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With currently available RNA-Seq pipelines, expression estimates for most genes are very
noisy. We here introduce MapAl, a tool for RNA-Seq expression profiling that builds on the
established programs Bowtie and Cufflinks. In the post-processing of RNA-Seq reads, it
incorporates gene models already at the stage of read alignment, increasing the number of
reliably measured known transcripts consistently by 50%. Adding genes identified de novo
then allows a reliable assessment of double the total number of transcripts compared to
other available pipelines. This substantial improvement is of general relevance: Measure-
ment precision determines the power of any analysis to reliably identify significant signals,
such as in screens for differential expression, independent of whether the experimental
design incorporates replicates or not.

Keywords: RNA-Seq, gene expression profiling, transcriptomics, measurement precision, reliability, splice-form

discrimination, read mapping

1. INTRODUCTION
RNA-Seq exploits next-generation sequencing of cDNA for the
study of gene expression. It has been applied to gain global views
of the complexity of the transcriptome (Cloonan et al., 2008;
Mortazavi et al., 2008; Ramsköld et al., 2009; Tang et al., 2009).
In contrast to other profiling technologies, RNA-Seq can pro-
vide a comprehensive assay of gene expression that is not reliant
on probes for targets that must be specified in advance. It is
particularly well suited for the de novo discovery of exons and
splice junctions, and it allows genome-wide qualitative expression
profiling of organisms with unknown genome sequence.

Increasingly, there has been an interest in also applying RNA-
Seq for the quantification of gene expression (Blow, 2009). While
earlier work has focused on reads that unambiguously identify
a transcript (Wilhelm et al., 2008), improved algorithms allow
an extension of data analysis to complex gene models of alter-
native splicing, also taking into account the many reads that
may come from different splice forms (Jiang and Wong, 2009).
The discrimination of complex alternative splice forms is now
possible with modern tools like ERANGE (Mortazavi et al.,
2008), ALEXA-seq (Griffith et al., 2010), NEUMA (Lee et al.,
2011), IsoEM (Nicolae et al., 2010), RSEM (Li et al., 2010; Li
and Dewey, 2011), or TopHat + Cufflinks (Trapnell et al., 2009,
2010).

In the popular TopHat + Cufflinks suite of tools, this is achieved
by first aligning reads to the genome, with de novo discovery of
exons and splice junctions (TopHat ). Then this information is
used to assemble transcripts and calculate their abundances in
a second step (Cufflinks). Cufflinks can take advantage of ref-
erence gene model annotation for the quantification of known
transcripts, omitting the transcript assembly step.

The MapAl tool presented here builds on this two-stage
approach and extends the algorithm to already exploit gene mod-
els at the alignment step. Not having to identify novel splice forms

for known genes considerably improves the assignment of reads to
annotated transcripts, particularly for splice forms covered only by
a small number of reads (Łabaj et al., 2011). This novel approach
substantially increases the number of transcripts that can be mea-
sured reliably. That is of general interest because measurement
precision determines the power of any subsequent analysis, such
as the sensitive detection of differentially expressed transcripts,
independent of whether replicates are employed or not (Anders
and Huber, 2010).

2. MATERIALS AND METHODS
2.1. DATA SOURCES AND ANNOTATION
To validate the proposed approach, we consider two data sets
representing different technologies, with different read lengths,
read depths, sequencing strategies (single-end and paired-end),
replicate type, and derived from different human cell lines.

2.1.1. Set 1
Three replicate measurements of mRNA extracted from a human
HMEC 184A1 cell line culture were performed. With a total of
993 million 50 bp reads, corresponding to an entire ABI SOLiD-
3+ flow cell per measurement sample, this constitutes one of the
largest RNA-Seq data sets featuring technical replicates to date
(measurements SRR413934, SRR413935, and SRR413936 from the
PNNL-EMSL project with SRA-ID SRP011007).

2.1.2. Set 2
Three measurements from the now publicly available expres-
sion profiles of H1-hESC cell lines from the Wold/Caltech lab
(experiments SRX026674, SRX026669, and SRX026685 from
the encode project with SRA-ID SRP003497) were also exam-
ined. They provide 2 × 50 million of 75 bp paired-end reads
per measurement, obtained using an Illumina Genome Ana-
lyzer II. While the measurements are not technical replicates,
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biological replicates of cell lines are sufficiently similar (in con-
trast to, say, patient samples) to allow a comparative study of
processing approaches and their effects on measurement pre-
cision. The fact that we observe a similarly strong perfor-
mance improvement in both data sets furthermore confirms this
post hoc.

For an unbiased assessment of splice-form identification rate,
we focused on reads aligned to the comprehensive 140,079 human
transcripts annotated in EnsEMBL 58.

2.2. MapAl PIPELINE
The performance of MapAl is demonstrated using the well estab-
lished TopHat + Cufflinks programs as reference. Similar results
were observed with alternative programs (data not shown).

In the standard TopHat + Cufflinks pipeline, annotated “gene
models” are only used by the Cufflinks step (right-hand side,
Figure 1A). MapAl, in contrast, allows the exploitation of gene
models already at the alignment stage: Reads are directly aligned to
the known transcript sequences (left-hand side, Figure 1B). MapAl
next maps the aligned reads to genomic locations described by the
corresponding “gene models” (box highlighted in bold), taking as
an input a transcriptome mapped (SAM) file together with tran-
script annotations and produce a chromosome based SAM file.
Cufflinks can subsequently be used for an estimation of transcript
abundances (right-hand side).

Reads mapping to different splice forms of the same gene are
reduced to one alignment, during MapAl processing when they
match the same genomic location (Figure 2). On the other hand,
different reads mapping to multiple targets are kept as distinct,
matching different genomic locations.

We make that any read aligner supporting the SAM format
can be used (Li and Homer, 2010). Here, RNA-Seq reads were
aligned to the transcript sequences with Bowtie (Langmead et al.,
2009). This facilitates a direct comparison of the tested pipelines
because Bowtie is also used internally by TopHat. Bowtie v0.12.7
and TopHat v1.1.4 were run with settings suitable for the examined
data set types (see Appendix for details).

2.3. QUANTIFYING EXPRESSION LEVELS
Expression levels were calculated using Cufflinks v0.9.1 (Trapnell
et al., 2010) with EnsEMBL gene models provided as specified. For
de novo only transcript discovery, EnsEMBL gene models were pro-
vided to Cufflinks in order to ignore all reads that could have come
from known genes. Parameters were set for maximal sensitivity
(--min-frags-per-transfrag 1 and -F 0). When pro-
cessing alignments in the MapAl pipeline, the option -A 0 could
also be set, as all parts of a read were known to originate from the
same transcript sequence (this parameter is usually used to sup-
port reliable splice junction discovery through TopHat ). For splice
forms supported by less than one read alignment as assigned by
Cufflinks, expression levels were set to zero. For a direct splice-
form level comparison of MapAl and TopHat results, expression
estimates had to be normalized by the total number of alignments
considered at the respective Cufflinks step.

2.4. MEASURES OF REPRODUCIBILITY
For a systematic assessment of reproducibility, we can either con-
sider the coefficient of variation (CV) on the linear scale, or the SD
of log expression levels. For a number of reasons, gene expression
data is typically analyzed on a log scale, on which differences in
expression are examined by a t -test. Differences on the log scale
then correspond to a fold-change on the linear scale. In this con-
text, the appropriate measure of precision is the SD on the log scale.
When referring to a relative error of 20% or less in the manuscript,
we threshold the SD σ < log2(120%) so that a value μ + σ com-
pared to μ on the log2 scale corresponds to a relative error of 20%
or less on the linear scale. We considered a transcript measured
reliably if the relative error was less than 20%. The comparisons
of reproducibility do not depend on this arbitrary threshold. Note
that reproducibility also determines the power of statistics that
operate without replicates (Anders and Huber, 2010).

It is noteworthy that many analyses considering replicate pre-
cision exclude measurements with no signal in any one of the
replicates. This creates a methods bias toward a better perceived

A

B

FIGURE 1 | Workflows for RNA-Seq expression profiling. The established
TopHat pipeline (A) is compared with the new MapAl approach (B), which
exploits gene models already at the alignment stage. Arrows indicate data

flow – alignments can be provided in SAM format (Sequence Alignment/Map),
gene models in GTF (Gene Transfer Format), a refinement of the General
Feature Format (GFF).
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FIGURE 2 | Algorithm structure of MapAl. The flow chart presents the
algorithmic structure of the MapAl pipeline. The steps executed by the
MapAl script are marked by a dashed rounded rectangle. In particular, reads
are first aligned to the known transcript sequences using any aligner
supporting the SAM output format. They are then mapped to genomic
locations by MapAl by means of the provided gene models. Alignment
attributes embedded in the SAM format are adjusted according to
strandedness. Then, for each read, alignments identical at the genome level
are merged to produce the final genomic alignment file.

precision in the assay. In the examined Data Set 1, of all iden-
tified transcript targets, 14% had zero reads in one or two of
the replicates but non-zero counts in the others, with 1–26 reads
observed. These transcripts substantially contribute to the mea-
surement noise at low expression levels, and consequently have to
be counted toward the fraction of unreliable measurements. That
approach is consistent because they have an infinite error on the
log scale (and also the coefficient of variation on the linear scale is
always >80%).

3. RESULTS
We introduce MapAl, a novel approach for the quantification of
transcript abundances from RNA-Seq data. We have validated
our tool in comparison to the popular TopHat + Cufflinks analy-
sis pipeline. In particular, we have considered the numbers of
transcripts that could be identified and measured reliably. This
was tested on two independent data sets representing alternative
sequencing strategies and technologically different platforms.

3.1. READ MAPPING
Read alignment statistics are shown in Table 1. On one hand,
the established pipeline with TopHat yielded up to 10% more
mapped reads. This reflects the additional, unknown transcripts

Table 1 | Statistics of reads and mapping results.

Repl. Reads TopHat Bowtie + MapAl

Map. reads Junct Map. reads Junct

(A) DATA SET 1

1 340 172 (51%) 18 168 (50%) 45

2 341 170 (50%) 17 167 (49%) 45

3 311 155 (50%) 16 152 (49%) 41

Total 993 497 (50%) 51 487 (49%) 131

Repl. Read pairs TopHat Bowtie + MapAl

Map. read

pairs

Junct Map. read

pairs

Junct

(B) DATA SET 2

1 49 36 (74%) 12 31 (63%) 22

2 50 37 (73%) 12 34 (67%) 25

3 50 36 (71%) 12 33 (65%) 23

Total 149 108 (72%) 35 97 (65%) 70

(A) Presents results for Data Set 1, whereas (B) shows the results for Data Set 2.

Each row corresponds to one of the three replicate samples. Sums are displayed

at the bottom of each table. All counts are given in millions, percentages are rel-

ative to the number of reads collected. The first group of columns gives results

from mapping reads to the genomic sequence using TopHat. This is contrasted

by the second group with results for MapAl, where reads are mapped to known

transcript sequences using Bowtie and quantification is based on gene models

explaining the alignments of these reads to the genome. Consistently for both

data sets, while a slightly smaller amount of total reads was mapped, the number

of reads hitting splice junctions increased two- to threefold.

discovered by alignment to the genome sequence. The effect was
particularly clear for Data Set 2, where paired-end reads could be
exploited and TopHat was able to take advantage of the longer
75 bp reads, for which it was designed. In contrast, however,
MapAl identified 2–3 times as many reads falling on known exon
junctions, a consequence of making use of known splice-form
sequences already at the alignment stage. Alignments to a typ-
ical transcript illustrate this point in Figure A1 in Appendix.
In the IGV browser window (Robinson et al., 2011), the blue
boxes represent the second and third exons of ENST00000377403
(H6PD). The coverage band at the top indicates that reads entirely
falling into exons are mapped identically by both MapAl (top)
and TopHat (bottom). The difference is in the alignment of reads
straddling splice junctions. In particular, for this exon structure,
no reads spanning the exons one and two were identified by
TopHat, whereas a substantial number was correctly mapped by
MapAl (bridging the junction to the left of the browser window).
Similarly, no reads spanning the exons three and four were iden-
tified by TopHat, whereas MapAl correctly identifies many reads
spanning this region (bridging the junction to the right of the
browser window). While some reads spanning the splice junc-
tion between exons two and three were found by TopHat, about
twice as many such reads were identified by the MapAl pipeline.
It is these reads mapping to exon junctions that often play a
key role in identifying the expression of a particular splice-form,
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and therefore determine both splice-form identification rate and
transcript-specific measurement precision.

In addition we have examined the effects of providing TopHat
known splice junctions via GTF a file (-G option) or through
a junction list file (the -j option). Interestingly, this consistently
increases the number of alignments falling on splice junctions by
about 7%. Thus the remaining discrepancy can only be explained
by particularities of the TopHat algorithm, such as the filtering of
reads where the junction falls into a terminal region of the reads.
We have also explored alternative TopHat parameter options (such
as less restrictive -a and -F settings), yet the main picture remains,
giving only a further 8% increase of the number of reads falling
on junctions.

It also worth noticing that for MapAl about 80% of identified
splice junctions were supported by more than 10 alignments. For
TopHat that fraction was about 2/3, indicating that MapAl is not
only able to identify more reads falling on splice junctions but also
increases the support of identified splice junctions.

3.2. REPRODUCIBILITY OF QUANTITATIVE EXPRESSION PROFILING
Table 2 compares the numbers of transcripts that could be iden-
tified and measured reliably. For Set 1 the MapAl pipeline found
101,169 splice forms versus the 87,649 identified by TopHat (72
vs 63% of all known transcripts). See Appendix for a detailed
comparison.

Even more pronounced performance differences emerge when
we consider only reliably measured splice forms: The standard
TopHat + Cufflinks pipeline, including de novo discovery of alter-
native splice forms and genes, could assess 35,405 splice forms with
a relative error <20%. Interestingly, making use of known gene
models increased the number of reliably measured transcripts to
39,116, even though these now include only known genes and
splice forms.

Using MapAl, however, the expression levels of 56,980 tran-
scripts could be measured reliably – obtaining an improvement
by almost 50% over the established workflow. Figure 3 compares
the distributions of measurement errors. On one hand, the max-
imum errors are larger for TopHat (red curves, extending further
to the right). On the other hand, a larger number of transcripts
could be measured with low errors by MapAl (black curves plot-
ting higher values on the y-axes to the left of the dashed lines). The
dashed lines indicate measurement errors of 20%. These observa-
tions equally hold for the technical replicates of Data Set 1 and the

biological replicates of Data Set 2 (which exhibit higher variation
in general).

It is noteworthy that the 56,980 known transcripts that could be
measured reliably can easily be complemented by measurements
for newly discovered genes, adding another 11,288 transcripts, and
bringing the total to 68,268 reliably profiled splice forms. This is
almost twice as many as the 35,405 that could be assessed reliably
with the standard pipeline, and similar improvements could be
demonstrated for Data Set 2 (Table 3).

As it is always interesting to compare the performance of alter-
native pipelines, MapAl has been constructed for an easy combi-
nation with other tools that support the SAM format, supporting
future developments and further independent benchmarks.

3.3. COMPARISON OF EXECUTION TIMES
Collected data sets getting even bigger, it is of interest to asses
the execution time of the analyzed pipelines. The examined
approaches considered a similar number of alignments, thus giv-
ing similar running times for the Cufflinks step. As this step is fast
compared to the overall running time of the pipeline, we can focus
on the remaining steps, comparing Bowtie + MapAl and TopHat.

As MapAl performance was disk bound, parallelization did not
yield a considerable speed-up. Thus MapAl was run in single-
thread mode, however, parallel analysis of reads aligned to tran-
scripts for each chromosome is worth further consideration. Note
that the performance of the file system may easily become the
limiting factor in overall throughput.

Table 4 presents averaged execution times for both pipelines.
For Data Set 1, featuring shorter, single-end reads, the MapAl
pipeline executed over five times faster than established
TopHat + Cufflinks. For Data Set 2, MapAl was almost twice faster,
despite two factors working to the advantage of the established
tools: (1) TopHat was designed and optimized for the longer
75 bp reads, and (2) each pair of reads is treated as a “one frag-
ment” by TopHat, while both reads are processed independently
by MapAl, doubling the effective number of sequences that have
to be considered.

4. DISCUSSION
Whereas taking advantage of known transcript sequences at the
alignment stage and simultaneously discovering new alternative
splice forms of known genes will require the development of
extended models for the estimation of transcript levels, MapAl

Table 2 | Statistics of identified and reliably measured transcripts.

TopHat + Cufflinks TopHat + Cufflinks + models Bowtie + MapAl + Cufflinks + models

Identified Reliable Identified Reliable Identified Reliable

Set 1 503,286 (–) 35,405 (–) 87,649 (63%) 39,116 (28%) 101,169 (72%) 56,980 (41%)

Set 2 1,027,612 (–) 6,468 (–) 97,570 (70%) 15,288 (11%) 105,091 (75%) 21,091 (15%)

For each analysis pipeline, the number of transcripts identified, as well as the number of transcripts that could be measured reliably are shown. The corresponding

fractions of all known splice forms are displayed in brackets where applicable. Exploiting information about known splice forms much reduced measurement error

and thus increased the number of transcripts assessed reliably (left to right). The first row is for Set 1 (3 × 300 mio 50 bp SOLiD reads). The improvements seen for

Set 2 demonstrate that this applies even for experiments with biological replicates (3 × 50 mio 2 × 75 bp Illumina GA II paired reads).
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FIGURE 3 | Distribution of measurement errors. Each of the plots compares
the distributions of measurement errors for TopHat (red line) and MapAl
(black line). The x -axis shows the SD across three replicate measurements on
the log scale. The dashed vertical line marks an error of 20%. The y -axis

represents the number of splice forms that could be measured with a certain
precision (scaled to an arbitrary unit allowing a comparison across samples).
The first panel displays results for Data Set 1 [(A) technical replicates], the
second panel is for Data Set 2 [(B) biological replicates].

Table 3 | Statistics of identified and reliably measured transcripts, adding genes identified de novo.

Bowtie + MapAl + Cufflinks + models TopHat + Cufflinks (de novo) Together (models + de novo)

Identified Reliable Identified Reliable Identified Reliable

Set 1 101,169 56,980 164,138 11,288 265,307 68,268

Set 2 105,091 21,091 367,383 3,579 472,474 24,670

The left-most column of Table 2 includes results for both known transcripts and genes identified de novo. Restricting the pipeline to known splice forms and mak-

ing use of known splice-form sequences as much as possible has considerably increased the number of transcripts that can be assessed reliably. These statistics

are shown again in the left-most column of this table. We can now consider adding genes identified only de novo. Statistics for these genes are shown in the middle

column. Taken together, we can achieve the most powerful analysis, namely combining the output of the [Bowtie + MapAl + Cufflinks + models] pipeline with the

additional results from [TopHat + Cufflinks (de novo)].

Table 4 | Comparison of pipeline execution times.

Data Technology Reads/read pairs TopHat Bowtie + MapAl

Set 1 50 bp single-end ABI SOLiD-3+ 330 130 h 23 h 30 min

Set 2 75 bp paired-end Illumina GA II 50 11 h 30 min 7 h 40 min

For each data set, the table compares average execution times for both pipelines. Values were averaged across replicates. Tools were run on a typical modern

workstation equipped with 2× Intel E5520 2.26 GHz (allowing up to 16 threads).The machine had 42 GB of RAM, and data was accessed via NFS on a 12-disk RAID-6.

To take advantage of execution parallelization, Bowtie and TopHat were run as recommended allowing up to 15 worker threads in addition to the manager thread

(-p 15).

builds on existing tools to provide a fast and straightforward
solution for quantitative expression profiling by RNA-Seq.

It supports both users and further development by giving
a free choice of combining alternative steps at different stages

of the process. In particular, a wide range of read mappers
supporting the standard SAM format can be employed, because
MapAl also handles indels correctly. Indels are the most fre-
quent form of sequencing error (Albers et al., 2011) but can
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also play an important role in variant discovery (Krawitz et al.,
2010).

For this manuscript, the software has been validated on data
from single-end reads generated by a stranded RNA-Seq protocol
(SOLiD, Data Set 1), and on data from paired-end reads gener-
ated by an unstranded RNA-Seq protocol (Illumina, Data Set 2).
We are now extending the tool to support single-end, paired-end,
and mate-pair reads from both stranded and unstranded RNA-Seq
protocols.

We are also improving the handling of exon junctions. With
few exceptions, exons are longer than 50 nucleotides (Berget,
1995). Therefore, reads spanning more than two exon junctions
have been very rare for early next-generation sequencing data,
with typical read lengths as short as 36 bp. Current equipment
already produces 150 bp reads. With read lengths of modern plat-
forms ever increasing, reads spanning multiple splice junctions
are becoming a more frequently observed issue. As these reads
are particularly powerful in the discrimination of specific splice
forms, we are adding full support for reads that span multiple
junctions.

The next release of our software implementing these fea-
tures will become available on http://www.bioinf.boku.ac.at/pub/
MapAl/early March 2012, and will also support the latest version
of Cufflinks (Jan 2012), taking advantage of recent features like the
improved multi-mapped read correction that has been introduced
last year.

In summary, MapAl provides a flexible, modular approach to
quantitative expression profiling by RNA-Seq, building on the
strengths of popular established tools. It implements advanced
features dealing with challenges in read alignment to support the
analysis needs of the latest sequencing platforms. In particular, it
takes advantage of splice-form sequence information already at the
alignment stage. MapAl increases the number of reliably measured
known transcripts by about 50% and also allows the profiling of

new genes, in total almost doubling the number of transcripts that
can reliably be assessed.

NOTE ADDED IN PROOF
With version 1.4.0 released this year, TopHat can now also map
reads directly to the transcriptome, exploiting ideas similar to the
approach first introduced in Łabaj et al. (2011). Initial compar-
isons with MapAl, however, suggest considerable differences in
resulting expression level estimates, apparently due to additional
heuristics and different implementation details. In view of the
substantial effects of selecting one program over another, further
comparative studies of alternative tools are certainly of interest.
The modular approach of MapAl gives users a valuable choice,
allowing an easy combination of its efficient two-stage mapping
strategy with established options, like Bowtie and Cufflinks, but
also working directly with other tools supporting the SAM format.

AVAILABILITY AND IMPLEMENTATION
The MapAl suite is available for download under the GPL at
www.bioinf.boku.ac.at/pub/MapAl
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APPENDIX
Bowtie AND TopHat EXECUTION PARAMETERS
To facilitate a direct comparison of the established TopHat pipeline
with the new approach implemented in MapAl we have used
Bowtie as an aligner because it is also used by TopHat. To make
sure that the comparison is as fair as possible we run Bowtie with
the settings used internally by the TopHat tested (v1.1.4).

For Data Set 2 (Illumina), TopHat runs Bowtie with the
following parameters:

bowtie -q --un TopHat1/tmp/left_kept_reads_
missing.fq \
--max/dev/null -n 2 -p 15 -k 40 -m 40

As we are not interested in separate reports about not aligned
reads and reads aligning to too many locations we specify options
--max and --un to drop these. The -S switch requests output
of alignments in SAM format:

bowtie -q -n 2 -p 15 -k 40 -m 40 -S

For Data Set 1 (ABI SOLiD, colourspace), TopHat runs Bowtie
with the following parameters:

bowtie -q -C --col-keepends --un \
TopHat1/tmp/left_kept_reads_missing.fq
--max \
/dev/null -n 2 -p 15 -k 40 -m 40

Because the original files of this data set are provided in .fastc and
.qual formats, we change -q to -f. Again, we drop --max and
--un and add -S to select the required output files and formats,
yielding:

bowtie -f -C --col-keepends -n 2 -p 15 -k
40 -m 40 -S

Users might want to consider increasing the values for the -k
and -m parameters while aligning directly to the transcriptome in
order to allow more correct hits to be reported, as large numbers
of such hits can be expected for complex splice-form structures.

DETAILED COMPARISON OF EXPRESSION LEVEL ESTIMATES FROM THE
TWO PIPELINES
MapAl identifies additional reads spanning exon junctions. We
here discuss the differences in expression level estimates that are
observed as a result. Comparative scatter plots for individual repli-
cates are presented in Figure A2. For each transcript, the x-axes
show the MapAl expression level in comparison to the TopHat
expression level on the y-axes, each on a log10 scale. Darker gray
levels indicate a higher number of transcripts. Note that we plot
transcripts with no expression call at –5 in order to also visualize
differences in presence calls.

First, consider the simple gene models of Figure A3A. At suf-
ficient coverage, it is possible to assess the expression of both

splice forms even without reads spanning exon junction. Adding
read alignments that fall on splice junctions will therefore slightly
increase the coverage at exon boundaries and thus increase the
respective expression levels. This contributes to the observation in
the scatter plots (Figure A2), that the expression levels for MapAl
are in general higher (densities below the diagonal).

Larger differences can already be expected for the simple gene
model of Figure A3B. Consider a scenario where no reads span-
ning exon 2 could be identified by TopHat, as shown in the plot of a
hypothetical coverage at the top of the panel. This can happen par-
ticularly easily for shorter exons. In that case, the evidence seems
to suggest that splice-form T1 was clearly expressed whereas there
is a lack of specific evidence for an expression of T2. Adding read
alignments that cover the splice junctions between exons 1 and
2 or exons 2 and 3 changes the picture. One may even reach the
opposite conclusion, namely, that splice-form T2 was expressed
whereas T1 was not, if there is a sufficient number of these reads.
In such extreme cases, a difference in presence calls will be observed
(Table A1). These contribute to the densities parallel to an axis in
the scatter plots.

Generally, if both splice forms were expressed, one expects addi-
tional read alignments that cover the splice junctions between
exons 1 and 3, providing specific evidence for the expression of
splice-form T1, and also additional read alignments that cover the
splice junctions between exons 1 and 2 or exons 2 and 3, providing
specific evidence for the expression of splice-form T2. In that case,
the MapAl expression level for T1 will be lower (contributing to
the density above the diagonal). In contrast to TopHat, MapAl can
however make a presence call for T2, contributing to the horizontal
density in the scatter plot. This explains why the density indicating
presence calls unique to MapAl (horizontal), has a larger volume
than the density indicating presence calls unique to TopHat (verti-
cal). The scatter plots thus reflect that MapAl consistently identifies
more transcripts. Table A1 gives a detailed comparison.

More complex effects can be understood using the gene model
of Figure A3C as an example. Consider the scenario where no
reads spanning exon junctions could be identified by TopHat, as
shown in the plot of a hypothetical coverage at the top of the
panel. With no evidence for the specific expression of the differ-
ent splice forms, reads are evenly assigned. Additional evidence
from alignments falling on splice junctions plays a critical role
in assessing the specific splice-form expression levels. In a com-
mon case, reads covering exon junctions support the dominant
expression of a particular splice-form. Taking this evidence into
account will therefore boost the MapAl expression level estimate
for this splice-form, while depressing the expression level esti-
mates for the others. This change is smaller as it is spread across
multiple splice forms. That explains why the deviations below the
diagonal in the scatter plots comparing MapAl and TopHat are
stronger. In fact, depending on the data set and replicate con-
sidered, expression levels for MapAl were higher for 38%–42%
of all known transcripts, and higher for TopHat for 13%–17%
(Table A2).

In summary, the correct consideration of reads spanning splice
forms in MapAl can affect expression estimates considerably.
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FIGURE A1 | Alignments to a typical transcript. The figure shows an IGV
browser window (Robinson et al., 2011). The blue boxes represent the second
and third exons of ENST00000377403 (H6PD). The gray coverage band at the

top reflects that reads entirely falling into exons are mapped identically by
both MapAl (top) and TopHat (bottom). The difference is in the alignments of
reads straddling splice junctions.
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FIGURE A2 | Scatter plot of transcript expression levels. Scatter
plots present relation between transcript expression assessed by
Cufflinks for TopHat pipeline (y -axis) and MapAl pipeline (x -axis).
The left column presents scatter plots of three replicates of Data Set

1, the right column presents scatter plots of three replicates of Data
Set 2. From all scatter plots it is clear that substantial amount of
transcripts are higher expressed for MapAl pipeline than for TopHat
one.

Frontiers in Genetics | Genomic Assay Technology April 2012 | Volume 3 | Article 28 | 10

http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genomic_Assay_Technology
http://www.frontiersin.org/Genomic_Assay_Technology/archive


Łabaj et al. Improving RNA-Seq precision with MapAl

FIGURE A3 | Exemplary gene models. Schematic diagrams presents
three example gene models. The top row displays a hypothetical coverage
assuming a uniform distribution of reads falling entirely within the exons.
The models (A–C) exhibit increasing complexity. In the first model, it is still
possible to assess the expression of alternative splice forms even without
reads covering exon junctions. Additional junction spanning reads will
moderately affect expression level estimates. In the next model, adding

read alignments that fall on splice junctions can already considerably affect
presence calls and estimates of specific splice-form expression levels. In
the most complex model, adding read alignments that fall on splice
junctions plays a critical role in assessing the specific splice-form
expression levels. In this scenario additional evidence will boost the
expression level estimate for the dominant splice-form, while depressing
the expression level estimates for the others.

Table A1 | Comparison of presence calls.

Data Set Replicate TopHat (%) MapAl (%) In both (%) TopHat only (%) MapAl only (%)

1 1 54.5 67.4 51.1 3.3 16.2

2 54.6 67.3 51.2 3.3 16.0

3 54.2 67.1 50.9 3.2 16.1

2 1 51.8 62.1 46.6 5.3 15.5

2 52.1 64.2 47.2 4.9 17.0

3 52.2 64.6 47.4 4.7 17.1

For each data set and each replicate, the table shows the number of known splice forms identified byTopHat and MapAl.The majority of splice forms is seen by both

pipelines. Additional reads spanning exon junctions, however, provide additional evidence for or against the presence of specific splice forms in MapAl, resulting in

the differences observed.

Table A2 | Comparison of expression level estimates.

Data Set Replicate MapA1 >TopHat (%) MapA1 ∼TopHat (%) MapA1 <TopHat (%)

1 1 41.8 45.6 12.6

2 41.7 45.6 12.7

3 41.6 45.8 12.6

2 1 38.4 44.7 16.9

2 39.4 43.6 17.0

3 40.3 43.1 16.6

For each data set and each replicate, the table shows the number of known splice forms for which MapAl andTopHat yield similar expression levels and for how many

splice forms expression levels deviated by more than 20%. The statistics include splice forms without presence call from one or both of the pipelines.
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