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ABSTRACT
Capturing the predominant driver genes is critical in the analysis of high-

throughput experimental data; however, existing methods scarcely include the 
unique characters of biological networks. Herein we introduced a ranking-based 
computational framework (inFRank) to rank the proteins by their influence. Using 
inFRank, we identified the top 20 influential genes in hepatocellular carcinoma (HCC). 
Network analysis revealed a prominent community composed of 7 influential genes. 
Intriguingly, five genes among the community were critical for mitotic spindle assembly 
checkpoint (SAC), suggesting that dysregulation of SAC could be a distinct feature of 
HCC and targeting SAC-associated genes might be a promising therapeutic strategy. 
Cox regression analysis revealed that CDC20 exerted as an independent risk factor for 
patient survival, indicating that CDC20 could be a novel biomarker for HCC prognosis. 
inFRank was then used for pan-cancer study, and all of the most influential genes in 
18 cancers were achieved. We identified altogether 19 genes that were important 
in multiple cancers, and observed that cancers originating from the same organ or 
function-related organs tended to share more influential genes. Collectively, our results 
demonstrated that the inFRank was a powerful approach for deep interpretation of 
high-throughput data and better understanding of complex diseases.

INTRODUCTION

Biomedical research is currently benefiting from 
the widespread use of high-throughput experimental 
technology, which provides us with valuable clues. 
However, because of the hundreds, and even thousands 
of differently expressed genes delivered outdistances the 
interpretation scope of most biomedical researchers, the 
data generated are not being fully utilized. The genes which 
usually affect numerous genes and are largely affected in 
the particular biological process are termed as “influential 
genes” and identification of the predominant influential 
genes in a specific cell process remains challenging. 

Methods initially designed to interpret complex networks 
have been used to settle this problem. One common strategy 
is to regard the genes with crucial topological properties 
such as hubs [1], and the genes in the center of network 
communities and modules [2, 3] as influential genes. 
Spreading process based algorithms [4] were also proposed 
to evaluate the influence of nodes, such as PageRank [5], 
LeaderRank [6] and physarumSpreader [7].

Distinct from other complex networks, biological 
networks possess several unique characteristics. First, 
the biological networks are hierarchically structured, and 
the network position of genes could make sense to their 
functions. Second, genes interact with each other in a 
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dynamic manner, and it is necessary to select the “actually 
occurred” interactions for the given cellular context [8]. 
Third, most of the existing approaches consider only 
direct interactions; however, in most cases, genes could 
exert their influence on the expression of both direct and 
indirect downstream genes, especially during signaling 
transduction process. Fourth, despite the increasing 
availability of protein-protein interaction networks, such 
as HPRD [9], DIP [10], IntAct [11] and MINT [12], and 
BioGRID [13], considerable false-positives still exist [14].

Taking these concerns into consideration, in this study, 
we proposed a novel analysis pipeline referred to as influence 
rank (inFRank) to identify the most influential genes and sub-
networks for a given biological phenomena. inFRank was used 
to achieve the influential genes in HCC, and was utilized in 
pan-cancer studies to discover the important genes for different 
cancers. Our results demonstrated that inFRank was a powerful 
method for deeply interpreting high-throughput experimental 
data and could provide better understanding of complex 
diseases, especially cancers.

RESULTS

Establishment of inFRank analysis method

To achieve the most influential genes from high-
throughput experiment data, inFRank analysis method was 
established by three steps including background network 
construction, dynamic context network generation and 
influence score calculation as described below.

Construction of background network

By integrating KEGG pathways and the protein-protein 
interaction network from the work by Rolland et al [15], we 
constructed the high-quality background network consisting 
of 77,232 interactions between 8,689 proteins. The network 
distance was calculated, and the distance was defined as the 
minimal number of consecutive steps required to arrive from 
one protein to another on the background network. The max 
distance in our background network is 15. As our background 
network contains both directed and undirected interactions, 
we redefined the upstream and downstream relationship 
between genes. As illustrated in Figure 1B, when there was 
binding relationship between node 3 and node 2, which is 
the direct downstream of node 1, we treated node 3 as the 
downstream of node 1, and defined the distance from node 1 
to node 3 as 2. Similarly, we treated node 4 as the upstream of 
node 6, and defined the distance from node 4 to node 6 as 2.

Generation of biological process specific dynamic 
network

We weighted the background network using gene 
expression data, and reserved significantly co-expressed gene 
pairs (the absolute value of pearson correlation coefficient 
(PCC) of their expression is more than 0.7 [16, 17]) ground 

on the suppose that truly interacting gene pairs tend to have a 
correlated expression pattern. The influence of the upstream 
gene was assumed to become weaker as the network distance 
increased. Therefore, the final weight of the interaction was 
defined as the quotient of PCC and the network distance 
between the protein pairs.

We used the RNA-seq data of HCC to illustrate 
how the gene pairs were selected. There were 31,335 
directly interacting gene pairs, of which only 192 were co-
expressed. The ratio of co-expressed gene pairs to all gene 
pairs with a different network distance is shown in Figure 
1C. These data indicated that only a minor proportion of 
interactions were associated with HCC development, and 
our results also emphasized the necessity of constructing 
a cellular process specific dynamic network.

Furthermore, we investigated whether the co-expressed 
gene pairs in HCC were also co-expressed in other cancers. 
The relationship of co-expressed gene pairs with different 
network distance in HCC, Breast invasive carcinoma (BRCA) 
and Stomach adenocarcinoma (STAD) is shown in Figure 1D. 
We found that gene pairs co-expressed in one cancer were not 
necessarily co-expressed in other cancers, and only a minority 
fraction of interactions involved in different cancers.

Identification of influential genes in HCC 
identified by inFRank

The influence rank converged rapidly with the increase 
of network distance

We first used inFRank to achieve influential genes in 
HCC using the RNA-seq data of 320 HCC samples and 50 
normal controls from TCGA. To investigate the impact of 
network distance to the convergence of the rank result, we 
simulated the ranking procedure using different network 
distance cutoffs. We first reserved only gene pairs with distance 
1 (directly interacted pairs), and calculated the influence rank 
(IR1) for genes in the network. Then, we reserved gene pairs 
with distance less than 2 (2 was included), and calculated the 
influence rank IR2 as the same. As the max distance in the 
background network is 15, the procedure was repeated 15 
times until we got IR15, and IR15 was used as the final influence 
score. We ranked the genes according to IR15, and selected 
100 genes with top ranks. We compared the ranks of these 
100 genes in all the 15 rank lists. As shown in Figure 2A, we 
found that the ranks converged rapidly with the increment of 
network distance. The Spearman’s rank correlation coefficient 
(ρ) between the relative ranks of IR1-IR14 and IR15 of 100 genes 
ρ(IR1…IR14…IR15) (Supplementary Figure S1), and the ρ also 
increased rapidly with the increment of network distance. We 
noticed that ρ(IR4, IR15) already reached 0.85, which indicated 
that gene pairs with network distance more than 4 could have 
limited impact on each other.

The convergence of inFRank was investigated using 18 
cancer RNA-seq datasets. It was considered converged when 
MAIS was less than 1.0e-5. As shown in Figure 2B, all the 
18 cases were converged and the iteration step was from 14 to 
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20. To evaluate the influence of sample size to the results of 
inFRank, we randomly selected 160 HCC samples from the 
total amount of 320 samples for 1000 times and calculated 
the influence scores respectively. The number of overlaped 
genes between the top 20 influential genes identified using 
randomly selected 160 samples and that identified using 
total 320 samples is 18.91±0.62, which indicates that the 
influence of sample size of RNA-Seq data input on the result 
of inFRank predication is minor.

Comparison of influential genes identified by inFRank 
and other methods

The genes involved in a cellular process tend to 
interact with each other, and the isolated genes are more 
likely to be noise. To illustrate the robustness of inFRank 
to the noise of high-throughput data, we compared the 
network distance between the 100 most important genes 
identified by the following 3 methods: 1) 100 most 
differentially expressed genes by SAM method [18] with 

Figure 1: Establishment of inFRank analysis method. A. The inFRank method was achieved in three steps. First, we constructed 
a high-quality static background network by integrating KEGG pathways and protein-protein interaction networks. Second, we used gene 
expression information and generated a special biological process dynamic network by filtering co-expressed interactions. Finally, the 
topic-sensitive PageRank algorithm was used to calculate the influence score for each protein and rank them by their influence scores. 
B. Schematic diagram of network distance definition. The red directed edges represent interactions from KEGG pathways, and the blue 
undirected edges represent interactions from protein-protein interaction networks. The network distances are listed in the table below. C. 
The ratio of correlated gene pairs to all of the gene pairs in the HCC network. D. The Venn diagram of the co-expressed gene pairs of HCC, 
BRCA and STAD. Ds stand for Distance.
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the R package “samr”; 2) 100 co-expressed genes with 
highest PCC scores; 3) the 100 most influential genes by 
inFRank. As shown in Figure 2C, inFRank outperformed 
the other two methods, as evidenced by the much fewer 
isolated genes identified by inFRank, and the 100 most 
influential genes identified by inFRank were closer than 
the other two methods.

To further demonstrate the efficiency of our 
method, we compared the function of the 20 most 
influential genes identified by inFRank and other two 
network-based methods. The first set contained 20 
significantly different expressed genes with the highest 
coreness values, the second set was 20 influential 
genes identified by PageRank, and the third set include 
20 genes with highest influence score identified by 
inFRank. As shown in Figure 2D, there were more 
genes associated with AFP, TNM staging, vascular 

invasion and prognosis in the third gene set, detailed 
information were in Supplementary Table S3-S5. These 
results indicated that our method was more efficient 
in identifying function important genes. The 20 genes 
identified by inFRank were mainly involved in 5 
pathways including cell cycle, oocyte meiosis, PI3K-
Akt signaling pathway, Wnt signaling pathway and 
Hippo signaling pathway (Figure 2E). These pathways 
are all acknowledged to play important roles in cancers 
particularly in HCC. In further study, these 20 genes 
were used as seed genes to construct the activated 
sub-network (Figure 2F). A key network module was 
achieved, which consisted of 7 densely connected genes 
including CDC20, TTK, BUB1B, PTTG1, SGOL1, 
CCNB1 and CCNB2. Gene ontology illustrated that 
most of them exert important functions throughout 
G2/M phase of the cell cycle.

Figure 2: Identification of influential genes in HCC by inFRank. A. The heatmap of the top 100 influential genes by rank using a 
different value as the network distance cutoff. B. The convergence of inFRank in 18 cancer datasets. C. The distribution of network distance 
between the top 100 genes identified by three different methods. D. The number of genes associated with AFP, TNM staging, vascular 
invasion, Ishak fibrosis score and prognosis in the most influential genes identified by inFRank, k-core and PageRank. E. The KEGG 
pathway analysis of the 20 most influential genes identified by inFRank. Five pathways were detected, which include four or more genes 
in the top 20 list. An orange mark indicates that the gene is in the corresponding pathway. F. The sub-network of the 20 most influential 
genes. The red edge represented direct interactions (network distance 1), green edges linked gene pairs with a network distance of 2, and 
blue edges linked gene pairs with network distance of 3.
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inFRank-identified genes exhibited superior clinical 
significance

Expression of the 7 genes identified was remarkably 
increased in HCCs compared with para-cancerous normal 
tissues (Supplementary Figure S2). We then investigated 
the correlation between the expression of these genes and 
patient prognosis. As shown in Figure 3A, HCC patients 
with highly expressed CDC20, PTTG1, TTK, SGOL1 or 
CCNB1 exhibited shorter survival time than the patients 
with low expression of these genes. Interestingly, all 
of the five genes were spindle assembly checkpoint 
(SAC)-associated genes. The SAC is a ubiquitous safety 
device that maintains genomic stability through delaying 
chromosome segregation until all the chromosomes 
have attached to the mitotic spindle [19]. SAC defect is 
closely associated with genome instability including gene 
mutation, amplification or chromosomal aberrations. 
Collectively, these data suggested that dysregulation of 
SAC might be a distinct feature of HCC.

To further confirm the up-regulation of these 5 genes 
in HCC, realtime PCR was conducted using 16 paired 
human HCC specimens. As expected, the expression 
levels of the 5 genes were all higher in HCC samples 
compared to the adjacent normal controls (Figure 3B). In 
further study, relationship between the expression of these 
5 genes and clinic-pathological factors of patients was 
analyzed. As shown in Table 1, overexpression of these 
genes in HCC was significantly associated with tumor 
grade, stage and metastasis, suggesting that the influential 
genes identified by inFRank could play important roles 
in HCC development. Consistently, overexpression 
of PTTG1 [20], TTK [21], SGOL1 [22] and CCNB1 
[23] have been reported correlate with poor survival of 
HCC patients, while the significance of CDC20 in HCC 
prognosis remains unknown.

CDC20 was identified as a novel biomarker for patient 
prognosis

CDC20 is one of the co-activators of anaphase 
promoting complex (APC). Mounting evidence has 
implied that CDC20 exerts oncogenic function in human 
tumorigenesis including pancreatic cancer [24], breast 
cancer [25], colorectal cancer [26], and lung cancer [27]. 
Enhanced CDC20 expression was reported to be involved 
in HCC development, but its clinical significance in 
patient prognosis remains obscure [28]. As shown in 
Figure 3C, multivariate analysis revealed that CDC20 is 
the only independent prognostic factor for patient survival 
among the 5 genes achieved (hazard ratio 1.907, 95% CI 
1.196-3.040, p=0.007). Moreover, significance of CDC20 
in HCC prognosis was validated by realtime PCR data 
from our cohort of 76 HCC patients, and the patients in 
the CDC20 high group exhibited shorter survival time 
than those patients in CDC20 low group (median OS 
time were 37 and 45 months, respectively; difference=8 
months; p<0.05) as shown in Figure 3D. Furthermore, we 

investigated the correlation of CDC20 expression with 
HCC recurrence. As shown in Figure 3E, expression level 
of CDC20 in patients correlated significantly with HCC 
recurrence (p=0.003). Collectively, these data suggested 
that CDC20 could serve as a novel biomarker for HCC 
prognosis and recurrence.
CDC20 played an essential role in HCC cell 
proliferation and invasion

Considering the functional relevance of CDC20 
in HCC remains unclear, we thereafter investigated 
the role of CDC20 in HCC cells using overexpression 
and knockdown approaches. Knockdown efficiency of 
siCDC20 and overexpression of CDC20 was validated 
by realtime PCR and western blot in LM3 and CSQT-2 
cells respectively (Figure 4A&4B). As shown in Figure 
4C&4D, interference of CDC20 significantly decreased 
the proliferation of HCC cells, and CDC20 overexpression 
potently increased the HCC cell proliferation. 
Furthermore, cell invasion assay demonstrated that 
knockdown of CDC20 impaired the invasion ability of 
HCC cells (Figure 4E) and forced CDC20 expression 
enhanced HCC cell invasion (Figure 4F). Taken together, 
these data suggested that CDC20 could play an important 
role in HCC progression.

Pan-cancer analysis using inFRank-identified 
influential genes

We employed inFRank to calculate the gene 
influence scores for 18 cancers and identified the 20 
most influential genes for each cancer (Figure 5A & 
Supplementary Table S3). There were 229 unique genes, 
165 of which appeared to have considerable influence 
for only one cancer, suggesting the distinct regulatory 
network in different cancer types. The distribution was 
shown in Supplementary Figure S3. Interestingly, 19 
genes were identified to be influential in multiple cancers, 
implying their universal role in carcinogenesis (Figure 
5B). We thereafter investigated the correlation between 
the expression of these genes and the patient prognosis. In 
average, each of the 19 genes correlates with the prognosis 
of 4.84±1.95 cancer types, which was significantly higher 
than the number of cancer types (2.11±1.72, p=1.5e-7) 
from randomly selected genes (Figure 5C). In addition, 
we investigated the relationship between different cancers 
based on the overlap analysis of the most influential genes 
of each cancer. The association network is shown in 
Figure 5D. We observed that distinct cancers originating 
from the same or closely related organ or tissues tended 
to share influential genes. There were 4 pairs of cancers 
including lung adenocarcinoma (LUAD)and lung 
squamous cell carcinoma (LUSC), esophageal carcinoma 
(ESCA) and stomach adenocarcinoma (STAD), rectum 
adenocarcinoma (READ) and colon adenocarcinoma 
(COAD), and bladder urothelial carcinoma (BLCA) and 
prostate adenocarcinoma (PRAD) shared 6 influential 
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genes, respectively, suggesting the significance of inFRank 
in dissecting the complex diseases.

DISCUSSION

To capture the predominant driver genes for the 
given cellular process in analysis of high-throughput 
experimental data remains a great challenge due to 
the large-scale of the data and the redundancy of 
the information. Network-based methods have been 
anticipated to settle these problems. However, current 
approaches usually fail to include the unique characters 
of biomedical networks. Herein we developed inFRank, 
a ranking-based method for identifying influential 
genes, which particularly emphasizes the four features 
of biomedical networks. First, the biological networks 
are hierarchical, and the abnormal expression of 
upstream regulatory factors will have a significant 

impact on the downstream genes; however, the 
differential expression of downstream regulatory factors 
will have a relatively little impact on upstream factors 
[29]. Second, current biological networks provide us 
with the all possible relationships between proteins; 
however, proteins exert different biological functions 
by interacting with distinct partners dynamically. 
Therefore, it is necessary to select the true interactions 
for the given cellular context [8]. Third, most of the 
traditional approaches rely on the direct interactions 
only; however, in some cases a biological effect 
could be reflected by the expression alteration of the 
indirect downstream factors. Therefore, the upstream 
regulatory relationship in our algorithm is not limited 
to directly interacting gene pairs, but also includes 
indirect regulatory relationships, making it possible to 
discover new interactions. The last but not the least, 
there are a considerable number of false-positives in 

Figure 3: inFRank-identified genes exhibit superior clinical significance in HCC patients. A. Overall survival rates of 320 
HCC patients with high or low expression of 7 genes using 3 different analysis method. B. Comparison of the expression levels of 5 genes 
in 16 HCC tumor tissues and peri-tumor normal tissues. C. Multivariate analysis of hazard ratios for the overall survival time of the 320 
patients. D. Overexpression of CDC20 correlated with the poor survival in our cohort of 76 HCC patients. E. Overexpression of CDC20 
correlated with the early recurrence in our cohort.
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the current protein-protein interaction networks [14], 
which requires a filtering process to reduce the effect 
of false-positives.

We used inFRank to calculate the influence score 
of genes expressed in HCC, and found the influential 
genes identified tend to have smaller network distance, 
which indicated that inFRank was robust to the noise 
of high-throughput experimental data. To further 
validate the efficiency of our algorithm, we compared 
our method with k-core and PageRank algorithm, and 
the influential genes identified by inFRank were more 
likely to be associated with AFP, TNM stage, vascular 
invasion and prognosis. Together, these findings further 
supported that inFRank analysis which was designed 
ground on the principle of biomedical networks, could 
achieve function important molecules for the given 
cellular process effectively.

In present study, we found that 5 of 7 influential 
genes in the key network community were SAC-

associated genes, suggesting that dysregulation of 
SAC could be a distinct feature of HCC. Moreover, 
targeting SAC-associated genes could be a promising 
therapeutic strategy in HCC treatment. In addition, 
multivariate analysis showed that CDC20 exerted as 
an independent prognostic factor for patient survival, 
which was validated by our independent patient cohort. 
These results demonstrated the efficiency of inFRank 
in identifying influential genes in complex diseases 
including cancers.

Although different cancers exhibit distinct 
pathogenesis, there are certain hallmarks shared in 
various cancer types [30]. Pan-cancer studies have 
revealed the intra-cancer heterogeneities and cross-
cancer similarities [31–33]. In present study, inFRank 
was used for pan-cancer investigation based on TCGA 
data set, and the influential genes in 18 cancer types 
were identified. We found that cancers originating 
from functional related organs or tissues are prone 

Table 1: Correlation between influential genes expression and Clinico-pathological characteristics of HCC

Variable CDC20 PTTG1 TTK SGOL1 CCNB1

Low High p Low High p Low High p Low High p Low High p

Age

 >60y 95 80 0.12 95 80 0.12 104 71 0.0003 99 76 0.013 95 80 0.12

Gender

 Male 111 102 0.34 110 103 0.48 110 103 0.48 114 99 0.097 112 101 0.24

 Female 49 58 50 57 50 57 46 61 48 59

Etiology

 Hepatitis B 89 75 0.15 88 76 0.22 83 81 0.91 83 81 0.91 77 87 0.31

 Hepatitis C 44 31 0.11 44 31 0.19 43 32 0.19 42 33 0.29 29 46 0.034

 Alcohol 65 55 0.30 61 59 0.91 73 47 0.0038 69 51 0.049 64 56 0.42

Tumor grade 0.0037 0.0004 9.5e-6 1.7e-5 5.5e-5

 G1 32 15 32 15 34 13 32 15 35 12

 G2 83 73 86 70 87 69 89 67 83 73

 G3 42 67 40 69 37 72 38 71 39 70

 G4 3 5 2 6 2 6 1 7 3 5

Ajcc pathologic 
tumor stage 3.0e-5 3.2e-6 1.2e-5 7.6e-5 8.1e-8

 Stage I 98 59 101 56 99 58 98 59 103 54

 Stage II 30 48 30 48 29 49 32 46 28 50

 Stage III 28 51 26 53 28 51 27 52 25 54

 Stage IV 4 1 3 2 4 1 3 2 4 1

Vascular 
invasion 0.425 0.15 0.24 0.57 0.015

 Micro 39 42 38 43 36 45 41 40 35 46

 Macro 4 8 3 9 4 8 4 8 2 10

 None 117 110 119 108 120 107 115 112 123 104
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Figure 4: Effect of CDC20 knockdown and overexpression on HCC cell behavior. A. The mRNA and protein levels of 
CDC20 were notably reduced by CDC20 siRNA transfection in LM3 and CSQT-2 cells. B. Overexpression of CDC20 was identified in 
LM3 and CSQT-2 cells. C. LM3 and CSQT-2 cells transfected with siCDC20 exhibited significantly reduced proliferation compared with 
the cells transfected with NC siRNA. D. LM3 and CSQT-2 cells transfected with pCMV3/CDC20 plasmid showed remarkably enhanced 
proliferation compared with the cells transfected with vector control. E. The invasive property of LM3 and CSQT-2 cells were decreased by 
CDC20 knockdown. F. CDC20 overexpression increased the invasive property of LM3 and CSQT-2 cells *, p<0.05, **, P<0.01.



Oncotarget43818www.impactjournals.com/oncotarget

to share influential genes, which is worthy of further 
investigation. In addition to RNA-seq data, inFRank 
could also be applied in analyzing other types of omics 
data, such as proteomic and metabolic data. Moreover, 

inFRank method could also be applied to interpret RNA-
Seq dataset of other biological processes or disease such 
as chronic inflammation, cardiovascular diseases and 
diabetics etc.

Figure 5: Pan-cancer analysis using inFRank-identified influential genes. A. The network of the 20 most influential 
genes and cancers. The cancers (blue rectangle nodes) are linked to their 20 most influential genes (red round nodes) by a grey line. 
The size of the gene nodes corresponds to the number of directly connected cancers. B. Heatmap of 19 genes for 18 cancers. A list 
of the top 20 influential genes for more than 4 (4 were included) types of cancers. A green mark indicates the gene is among the top 
20 influential genes and is down regulated in tumor samples, and a red mark denotes up regulated genes. C. The number of cancers 
whose prognosis were associated with the expression of 19 genes. D. The connective map of 18 cancers. Two cancers (blue rectangle 
nodes) are linked if there is an overlap between their top 20 influential genes. The color and thickness of the edge correspond to the 
number of shared genes.
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MATERIALS AND METHODS

RNA-seq data from 18 cancers

The Illumina HiSeq mRNA expression data 
of 18 cancers were downloaded from the TCGA 
database (http://cancergenome.nih.gov/). There were 
6,624 tumor samples and 651 normal samples in our 
analysis (detailed information is in the Supplementary 
Table S1). Level 3 normalized values by RNA-Seq by 
Expectation Maximization (RSEM) algorithm were used 
as the expression levels for the corresponding genes. We 
removed those genes whose expression were absent in 
more than 10% of samples before analysis.

Background biological networks

The manually drawn KEGG pathway maps provide 
us with precious knowledge on the molecular interactions 
[34]. We downloaded the .xml files for 194 non-metabolic 
pathways from KEGG, and parsed them into directed 
networks using Perl script. Then, these separate pathways 
were merged into a global KEGG network, which 
contained 49,421 interactions between 5,593 proteins. To 
avoid the noise due to the false-positives of several current 
protein-protein interaction networks, we used a previously 
reported data set [15], which is a systematic map of 13,944 
high-quality binary interactions between 4,303 proteins.

Patient cohort and HCC samples for validation

A total of 94 HCC tissues were obtained from the 
Eastern Hepatobiliary Surgery Hospital (Shanghai, China). 
Sixteen patient HCC samples with paired peri-tumor 
normal tissues were used to validate the expression of 
genes of interest. Seventy eight HCC tissue samples with 
clinico-pathological information were randomly retrieved 
from HCC patients who underwent curative resection at 
the Eastern Hepatobiliary Surgery Hospital from March 
2009 to September 2010. All patients were followed up 
until February 2015, with a median observation time of 
44.6 months. Overall survival (OS) was defined as the 
interval between the dates of surgery and death. Disease-
free survival (DFS) was defined as the interval between 
the dates of surgery and recurrence; if recurrence was 
not diagnosed, patients were censored on the date of 
death or the last follow-up. Overall survival analysis was 
performed using the Kaplan-Meier method [35]. The 
procedure of human sample collection was approved by 
the Ethics Committee of the Eastern Hepatobiliary Surgery 
Hospital.

Topic-sensitive PageRank

The PageRank algorithm was first proposed by 
Brin and Page [36], which was originally used to evaluate 

webpages by producing an authority score to show the 
importance of each webpage. This algorithm was also 
used to identify important genes recently [2, 37]. However, 
the authority score produced by the original PageRank 
algorithm rely only on the topological structure of biological 
networks. Topic-sensitive PageRank (TSPR) algorithm 
confers high weight on pages strongly associated with the 
query term and generates more accurate query-specific  
ranking scores by including topic-sensitive rank vectors 
[38]. Similarly, genes with high expression fold change 
(FC) are more likely to participate in the carcinogenesis 
process, and deserve high influential score. In inFRank, 
the FC of the gene was used as the topic-sensitive vector, 
which enabled us avoid topological bias and integrate gene 
expression information to evaluate the influence of genes.

TSPR algorithm was performed in an iterative 
manner, and the influence score was used as the input of 
the next iteration. Let N equal the number of nodes in the 
network, the initial score νi(0) for each node i is set to be 
1/N. The influence score νi(t) for node i at time step t is 
calculated as:

t M t s
s

( ) (1 ) ( 1) (1)i iν β ν β
= − − +

where M is the transition matrix of the dynamic network, 
νi(t-1) is the score for node i at time step t-1. s is the FC 
vector and β is 0.2 in our experiments as conventionally.

The difference of influence score Δνi(t) for node i at 
time step t is calculated as formula 2, and iteration process 
is stopped until the maximum absolute value of influence 
scores (MAIS) for all nodes achieves less than 1.0e-5.

t t t( ) ( ) ( 1) (2)i i iν ν ν∆ = − −

The significance was estimated based on the 
distribution of the influence scores computed by a random 
simulation procedure. We constructed a random network, 
and assigned the fold change values to genes randomly. 
The process was repeated 1000 times, and for each time, 
the gene influential score was calculated by inFRank. Let 
n be the number of influential scores from the distribution 
that are greater than the actual value for the gene. The 
estimate of the p value was computed as p = (n+1)/1000.

Real-time PCR assay

The original amount of the specific transcripts was 
measured using quantitative real-time PCR (qRT-PCR) 
with a SYBR Green PCR Kit (Applied Biosystems, 
Foster City, CA) and a LightCycler 96 Real-Time PCR 
System (Roche, Mannheim, Germany). The mRNA 
levels of cell division cycle 20 (CDC20), TTK Protein 
Kinase (TTK), pituitary tumor-transforming protein 1 
(PTTG1), shugoshin-like protein 1 (SGOL1) and cyclin 
B1 (CCNB1) in HCCs were normalized against β-actin. 
The primer sequences were provided in Supplementary 
Table S2.
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Cell transfection and western blot analysis

HCC cell lines HCC-LM3 (LM3) and CSQT-2 
which was established from patient portal vein tumor 
thrombus (PVTT) were cultured in DMEM supplemented 
with 10% FBS (Gibco, Invitrogen). Double-stranded, 
small interfering RNA (siRNA) was synthesized and 
purified by GenePharma (Shanghai, China). Sense, 
5′-GCAGAAACGGCUUCGAAAUTT-3′; antisense, 
5′-AUUUCGAAGCCGUUUCUGCTT-3′. A scrambled 
non-targeting siRNA was used as negative control. 
pCMV3/CDC20 plasmid and the vector control were 
purchased from Sino Biological (Beijing, China). The 
HCC cells were transfected with pCMV3/CDC20 or 
small interference RNA of CDC20 and their control 
respectively using the lipo2000 reagent as described 
previously [39]. Western blotting assay was performed to 
validate the overexpression or knockdown efficiency of 
CDC20 in HCC cells using anti-CDC20 antibody (Cell 
Signaling Technology Inc, Danvers, MA). The blots were 
normalized with GAPDH.

Cell proliferation and invasion assay

The HCC cells transfected with pCMV3/CDC20 
or siCDC20 as well as the corresponding controls were 
seeded into 96-well plate (3000 cells/well). The cell 
proliferation rates were compared using Cell Counting 
Kit-8 (Dojindo Laboratories, Japan) at distinct time points 
as described previously [39]. For invasion assay, 1×105 
cells were added to the upper chamber of a polycarbonate 
transwell filter coated with 30 mg/cm2 Matrigel (Sigma-
Aldrich, St.Louis, MO). After 24 hours at 37°C, cells 
on the lower surface of the membrane were fixed by 4% 
formaldehyde for 30 minutes and stained, photographed 
and counted under a microscope as described previously 
[39].

Statistical analysis

Differences among the variables were assessed by 
a c2 analysis or two-tailed Student t test. Kaplan-Meier 
analysis and log-rank test was used to assess patient 
survival between subgroups. Multivariate analysis was 
performed by a cox proportional hazards model analysis.
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