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As a quinonemethide triterpenoid extracted from species of the Celastraceae and 
Hippocrateaceae, pristimerin has been shown potent anti-cancer effects. Specifically, it 
was found that pristimerin can affect many tumor-related processes, such as apoptosis, 
autophagy, migration and invasion, vasculogenesis, and drug resistance. Various molecular 
targets or signaling pathways are also involved, such as cyclins, reactive oxygen species 
(ROS), microRNA, nuclear factor kappa B (NF-κB), mitogen-activated protein kinase 
(MAPK), and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways. In this review, 
we will focus on the research about pristimerin-induced anti-cancer activities to achieve a 
deeper understanding of the targets and mechanisms, which offer evidences suggesting 
that pristimerin can be a potent anti-cancer drug.
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INTRODUCTION

In recent years, natural compound has received more and more attention for use in treating 
human diseases and conditions, due to their long history of use and various pharmacological 
therapeutic effects (Tao et al., 2015; Zhang et al., 2015; Peng et al., 2016; Zhang et al., 2016; Lin 
et  al., 2017), especially their relative safety (fewer and less severe side effects) than chemical 
drugs. Naturally occurring triterpenoid can be used as anti-cancer, anti-inflammatory, anti-
malarial, and insecticidal agent (Deeb et al., 2012; Larsen et al., 2012; Kim et al., 2013; Deeb et al., 
2014a). It has been proven that some natural or synthetic triterpenoids have promising clinical 
potential, exhibiting both therapeutic and chemopreventive activities for cancer (Salminen et al., 
2008; Alessia et al., 2009; Ke et al., 2016). Pristimerin (20α-3-hydroxy-2-oxo-24-nor-friedela-
1-10,3,5,7-tetraen-carboxylic acid-29-methylester, molecular formula: C30H40O4) (Figure 1), a 
methyl ester of celastrol, is a quinonemethide triterpenoid which has been extracted from a 
variety of species of the Celastraceae and Hippocrateaceae families, such as Hippocratea excels 
(Mena-Rejon et al., 2007), Maytenus heterophylla (Murayama et al., 2007), and Celastrus aculeatus 
Merr. (Tang et al., 2014). Pristimerin was first isolated in 1951 from Pristimerae indica and P. 
grahami and was first identified in 1954 to confirm its molecular structure (Kulkarni and Shah, 
1954). Pristimerin has displayed different pharmacological effects, such as anti-cancer, anti-
oxidant, anti-inflammatory, anti-bacterial, anti-malarial, and insecticidal activities (Figueiredo 
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and Sequin, 1998; Avilla et al., 2000; Haroldo Jeller et al., 2004; 
Lopez et al., 2011; Kim et al., 2013; Wu et al., 2019). As such, it 
is being developed as a potential anti-cancer drug (Yousef et al., 
2017). Here, we present and discuss current research findings 
with regard to pristimerin emphasis on the anti-cancer effect.

PRISTIMERIN: BROAD-SPECTRUM 
ANTI-CANCER EFFECT

Cancer is a complicated disease, which starts with a normal 
change through the activation of proto-oncogenes or the 
suppression of tumor suppressor genes (Elmore, 2007). These 
alterations result in diversed and interactive changes at the 
level of cellular processes which are involved in the regulation 
of proliferation, differentiation, apoptosis, migration, and tissue 
homeostasis. Finally, biological properties for cancer cells are 
acquired, including infinite proliferation potential, independent 
exogenous growth factors, and resistance to death signals 
(Brattain et al., 1994; Dent and Aranda-Anzaldo, 2019; Petho 
et al., 2019; Shen et al., 2019).

Pristimerin exerts its effects influencing a series of biological 
properties of cancer cells. Recent studies on a wide range of 
cancer cell lines of different origins, such as oral cancer (Wu 
et al., 2019), colorectal cancer (Yousef et al., 2018), glioma (Yan 
et al., 2013), leukemia (Lu et al., 2010), breast cancer (Xie et al., 
2016), lung cancer (Zhang et al., 2019), and prostate cancer (Liu 
et al., 2013), and also in cancer stem cells (Cevatemre et al., 2018). 
These results have proved that pristimerin possesses strong 
anti-proliferative activities with involvement of mitochondrial 
apoptosis, autophagy, and inhibition of nuclear factor kappa B 
(NF-κB), Akt (protein kinase B, PKB) and mitogen-activated 
protein kinase (MAPK) (Guo et al., 2013; Liu et al., 2013; Yan 
et al., 2013; Gao et al., 2014; Deeb et al., 2015).

In view of the potent anti-cancer effect in a broad spectrum 
(cancer cell lines and molecular targets), it possesses a great 
potential for pristimerin to develop as a multiple-target anti-
cancer drug.

PRISTIMERIN: ANTI-CANCER ACTIVITIES

Growth Inhibition
Pristimerin induces a potent effect of growth inhibition within 
wide range types of human tumors; the cytotoxicity of pristimerin 
in different cancer cell lines is summarized in Table 1.

Apoptosis Induction
Apoptosis is a kind of programmed cell death, whose activation 
is regulated by a series of genes, in the purpose of eliminating 
redundant, damaged, even infected cells to maintain homeostasis 
(Ke et al., 2016). Anti-cancer agents killing tumor cells by the 
induction of apoptosis is generally studied (Wu et al., 2017; Xiao 
et al., 2018; Qi et al., 2019). Two main subtypes of apoptosis have 
been divided into the intrinsic mitochondrial pathway and the 
extrinsic death receptor pathway (Elmore, 2007).

In the mitochondrial pathway, Bcl-2 family members 
converge on mitochondria (Kale et al., 2018), regulating 
release of various mitochondrial components to form the 
apoptosome (Dorstyn et al., 2018), such as cytochrome c 
associated with Apaf-1 and procaspase-9 (Estaquier et al., 
2012). In the death receptor pathway, stimulation of death 
receptors, including Fas and tumor necrosis factor (TNF) 
receptor-1, results in the assembly of death-inducing signaling 
complex, containing the adapter protein (Gupta, 2001), Fas-
associated death domain, and initiator caspases, such as 
caspase-8 (Pecina-Slaus, 2009).

Pristimerin-induced apoptotic effects were mainly due to 
mitochondrial dysfunction, activation of both extrinsic and 
intrinsic caspases, and cleavage of poly ADP-ribose polymerase 
(PARP). It has been reported that pristimerin can induce 
caspase-dependent apoptosis in human glioma cancer cells (Yan 
et al., 2013), pancreatic cancer cells (Deeb et al., 2014b), and 
hepatoma cancer cells (Gao et al., 2014). Pristimerin-induced 
inhibition of Bcl-2 (as well as Bcl-2 mRNA) is sufficient to 
promote mitochondrial permeability transition and release of 
cytochrome c mediated by Bax and Bak without the inhibition 
of Bcl-xL in pancreatic cancer cells (Deeb et al., 2014b). On the 
other hand, caspase inhibitor failed to antagonize the effects of 
pristimerin, indicating that the lethal effect of pristimerin may 
not be caspase-dependent in human glioma U251 and U87 cells 
(Zhao et al., 2016).

The apoptotic effect of pristimerin is related to Bcl-2, and it 
mediates down-regulation of Bcl-2 through reactive oxygen 
species (ROS)-dependent ubiquitin-proteasomal degradation 
pathway in human prostate cancer LNCaP and PC-3 cells (Liu et 
al., 2013). ROS-induced apoptosis by pritimerin was also reported 
in hepatocellular carcinoma HepG2 cells, involving EGFR and 
Akt proteins (Guo et al., 2013). In colorectal carcinoma cells, 

FIGURE 1 | Chemical structure of pristimerin.
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the associated induction of JNK activation and MMP loss was 
observed (Yousef et al., 2016b), similar with the results in cervical 
cancer cells (Byun et al., 2009).

In human colon cancer cells, pristimerin caused cell cycle 
arrest and apoptosis through cyclin-CDK, mitochondrial 
dysfunction, and caspase-dependent mechanisms. Besides, the 
inhibition of DNA synthesis in HL-60 was also associated with 
pristimerin-induced apoptosis (Costa et al., 2008).

Pristimerin-induced apoptosis could be mediated by 
microRNA (miRNA). miRNAs exert a post-transcriptional 
gene silencing effect through binding to target mRNA and 
endonucleolytic cleavage of the mRNA by protein argonaute-2 
(AGO2) (Kobayashi and Tomari, 2016). It was reported that 
pristimerin induced apoptosis through inhibiting AGO2 and 
PTPN1 expression via miR-542-5p in glioma cancer cells U373 
(Li et al., 2019). Synergization with cisplatin, pristimerin led 
to apoptosis via inhibiting the miR-23a, regulating PTEN/
Akt signaling-related PTEN and the phosphorylation of Akt 

and GSK3β in lung carcinoma NCI-H446 and A549 cells 
(Zhang et al., 2019).

Autophagy Induction
As another programmed necrosis, autophagy is a homeostatic 
cellular self-digestive process. Autophagy triggered by various 
cellular stress plays vital role in cell death, providing novel target 
for developing anti-cancer drug (Mizushima et al., 2008; Ravanan 
et al., 2017). LC3-II promotes the expansion and maturation 
of autophagy, which is considered as signal of autophagy 
activation. Pristimerin-induced autophagy was reported in 
human breast cancer MDA-MB-231 (Cevatemre et al., 2018; 
Lee et al., 2018) and MCF-7 cells (Cevatemre et al., 2018). As 
evidenced by the increase of p62 and LC3-II with an unfolded 
protein response (UPR), pristimerin induced an incompleted 
autophagy through Wnt signaling. Although endoplasmic 
reticulum (ER) stress is also a trigger of autophagy (Smith and 

TABLE 1 | The cytotoxicity dosage of pristimerin in different cancer cell lines.

Cancer type Time Toxic dosage (IC50 value or inhibition rate) References

Prostate cancer 72 h 1.25 μM caused 55% LNCaP cell death (Liu et al., 2013)
1.25 μM caused 47% PC-3 cell death

Breast cancer 24 h 2.40 μM IC50 against SKBR3 (Lee et al., 2013)
Colorectal cancer 72 h 1.11 μM IC50 against HCT-116 (Yousef et al., 2018)

48 h 1.22 μM IC50 against HCT-116 (Yousef et al., 2016a)
1.04 μM IC50 against SW-620
0.84 μM IC50 against COLO-205

Hepatocellular carcinoma 72 h 1.44 μM IC50 against HepG2 (Guo et al., 2013)
1.70 μM IC50 μM against HepG2 (Wei et al., 2014)
0.68 μM IC50 μM against Huh7
0.85 μM IC50 μM against Hep3B

Pancreatic cancer 24 h 0.66 μM, 0.97 μM, 0.13 μM, IC50 against BxPC-3, PANC-1, and AsPC-1, respectively (Wang et al., 2012)
48 h 0.28 μM, 0.34 μM, and 0.38 μM IC50 against BxPC-3, PANC-1, and AsPC-1, respectively
72 h 0.19 μM, 0.26 μM and 0.30 μM IC50 against BxPC-3, PANC-1, and AsPC-1, respectively

Glioma 6 h 4.5 μM IC50 against U251 (Zhao et al., 2016)
5.0 μM IC50 against U87 

Leukemia 72 h 0.61 μM IC50 against HL-60 (Costa et al., 2008)
1.49 μM IC50 against K562

72 h 199 nM IC50 against KBM5 (Lu et al., 2010)
135 nM IC50 against KBM5-T315I
450 nM IC50 against K562

Ovarian carcinoma 72 h 1.25 µM caused 44% OVCAR-5 cell death (Gao et al., 2014)
1.25 µM caused 28% MDAH-2774 cell death
2.5 µM caused 36% SK-OV-3 cell death
2.5 µM caused 27% OVCAR-3 cell death

Osteosarcoma 24 h 0.80 µM IC50 against MNNG (Mori et al., 2017)
0.54 µM IC50 against 143B

48 h 0.39 µM IC50 against MNNG
0.31 µM IC50 against 143B

72 h 0.32 µM IC50 against MNNG
0.29 µM IC50 against 143B

Oral cancer 72 h 0.54 μM IC50 against KB (Yan et al., 2017)
0.52 μM IC50 against KBv200
0.70 μM IC50 against CAL-27 (Wu et al., 2019)
0.73 μM IC50 against SCC-25

ESCC 72 h 1.98 μM IC50 against EC9706 (Tu et al., 2018)
1.76 μM IC50 against EC109
1.13 μM IC50 against KYSE30

ESCC, esophageal squamous cell carcinoma.
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Wilkinson, 2017), it was not concluded whether the observed 
ER stress by pristimerin induced autophagy (Cevatemre et al., 
2018). Additionally, a combination treatment of pristimerin and 
paclitaxel strengthened the extracellular signal-related kinase 
(ERK)-dependent autophagic cell death, with increase of p62 
degradation and beclin1 expression (Lee et al., 2018).

On the contrary, pristimerin suppressed autophagy, 
downregulating LC3BII and beclin1 to sensitize the apoptosis 
caused by cisplatin in lung carcinoma A549 and NCI-H446 cells 
(Zhang et al., 2019).

Inhibition of Metastasis, Migration, 
Invasion, Angiogensis, and Cancer 
Stem Cell
The cancer metastases include a series of process, such as the 
completion of a complex succession of cell-biological event, cancer 
cell invasion, migration, and forming metastatic colonization in 
clinic (Valastyan and Weinberg, 2011). Pristimerin was reported 
to inhibit migration and invasion via targeting G protein signaling  
4 (RGS4) in breast cancer MDA-MB-231 cells (Mu et al., 2012a) 
and HER2 in human breast carcinoma SKBR3 cells (Lee et al., 
2013). Furthermore, mammalian target of rapamycin (mTOR) 
may be associated with its upstream Akt in pristimerin-induced 
inhibition of migration and invasion in colorectal cancer 
HCT-116 cells (Yousef et al., 2016b). Pristimerin suppressed 
the invasion of human prostate cancer PC-3 cells through 
inhibition of epithelial-to-mesenchymal transition (EMT), 
which was confirmed by the EMT-related markers (Chaffer 
et al., 2016), including N-cadherin, fibronectin, vimentin and 
ZEB1 (Zuo et al., 2015). MMP2 and MMP9, which are important 
proteins regulating invasion and metastasis, were decreased by 
pristimerin in esophageal cancer EC9706 and EC109 cells in a 
dose-dependent manner, resulting in inhibition of migration and 
invasion (Tu et al., 2018).

To supply nutrients and clear metabolic wastes, novel capillary 
blood vessels grow from pre-existing vasculature, which is called 
angiogenesis. However, aberrant angiogenesis plays a key role 
in cancer development (Valastyan and Weinberg, 2011). Thus, 
anti-angiogenic therapy is promising and under development 
(Li et al., 2018). Pristimerin was reported to in vivo inhibit the 
neovascularization of chicken chorioallantoic membrane (CAM) 
and vessel ex vivo sprout in rat aortic ring assay, through a vascular 
endothelial growth factor (VEGF)-dependent mechanism (Mu 
et al., 2012b). Also, the decreased-VEGF by pristimerin was 
reported through the inhibition of HIF-1α via the SPHK-1 
signaling pathway in hypoxic prostate cancer PC-3 cells (Lee et al., 
2016). In addition, pristimerin-induced cancer stem cell toxicity 
was observed in breast cancer stem cells (Cevatemre et al., 2018) 
and esophageal squamous cell carcinoma (ESCC) (Tu et al., 2018).

Reversal of Drug Resistance
Multi-drug resistance (MDR) is defined as the resistance of cancer 
cells not limited to a specific chemotherapeutic drug through 
different structures and mechanisms of action (Wu et al., 2014). 
ABCB1 (P-glycoprotein, Pgp) is recognized as putative drug 

transporter, which is encoded by the ABCB1 gene, one of (ATP)-
binding cassette (ABC) transporter family (Dewanjee et al., 2017). 
Pristimerin may overcome ABCB1-mediated chemotherapeutic 
drug resistance through disturbing the stability of ABCB1 
independent of its mRNA expression in human oral epidermoid 
carcinoma cells KBv200 (Yan et al., 2017). In addition, with 
inhibition of NF-κB and Bcr-Abl, pristimerin is effective in vitro 
and in vivo against imatinib-resistant chronic myelogenous 
leukemia cells (Lu et al., 2010). Additionally, Akt signaling was 
related to the reversal of MDR in multidrug-resistant MCF-7/
ADR breast cancer cells (Xie et al., 2016).

Synergization With Chemotherapeutic 
Drugs
Drug combination for cancer treatment has been well established 
to strengthen the anti-tumor action in varied aspects (Ho and 
Cheung, 2014; Andre et al., 2018), including therapeutic drug 
combination with natural product (Efferth, 2017; Sanchez et al., 
2019). Pristimerin was reported to synergize with paclitaxel in 
human breast cancer cells (Lee et al., 2018), with 5-fluorouracil 
(5-FU) in esophageal ESCC (Tu et al., 2018). In cervical cancer 
cells, combination with taxol could induce cell death through 
ROS-mediated mitochondrial dysfunction (Eum et al., 2011). 
In NCI-H446 and A549 lung carcinoma cells, combination with 
cisplatin could induce cell apoptosis through inhibiting the 
miRNA-23a and Akt/GSK3β signaling pathway (Zhang et al., 
2019). In pancreatic cancer cells, pristimerin could potentiate 
the cytotoxic effect of gemcitabine with the possible mechanism 
being the inhibition of gemcitabine-induced NF-κB activation 
(Wang et al., 2012).

In Vivo Anti-Tumor Activities
Pristimerin was widely reported its in vivo anti-tumor activities, 
which is summarized in Table 2.

PRISTIMERIN IN TUMORS: TARGETS 
AND PATHWAYS

Proteasome
As another important mechanism of maintaining homeostasis, 
proteasome-mediated degradation is associated with essential 
cellular processes, regulating the vast majority of cellular proteins 
(Livneh et al., 2016). Consistent with triterpenoids being reported 
to target proteasome (Chintharlapalli et al., 2007; Tiedemann 
et al., 2009), pristimerin also showed a potent activity to inhibit 
proteasome activity in prostate cancer cells (Yang et al., 2010; Liu 
et al., 2013; Liu et al., 2014), breast cancer cells (Mu et al., 2012a), 
cervical carcinoma cells (Eum et al., 2011), and myeloma cells 
(Tiedemann et al., 2009).

The β subunits of proteasome contain active protease sites with 
different peptidase activities, including caspase-like or peptidyl-
glutamyl peptide-hydrolyzing-like (β1), trypsin-like post basic 
(β2), and chymotrypsin-like (β5) activities (Mayor et al., 2016). 
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Pristimerin was associated with the N-terminal threonine of the 
β5 subunit through its conjugated ketone carbon C6, exerting 
a chymotrypsin-like activity (Yang et al., 2010), which is also 
associated with RGS4 (Mu et al., 2012a).

Pristimerin can inhibit Bcl-2, finally induced mitochondrial 
cell death via an ROS-dependent ubiquitin-proteasomal degradation 
pathway (Liu et al., 2013). Pristimerin combination with taxol 
caused mitochondrial apoptosis due to ROS generation and direct 
proteasome inhibition (Eum et al., 2011). In addition, pristimerin-
induced inhibition of proteosome and IKK phosphorylation of IκB 
together led to UPR and suppression of NF-κB activity and cyclin 
D2  expression in myeloma cells H929 and U266 (Tiedemann 
et al., 2009).

Telomerase
Telomere is a ribonucleoprotein complex located in the end of 
chromosomes, maintaining telomere length homeostasis to keep 

chromosomal stability (Wang and Feigon, 2017). Due to the 
differences in telomere homeostasis between cancer and normal cells, 
targeting telomerase may be a promising approach to find effective 
and safe anti-cancer treatments (Armstrong and Tomita, 2017).

Pristimerin can inhibit telomerase activity in human prostate 
cancer LNCaP and PC-3 cells (Liu et al., 2015). The mechanism 
is related to inhibition of human telomerase reverse transcriptase 
(hTERT) and its mRNA expression, which codes the catalytic 
subunit of the telomerase. At the same time, knocking-down 
of hTERT strengthened the effects of pristimerin. Furthermore, 
hTERT regulatory proteins c-Myc, Sp1, p-STAT3, and p-Akt 
were inhibited in a dose-dependent manner (Liu et al., 2015).

MAPK Pathway
The generic MAPK signaling pathway is co-regulated by four 
different cascades including extracellular signal-related kinases 
(ERK1/2), Jun amino-terminal kinases (JNK1/2/3), p38-MAPK, 

TABLE 2 | In vivo anti-tumor activities of pristimerin.

Models Dose and administration Activities Mechanisms References

Human breast tumor xenograft 
model

3 mg/kg/2 days, s.c. Reduced both tumor volume and 
tumor weight, inhibited tumor 
angiogenesis.

Associated with decreased 
secretion of proangiogenic 
molecules (VEGF)

(Mu et al., 2012b)

Human breast tumor xenograft 
model 

1 mg/kg/2 days, s.c. Inhibited the growth of implanted 
tumors, inhibited the invasiveness

— (Mu et al., 2012a)

Orthotopic HCC patient-
derived xenograft model

1 mg/kg/3 times/week, i.v. Caused significant reductions in 
tumor volumes of xenografts

Disrupt HSP90 and CDC37 
interaction, inhibit Raf/MEK/ERK 
and PI3K/AKT/mTOR pathways

(Wei et al., 2014)

Intra-tibial injection model 7.5 × 103 cells/µl 1.6 µM 
pristimerin pre-treated 24 h 
PC-3 cells 

Inhibited the bone destruction 
by the invasion of the tumor, 
reduced the tumorigenic potential 
of bone metastasis

— (Huang et al., 2015)

Human glioma xenograft 
model

1 and 3 mg/kg/2 days, s.c. Inhibited glioma volume and 
weight in vivo in a dose-
dependent manner

Up-regulated JNK level 
the phosphorylated JNK, 
upregulated the nuclear AIF and 
the ratio of Bax/Bcl-2

(Zhao et al., 2016)

AOM/DSS model of colitis-
associated colorectal 
carcinogenesis

fed with 1 to 5 ppm 
pristimerin 

Reduced tumor burden — (Park and Kim, 2018)

Human ESCC xenograft 
model

1 mg/kg/2 days, i.t. Inhibited the growth and weight 
of tumor, suppressed proliferation

— (Tu et al., 2018)

Human colorectal cancer 
xenograft model

1 mg/kg/2 days, i.p. Inhibited tumor growth Mainly through suppressing 
NF-кB activity and p65 
phosphorylation

(Yousef et al., 2018)

Human lung tumors xenograft 
model

0.8 mg/kg pristimerin and 
2 mg/kg cisplatin, s.c.

Enhanced the effect of cisplatin 
to decrease tumor volumes and 
weights

Inhibited the phosphorylation of 
Akt and GSK3β

(Zhang et al., 2019)

Human osteosarcoma 
xenograft model

1 mg/kg/2 days, i.p. Reduced both tumor volume and 
tumor weight

— (Mori et al., 2017)

Human colorectal cancer 
xenograft model

1 mg/kg/2 days, i.p. Inhibited the growth of
implanted tumors

Induced apoptosis through an 
increment in cleaved caspase-3

(Yousef et al., 2016b)

Human myeloma xenograft 
model

2.5 mg/kg per day, s.c. Inhibited growth of human 
myeloma xenograft, diminished 
toxicity in a liposomal dose

— (Tiedemann et al., 2009)

Human breast cancer 
xenograft model

1 mg/kg for 2 days, i.p. Decreased tumor size and 
weights, slightly reduced toxicity 
and behavioral changes in an  
E/T80/WFI carrier compared to 
D/PBS.

— (Cevatemre et al., 2018)

*s.c. represents subcutaneously, i.v. for intravenously, i.t. for intratumorly, i.p. for intraperitoneally, and ppm for parts per million, respectively. ERK, extracellular signal-related kinase.
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and ERK5 (Sun et al., 2015). MAPK/ERK pathway regulates the cell 
proliferation (Sun et al., 2017), differentiation (Wang et al., 2017), 
migration (Tao et al., 2018) and apoptosis (Wang and Zhu, 2018).

Pristimerin-induced autophagy was reported via ERK1/2 
in human breast cancer cells when combination with paclitaxel 
(Lee et al., 2018). ERK1/2 may be involved in pristimerin-
induced intrinsic apoptosis in human oral epidermoid 
carcinoma cells (Yan et al., 2017) and in human glioma cells 
(Yan et al., 2013). Both JNK and PARP-1 via ROS pathway 
are essentially required for the pristimerin-induced intrinsic 
apoptosis in human cervical cancer cells (Byun et al., 2009). 
In addition, ERK1/2 suppression occurred in VEGF-induced 
capillary-like structure formation of human umbilical 
vascular endothelial cells (HUVECs) (Mu et al., 2012b). These 
activities were accompanied with Akt inhibition (Mu et al., 
2012b; Yan et al., 2017; Lee et al., 2018).

PI3K/AKT/mTOR Pathway
The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway 
cascade containing PI3K, AKT, and mTOR is the most frequently 
altered pathway in human for cancer development, such as 
cell cycle, cell survival, metabolism, motility, angiogenesis, 
chemoresistance, and genomic instability (Mabuchi et al., 2015).

Pristimerin showed a potent apoptosis-inducing anti-
proliferative activity in human osteosarcoma cells (Mori et al., 
2017) by PI3K/AKT/mTOR pathway. The pristimerin-induced 
ROS-dependent mitochondrial cell apoptosis was also associated 
with the inhibition of EGFR and Akt in human glioma cells (Yan 
et al., 2013). It was confirmed that PI3K/AKT/mTOR pathway-
activated activities were accompanied by the downstream 
Foxo-3α, cyclin D1 and Bcl-XL (Akt), p-S6K1, and p-4E-BP1 
(mTOR) as well as p21, p27, and PKCε in human ovarian cancer 
cells (Deeb et al., 2014b; Gao et al., 2014; Park and Kim, 2018). 
Furthermore, downstream Bad and Bcl-xL pointed to drug 
resistance in MCF-7/ADR human breast cancer cells (Xie et al., 
2016). In addition, pristimerin suppressed angiogenesis through 
VEGF-induced Akt, ERK1/2, mTOR, and ribosomal protein S6 
kinase (Mu et al., 2012b).

NF-κB Pathway
NF-κB family transcription factors are crucial regulators of cell 
survival and inflammatory processes (Napetschnig and Wu, 2013). 
The inactive NF-κBs are isolated from nucleus by inhibitor of 
NF-κB (IκB) proteins. When activated IKK (IκB kinase) makes a 
proteasomal degradation of IκB, the subsequent process will occur, 
including the release of NF-κB, translocation of NF-κB nuclear and 
activation of gene transcription. NF-κB can be activated by both 
intracellular and extracellular stimuli, including cytokines (TNF-
α, IL-1β), bacterial, and viral products (LPS) (Xia et al., 2014).

NF-κB-regulated anti-apoptotic Bcl-2, Bcl-xL, c-IAPl, and 
surviving in human ovarian carcinoma cells (Gao et al., 2014), 
Cox-2 and VEGF in human pancreatic cancer cells (Deeb 
et  al., 2014b). NF-κB pathway may link anti-tumor activity of 
pristimerin and its anti-inflammatory properties (Park and 

Kim, 2018). Pristimerin suppressed the translocation of NF-κB 
nuclear; however, there was no change of the total NF-κB protein 
in pancreatic cancer (Wang et al., 2012). In contrast, pristimerin 
inhibited both genetic expression and activation of NF-кB protein 
with suppression of p65 mRNA in human colorectal cancer 
cells (Yousef et al., 2018). TNFα-induced NF-κB activation was 
observed by the downstream MMP9, cyclin D1, and c-Myc in 
ESCC cells (Tu et al., 2018). When combined with pristimerin, 
the inactivation of Bcr-Abl by imatinib did not interfere with 
the TNFα-induced NF-κB activation, which implicated that 
NF-κB inactivation and Bcr-Abl inhibition may be parallel 
mechanisms of pristimerin-induced activity in human chronic 
myelogenous leukemia cells (Lu et al., 2010). G1 phase arrest 
was also associated with NF-κB pathway in human pancreatic 
cancer cells (Wang et al., 2012), as well as proteosome in human 
myeloma cells (Tiedemann et al., 2009). Moreover, pristimerin 
inhibited expression of miR-542-5p targeting PTPN1, which 
encodes protein tyrosine phosphatase 1B (PTP1B) related to 
NF-κB pathway (Li et al., 2019).

Wnt/β-Catenin Pathway
Wnt proteins are key mediators in a series of important cellular 
process. The abnormal activation of Wnt/β-catenin pathway can 
cause a wide range of diseases including cancers (Krishnamurthy 
and Kurzrock, 2018; Pedone and Marucci, 2019). Pristimerin was 
reported to suppress Wnt/β-catenin pathway through targeting 
and inhibiting the expression of LRP6 and its phosphorylation, 
which may contribute to autophagy in human breast cancer 
MCF-7 cells (Cevatemre et al., 2018).

CONCLUSIONS AND PERSPECTIVE

Plants, particularly medicinal herbs, have become increasingly 
popular due to their potent therapeutic effects. Pristimerin, a 
quininemethide triterpenoid compound isolated from species 
of the Celastraceae and Hippocrateaceae families, has displayed 
biological and pharmacological activities, particularly inhibiting 
cancer. This review summarizes the reported results on anti-
cancer activities and related mechanisms of pristimerin.

Pristimerin has shown anti-cancer potency in vivo (Table 2) 
and in vitro (Table 3) via specific mechanisms (Figure 2). 
Like many other chemotherapeutic drugs, pristimerin exerts 
cytotoxicity largely related to apoptosis, while the mechanism 
of autophagy is merely reported. The cross-talk of apoptosis 
and autophagy mediated by pristimerin is still remained to be 
explored. So far, the mechanism study of pristimerin has little 
reported on lung cancer, epigenetic regulation, and combination 
with immunotherapy. Furthermore, pristimerin has been 
reported to have poor selective toxicity in some cancer cells 
or compared with its derivatives (Costa et al., 2008; Wei et al., 
2014). Comprehensive evaluation of pristimerin toxicity is yet to 
be carried out (as well as clinical trials). In summary, pristimerin 
possesses potent anti-cancer effect and further study will bring 
about novel drug development based on pristimerin.
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TABLE 3 | Anti-cancer mechanisms of pristimerin in different cell lines.

Cancer type Cell lines Mechanisms References

Prostate cancer PC-3 Inhibited HIF-1α accumulation by inhibiting SPHK-1
Inhibited CD133 and CD44 protein expression, reduced VEGF (Huang et al., 2015)

LNCaP and PC-3 Down-regulated Bcl-2 through an ROS-dependent ubiquitin-proteasomal 
degradation pathway

(Liu et al., 2013)

Prevented survivin via the ubiquitin-proteasome pathway (Liu et al., 2014)
Inhibited hTERT expression via the inhibition of SP1, c-Myc, STAT3, and B/Akt (Liu et al., 2015)

Breast cancer SKBR3 Down-regulated HER2, decreased fatty acid synthase (Lee et al., 2013)
MDA-MB-231 Suppressed proteasomal activity via increasing the levels of RGS4 (Mu et al., 2012a)

Suppressed the LC3-II levels of this on ERK signaling when combination with 
paclitaxel

(Lee et al., 2018)

Colorectal cancer HCT-116 Inhibited the AKT/FOXO3a pathway via decreasing cyclinD1 and Bcl-XL, increased 
the expression of p21 and p27

(Park and Kim, 2018)

HCT-116 Inhibited activated NF-кB, TNFα, and activated LPS-induced NF-кB signaling pathway (Yousef et al., 2018)
HCT-116, COLO-205, and 
SW-620

Inhibited of phosphorylated EGFR and HER2 expression, caused inhibition of 
related downstream kinases.

(Yousef et al., 2016a)

Hepatocellular 
carcinoma

HepG2 Generated ROS, induced release of cytochrome c, and down-regulated EGFR 
protein

(Guo et al., 2013)

Disrupted HSP90/CDC37 interaction, degraded and inhibited phosphorylation of 
protein kinases in the Raf/MEK/ERK and PI3K/AKT/mTOR signaling pathways

(Wei et al., 2014)

Pancreatic cancer BxPC-3, PANC-1, and AsPC-1 Inhibited of the translocation and DNA-binding activity of NF-κB (Wang et al., 2012)
MiaPaCa-2 and Panc-1 Inhibited of hTERT via suppressing the transcription factors Sp1, c-Myc, and NF-κB (Deeb et al., 2015)

Glioma U87 Activated of JNK through overproduction of ROS (Zhao et al., 2016)
U373 Targeting AGO2 and PTPN1 expression via miR-542-5p (Li et al., 2019)

Myeloma H929 and U266 Both inhibited IKK phosphorylation of IκB and proteosome, causing unfolded 
protein response and suppressing NF-κB activity and cyclin D expression

(Tiedemann et al., 
2009)

Cervical cancer HeLa Activated ROS-dependent JNK, Bax, and PARP-1 (Eum et al., 2011)
Leukemia HL-60 Interfered DNA synthesis (Costa et al., 2008)

KBM5 and KBM5-T3151 Depleted Bcr-Abl, activated TAK1TIKK and IKKTIκBα in NF-κB signaling parallel but 
independent

(Lu et al., 2010)

Ovarian carcinoma OVCAR-5, MDAH-2774, 
OVCAR-3, and SK-OV-3

Inhibited prosurvival signaling proteins Akt, mTOR and NF-kB; inhibited NF-κB-
regulated anti-apoptotic proteins Bcl-2, Bcl-xL, c-IAPl and survivin

(Gao et al., 2014)

Osteosarcoma MNNG and 143B Decreased expression of Akt, mTOR, and NF-κB (Mori et al., 2017)
Oral cancer KBv200 Decreased P-gp through interrupt protein stability in MAPK and PI3K/Akt pathways (Yan et al., 2017)

CAL-27 and SCC-25 G1 phase arrest and MAPK/Erk1/2 and Akt signaling inhibition (Wu et al., 2019)
ESCC EC9706, EC109, and KYSE30 Inhibited NF-κB pathway, synergistic effect with 5-FU (Tu et al., 2018)

ESCC, esophageal squamous cell carcinoma; ROS, reactive oxygen species.

FIGURE 2 | Brief summary of anti-cancer mechanisms and activities of pristimerin.
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