypertension,

and osteoporosis, consistent with the results of a previous study. In addition, the FGF2,

FGF4, FGF10, FGF18, and FGF22 genes were found to interact with the FGFRL1 gene.

Our study suggests that both FGFRL1 and FGFRL1-related genes may determine the

height and the prevalence of osteoporosis and hypertension in the Korean population.

Introduction

Osteoporosis is characterized by decreased bone mineral density and an increased risk of frac-

tures, and is one of the most common chronic and metabolic bone diseases [1, 2]. Hyperten-

sion is the main risk factor for coronary heart disease, stroke, and chronic kidney disease, and

is a prominent cause of death worldwide [3]. Both these diseases are metabolic conditions

mediated via common pathophysiology, which means potential mechanistic links between

osteoporosis and hypertension. Increasing evidence suggests that bone marrow-derived cells

play a role in hypertension [4]. Osteoporosis and hypertension appear to be strongly triggered

by immune cell activation, including enhanced salt intake, increased sympathetic outflow, and

excessive angiotensin II and aldosterone [5]. Besides, various cohort studies reported the inter-

play between osteoporosis and hypertension [6–8].

A recent study identified specific genetic signals that are associated with adaptation to high

blood pressure and bone growth in giraffes, with exceptional anatomy contributing to their
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unique stature and biological characteristics [9]. Accordingly, the strongest signal was located in

the FGFRL1 (fibroblast growth factor receptor-like 1) gene, and genetic experiments were per-

formed in mice for further investigation. Mice carrying the giraffe-type FGFRL1 allele showed

resistance to hypertension and high bone mineral density, suggesting that the genetic changes

induced pleiotropic effects related to cardiovascular development and bone formation [9].

FGFRL1, the most recently identified member of the FGFR (fibroblast growth factor recep-

tor) family, is related to the cardiovascular system and bone formation [10–12]. Mutant

FGFRL1 protein was found in a patient with craniosynostosis syndrome, indicating that the

underlying gene was significantly associated with skeletal malformations [13]. Also, deletion of

the Fgfrl1 gene in a mouse model resulted in Wolf-Hirschhorn syndrome (WHS), including

skeletal anomalies and congenital heart defects [10]. A few genome-wide association studies

involving the FGFRL1gene were performed, and most of the studies analyzed bone mineral

density [14, 15], while others investigated body height [14] and type 2 diabetes mellitus [16].

The present study is based not only on the correlation between hypertension and osteoporosis

but also on previous studies, which elucidated the molecular mechanism of FGFRL1. We focused

on the recent study, which demonstrated specific genetic signals related to high blood pressure

and bone growth in giraffes [9, 17]. The previous study identified that the FGFRL1 gene contrib-

utes to the representative biological characteristics of giraffes. Therefore, we confirmed the repli-

cations of the FGFRL1 signals and identified that the FGFRL1 gene is associated with giraffe-

related characteristics (height, hypertension, and osteoporosis) in the human population. In addi-

tion, we analyzed gene-gene interaction networks. Expression and regulation levels of the

FGFRL1 gene were also analyzed in association with the three phenotypes, referring to the Geno-

type-Tissue Expression (GTEx) project. We identified the genetic variants of the FGFRL1 gene as

well as FGFRL1-related genes, which affect the skeletal system and/or hypertension.

Materials and methods

Study participants

The study data were obtained from the Korean Genome and Epidemiology Study [18] Health

Examinees (HEXA) study [18]. The Korean Centers for Disease and Control (KCDC) recruited

173,357 participants for the HEXA study aged 40 to 79 years from 2004 to 2013 who lived in

urban (Seoul, Incheon, Daejeon, Daegu, Ulsan, Busan, and Gwangju) and rural (Gyeonggi,

Sejong, Gangwon, Chungcheongbuk, Chungcheongnam, Gyeonsangbuk, Gyeonsangnam, Jeolla-

buk, Jeollanam, and Jeju) areas of Korea [18]. Of these, only 58,698 participants who were avail-

able single nucleotide polymorphism (SNP) information and included in the baseline study were

selected for the current study. The value of body measurements with each disease are shown in

S1 Table. Height [19], weight [20], diastolic blood pressure (DBP), and systolic blood pressure

(SBP) were measured. Height and weight were measured using an automated measuring instru-

ment (Dong Sahn Jenix Co., Seoul, Korea) three times for the average values. Each diastolic and

systolic blood pressure was measured three times every at intervals of more than 5 minutes by a

mercury sphygmomanometer in a seated position, and the average value was used. Body mass

index (BMI) was computed in units of kilograms per square meter (kg/m2), using the measured

height and weight values. Patients with hypertension (n = 17,086) were defined by SBP� 140

mmHg and/or DBP� 90 mmHg, or a medical history of hypertension or use of antihypertensive

medication. Controls (n = 31,440) were defined by SBP< 120 mmHg and DBP< 80 mmHg and

no medical history of hypertension or anti-hypertensive drug use. The diagnosis of osteoporosis

was made by a medical doctor based on bone indices measured via whole-body dual-energy X-

ray absorptiometry (DXA). The final binary variable, the value we used in this study, was derived

from the participants’ medical records through a questionnaire about whether there was a history
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of the previous diagnosis by a medical doctor. In total, after excluding 89 patients who were either

non-respondents or had never been screened for osteoporosis, 55,535 controls and 3,074 cases of

osteoporosis were identified.

Genotyping

Genotype data were obtained by the Center for Genome Science, Korea National Institute of

Health (KNIH). DNA samples were extracted from peripheral blood and genotyping was done

using the Axiom1 2.0 Reagent Kit (Affymetrix Axiom1 2.0 Assay User Guide). Genotype data

were generated using the KoreanChip (KCHIP) designed by the Center for Genome Science at

the KNIH. Gene location was determined in reference to the National Center for Biotechnol-

ogy Information (NCBI) Human Genome Build 37 (hg19) assembly. All the gene regions ana-

lyzed in this study were expanded by 5 kb at both transcripts ends, and SNPs were selected in

this range. The KCHIP has been described comprehensively in previous studies [21]. The only

genotypes that satisfied these exclusion criteria: low call rate (< 0.95%), sex inconsistency,

cryptic first-degree relatives, and excessive heterozygosity. SNPs with genotype call rates<

95%, Hardy–Weinberg equilibrium (HWE) p-value< 10−6, and minor allele frequency

of< 1% were removed. A total of 465,000 variants were included after quality control. A total

of 8,056,211 SNPs were used for GWAS after quality control and imputation.

Statistical analysis

PLINK version 1.90 beta (https://www.cog-genomics.org/plink2) was used for most statistical

analyses. Imputation for autosomal variants was executed using IMPUTE2 with the reference

panel constructed from 1000 phase 3 genomes. A logistic regression, additive genetic model

was used after adjustments for age, sex, and body mass index (BMI) to investigate the associa-

tion between SNPs in the FGFRL1 gene and hypertension and osteoporosis. SNPs associated

with height were identified via linear regression additive analysis adjusting for age and sex,

with a cut-off p-value of P< 0.05. We sorted out tag SNP, the representative SNP in each

genome region with high linkage disequilibrium (LD), from the haplotype block under the

condition that the LD measure r2� 0.8. Regional association plots were generated using

LocusZoom (http://locuszoom.org/). The HaploReg database (https://pubs.broadinstitute.org)

was used to identify functional effects, such as protein motifs, in the FGFRL1 genetic variants

associated with both hypertension and osteoporosis. GTExPortal databases (https://gtexportal.

org) were used for expression quantitative trait loci (eQTL) analysis. RegulomeDB (https://

regulomedb.org/regulome-search/) was used to rank potential functional roles. We depicted

annotated gene networks using STRING database version 11.0 (https://string-db.org/) and

selected the genes with direct interactions with the FGFRL1 gene.

Ethical review

This study was approved by the Institutional Review Board of the Korean National Institute of

Health (KNIH, KBN-2021-003) and Soonchunhyang University (202012-BR-086-01). Written

informed consent was obtained from all participants.

Results

Association of the FGFRL1 gene variants with height, hypertension, and

osteoporosis

A total of 44 tag SNPs were identified in the FGFRL1 gene. Logistic regression analysis for

hypertension and osteoporosis using the additive genetic model revealed three and six
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nominally significant SNPs (P< 0.05), respectively (Table 1). Linear regression analysis for

height identified nine significant SNPs. Among nine SNPs, 3 and 6 SNPs had positive and neg-

ative associations with height, respectively (Table 1). Two SNPs (rs13143527 and rs55639339)

were associated with both hypertension and osteoporosis, but none of the height-related SNPs

was related to osteoporosis or hypertension. Rs55639339 showed similar patterns of increased

risk for hypertension (OR: 1.043) and osteoporosis (OR: 1.103), whereas the rs13143527 vari-

ant was associated with a decreased risk of hypertension (OR: 0.967) and osteoporosis (OR:

0.939) (Table 1). A regional plot of the FGFRL1 gene based on height, hypertension, and osteo-

porosis was drawn using LocusZoom (S1 Fig).

Association of FGF genes with height, hypertension, and osteoporosis

The gene-gene interaction networks generated by STRING revealed connections with high

confidence scores (confidence score > 0.7) between FGFRL1 and five fibroblast growth factors

(FGF2, FGF4, FGF10, FGF18, and FGF22) (Fig 1). The FGF10, FGF18, FGF2, FGF4, and FGF22
genes, which interact with FGFRL1, were correlated with height, hypertension, and osteoporo-

sis. Overall, SNPs related to height were the most common, and no genetic variant of the FGF4
gene was related to hypertension (S2 Table). Previous studies demonstrated an association

between the FGF18 gene and height [14, 24]. Interestingly, rs8109113 in the FGF22 gene was

associated with both hypertension and height, and 17 SNPs in FGF10, FGF18, and FGF2 were

associated with both osteoporosis and height (Table 2).

Functional analysis

We used the GTEx database and HaploReg to determine the biological functional annota-

tions of the identified genetic variants and genes (Fig 2). The GTEx database was used to

Table 1. Genetic variants in FGFRL1 associated with height, hypertension and osteoporosis.

SNP Minor allele MAF Function Height HTN Osteoporosis

β ± s.e p-value OR (95% CI) p-value OR (95% CI) p-value

rs117864192 A 0.031 intron -0.249 ± 0.087 4.17 × 10−3 1.013 (0.935–1.098) 0.749 0.966 (0.829–1.126) 0.658

rs73219733 T 0.029 intron -0.251 ± 0.091 5.83 × 10−3 1.008 (0.926–1.097) 0.855 0.999 (0.849–1.175) 0.987

rs748650 A 0.255 intron -0.090 ± 0.035 9.77 × 10−3 1.017 (0.984–1.050) 0.315 1.047 (0.984–1.113) 0.146

rs115259783 G 0.157 intron 0.105 ± 0.041 0.011 0.979 (0.942–1.018) 0.287 1.031 (0.958–1.109) 0.421

rs34627176 A 0.044 upstream -0.177 ± 0.074 0.017 0.967 (0.903–1.036) 0.345 0.959 (0.839–1.096) 0.537

rs139932728 A 0.021 upstream 0.248 ± 0.104 0.017 1.005 (0.913–1.106) 0.924 1.115 (0.931–1.335) 0.237

rs3733350 T 0.101 3’-UTR 0.113 ± 0.050 0.025 0.959 (0.915–1.005) 0.078 1.047 (0.959–1.143) 0.310

rs4647936 T 0.030 3’-UTR -0.192 ± 0.089 0.030 1.053 (0.970–1.143) 0.215 0.928 (0.791–1.088) 0.358

rs77488513 T 0.030 upstream -0.180 ± 0.088 0.042 1.059 (0.976–1.149) 0.170 0.917 (0.781–1.076) 0.286

rs13143527 G 0.291 intron -0.063 ± 0.033 0.057 0.967 (0.937–0.997) 0.031 0.939 (0.885–0.997) 0.039

rs55639339 T 0.140 intron -0.015 ± 0.044 0.736 1.043 (1.002–1.086) 0.041 1.103 (1.023–1.190) 0.011

rs10010999 T 0.348 upstream -0.028 ± 0.032 0.370 0.971 (0.942–0.999) 0.047 0.977 (0.924–1.034) 0.418

rs74921869 A 0.253 intron 0.033 ± 0.035 0.343 1.015 (0.983–1.048) 0.362 1.093 (1.028–1.161) 4.35 × 10−3

rs35220088 C 0.309 intron -0.003 ± 0.033 0.924 1.001 (0.972–1.032) 0.926 1.084 (1.024–1.148) 5.86 × 10−3

rs73070422 G 0.140 intron -0.015 ± 0.044 0.723 1.041 (0.999–1.083) 0.053 1.087 (1.008–1.173) 0.031

rs78590462 T 0.066 intron -0.065 ± 0.061 0.287 1.019 (0.963–1.079) 0.505 0.892 (0.798–0.997) 0.044

Age, sex and body mass index (BMI) were included as covariants in all genetic models. SNPs indicated in bold are associated with both hypertension and osteoporosis at

P < 0.05. Abbreviations: SNP, single nucleotide polymorphism; Chr, chromosome; MAF, minor allele frequency; HTN, hypertension; β, regression coefficient; s.e,

standard error; OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0273237.t001
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obtain tissue expression data for FGFRL1. The FGFRL1 gene is expressed in various tis-

sues, especially in the thyroid gland and arteries (Fig 2B). Rs73219733 and rs34627176,

which were associated with height, were significant signals of eQTL for the FGFRL1 gene

in skeletal muscle tissue (P = 8.3 × 10−5, 1.7 × 10−12) (Fig 2A). In addition, motif changes

were predicted for the two SNPs that were significantly correlated with hypertension and

osteoporosis (S3 Table). Based on the results, the FGFRL1 gene expression varies with the

SNP genotype.

Fig 1. Protein-protein interactions with high confidence score (confidence score> 0.7) for FGFRL1. Proteins in

the interaction network are represented as nodes; the line color represents the type of interaction, including known

interaction, predicted interaction and other types. These interactions include physical (direct) and functional (indirect)

types according to computational predictions and experimental repositories.

https://doi.org/10.1371/journal.pone.0273237.g001

Table 2. Genetic variants in the FGF family associated with two of the three phenotypic traits (height, hypertension, and osteoporosis) or below the Bonferroni-cor-

rected significance level.

Gene Chr SNP Minor allele MAF Function Height HTN Osteoporosis

β ± s.e p-value OR (95% CI) p-value OR (95% CI) p-value

FGF2 4 rs167428 C 0.087 intron 0.112 ± 0.054 0.037 1.040 (0.99–1.09) 0.122 1.131 (1.03–1.24) 8.59 × 10−3

4 rs308387 A 0.052 intron 0.234 ± 0.068 5.85 × 10−4 1.023 (0.96–1.09) 0.487 1.062 (0.94–1.20) 0.317

FGF4 11 rs58166091 A 0.213 - 0.114 ± 0.037 2.16 × 10−3 0.989 (0.96–1.02) 0.544 1.026 (0.96–1.10) 0.436

FGF10 5 rs17227836 C 0.054 intron -0.161 ± 0.067 0.016 0.993 (0.93–1.06) 0.816 1.144 (1.02–1.28) 0.021

5 rs13154419 G 0.412 intron 0.112 ± 0.031 2.89 × 10−4 0.991 (0.96–1.02) 0.545 0.988 (0.94–1.04) 0.674

5 rs1448039 A 0.500 intron -0.094 ± 0.030 1.90 × 10−3 1.006 (0.98–1.04) 0.653 1.017 (0.96–1.07) 0.528

FGF18 5 rs10463007 T 0.404 - 0.081 ± 0.031 9.26 × 10−3 0.990 (0.96–1.02) 0.498 1.071 (1.01–1.13) 0.014

FGF22 19 rs8109113 G 0.024 intron -0.241 ± 0.100 0.016 0.901(0.82–0.99) 0.028 1.021 (0.85–1.22) 0.824

Age, sex and body mass index (BMI) were included as covariant in all genetic models. Findings with P< 0.05 are indicated in bold. The p-values which satisfied the

Bonferroni-corrected significance level regarding each gene are indicated in bold and underlined. Abbreviations: SNP, single nucleotide polymorphism; Chr,

chromosome; MAF, minor allele frequency; HTN, hypertension; β, regression coefficient; s.e, standard error; OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0273237.t002
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Discussion

Our study validated the correlation between FGFRL1 gene and height, hypertension, and oste-

oporosis. The results are consistent with a previous study that suggested an association of

FGFRL1 with the cardiovascular and skeletal systems [10, 12]. We identified 16 SNPs in the

FGFRL1 gene that were associated with the traits of interest. We then annotated the potential

biological function of these SNPs. Similarly, the FGF2, FGF4, FGF10, FGF18, and FGF22
genes, which showed interactions with the FGFRL1 gene, were associated with height, hyper-

tension, and osteoporosis.

Most previous genetic association studies analyzed the association of FGFRL1 with bone

formation or bone density, and seldom with hypertension. In the present study, two SNPs

were identified with significant (P< 0.05) association with both osteoporosis and hyperten-

sion: the minor allele of rs55639339 was associated with an increased risk of both diseases,

while the minor allele of rs10010999 lowered the risk of both diseases, indicating a similar

trend in prevalence of both diseases involving each genetic variant. Thus, our results are con-

sistent with previous findings suggesting that osteoporosis is associated with metabolic dis-

eases including hypertension [22]. Meanwhile, FGFRL1 is known to be essential for

vasculogenesis and ventricular septation. Indeed, Fgfrl1 -/- embryos manifested defects in ven-

tricular septation and congenital heart defects [10]. Additionally, a functional study in zebra-

fish revealed a significant role of Fgfrl1 during gill cartilage development and craniofacial

skeletogenesis [23–25]. Accordingly, the results of this replication study, which indicate that

the genetic differences influence the risk of osteoporosis and hypertension, provide insight

into the role of the FGFRL1 gene while supporting previous functional studies.

It is well documented that the FGF/FGFR signaling axis plays an essential role in develop-

ment, tissue homeostasis, and metabolism [26, 27]. Mutations and SNPs of FGFs are known

Fig 2. FGFRL1 gene expression and identification of three SNPs in eQTL. Each genotype in skeletal muscle is

expressed using GTExPortal. (a) Expression of rs73219733 and rs34627176 in FGFRL1. The two SNPs showed lower

expression in their minor allele with statistical significance reaching P< 10−4. (b) Expression of the FGFRL1 gene.

https://doi.org/10.1371/journal.pone.0273237.g002
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associated with multiple skeletal disorders [14]. For instance, a constitutionally increased

expression of the FGF4 gene is a risk factor for craniosynostosis [27]. Overexpression of FGF2
in mice resulted in shortened long bones along with defective mineralization and osteopenia,

suggesting that the gene acts as a negative regulator of bone formation [28, 29]. Also, the

genetic knockdown of FGF10 is related to skeletal phenotypes such as craniosynostosis in a

mouse model [30], and FGF18 is expressed during osteoblast differentiation [31]. Indeed, the

present study revealed significant genetic signals in FGF2, FGF10, and FGF18 associated with

height (S4 Table). Furthermore, several SNPs in FGF18 were associated with osteoporosis

(S2 Table).

By contrast, genetic variants in FGF2 also showed an association with hypertension. FGF2
is widely expressed in the myocardium, coronary vessels, and smooth muscle cells of the aorta

[32, 33]. Besides, FGF2 knock-out mice exhibit reduced vascular tension and decreased arterial

blood pressure, suggesting autonomic dysfunction [34, 35]. Interestingly, all of the SNPs in

FGF2 that were associated with hypertension suggested that the risk of hypertension was

diminished with minor alleles (S2 Table). These results presented that the FGFRL1 signaling

pathway could be considered in cardiovascular disease and hypertension in humans, suggest-

ing that the variations in the FGF2 gene implicate the heart or vascular tone.

Due to the absence of the intracellular tyrosine kinase domain in FGFRL1, which is essential

for downstream FGF signaling, FGFRL1 is widely assumed to act as a decoy receptor (competi-

tive inhibitor) that joins and regulates FGF ligands [11, 36, 37]. Interaction between FGF and

FGFRs is known to mediate several developmental phenomena, such as differentiation of mes-

enchymal stromal cells (MSCs) [38–40]. Kahkonen et al. showed that FGFRL1 mRNA expres-

sion is remarkably increased during differentiation of MSCs into osteoblasts and adipocyte

differentiation, and silencing of FGFR1 and FGFR2 in MSCs decreased the FGFRL1 expression

in osteoblasts and adipocytes [20]. The discovery that FGFR1 and FGFR2 modulate FGFRL1
expression in MSCs highlighted the role of FGFRL1 in MSC differentiation into osteoblasts

and adipocytes [20]. Thus, consistent with studies associating genetic signals of the FGFRL1
gene, FGFR, and FGF families, our results (gene-gene interaction network (Fig 1) and associa-

tion test (Tables 1 and 2)) suggested that the interaction between FGFRL1 and FGF family

affects the cardiovascular and skeletal systems.

However, our study has several limitations. First, except for hypertension, none of the con-

tinuous variables (distal radius speed of sound (DR-SOS), midshaft tibia speed of sound

(MT-SOS), and T score) related to osteoporosis were identified only depending on the medical

history. Second, although lifestyle and comorbidities definitely influence the risk of hyperten-

sion and osteoporosis, we did not evaluate them in the present study. Further studies are

needed to evaluate additional factors including gender, lifestyle, and co-morbid conditions.

In conclusion, we have replicated the association between FGFRL1 and height, hyperten-

sion, and osteoporosis in the Korean population, and found genetic variants associated with

each trait. The genetic variants in the FGF family members that interact with FGFRL1were

associated with height, hypertension, and osteoporosis. The findings suggest that the giraffe-

specific FGFRL1 gene, which is associated with biological characteristics in giraffes, including

tall stature and cardiovascular adaptations, is related to the corresponding phenotype in

humans. Thus, our study provides an approach to the genetic basis of the pleiotropic effect of

FGF/FGFR signaling.

Supporting information

S1 Fig. Regional association plot of the FGFRL1 genetic variants. Signals related to (a)

height, (b) hypertension and (c) osteoporosis in the FGFRL1 gene are plotted as -log10 P-
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values. The color of each SNP plot shows its linkage disequilibrium (LD) (using r2 values) with

the novel SNP (purple diamond) within the association locus. The y-axis on the right shows

the recombination rate according to the HapMap database. The above image was constructed

using the LocusZoom program (http://locuszoom.org/).

(TIF)
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