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Abstract

Objective: To study the characteristics of large-scale loyalty card data obtained in Finland, and to evaluate their potential

and challenges in health research.

Methods: We contacted the holders of a certain loyalty card living in a specific region in Finland via email, and requested

their electronic informed consent to obtain their basic background characteristics and grocery expenditure data from 2016

for health research purposes. Non-participation and the characteristics and expenditure of the participants were mainly

analysed using summary statistics and figures.

Results: The data on expenditure came from 14,595 (5.6% of those contacted) consenting loyalty card holders. A total of

68.5% of the participants were women, with an average age of 46 years. Women and residents of Helsinki were more likely

to participate. Both young and old participants were underrepresented in the sample. We observed that annual expenditure

represented roughly two-thirds of the nationally estimated annual averages. Customers and personnel differed in their

characteristics and expenditure, but not so much in their most frequently bought items.

Conclusions: Loyalty card data from a major retailer enabled us to reach a large, heterogeneous sample with fewer

resources than conventional surveys of the same magnitude. The potential of the data was great because of their size,

coverage, objectivity, and long periods of dynamic data collection, which enables timely investigations. The challenges

included bias due to non-participation, purchases in other stores, the level of detail in product grouping, and the knowl-

edge gaps in what is being consumed and by whom. Loyalty card data are an underutilised resource in research, and could

be used not only in retailers’ activities, but also for societal benefit.
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Introduction

Evidence of the relationship between health behaviour
and chronic diseases is well established.1 The risk fac-
tors of diseases – unhealthy diet, smoking and alcohol
consumption – are an inequality concern, as they are
clustered in the population.2 Therefore, it is essential to
reach those at greatest risk of developing chronic con-
ditions such as obesity, type 2 diabetes and cardiovas-
cular diseases. Population health behaviour monitoring
and evaluation play a critical role in understanding and
addressing these challenges. It is imperative to have
relevant, reliable and timely information on the risk
factors derived from valid, yet cost-effective, sources.

Of all health behaviours, diet might be regarded as
the most challenging to assess, due to its substantial
variability in quantity and quality. Dietary data
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collection instruments, such as food frequency ques-
tionnaires and food diaries, are associated with large
random variation and systematic biases because of
imprecision in recall and reporting, as well as with ten-
dencies to report healthier dietary habits than those
actually practised.3,4 It is also known that population
surveys typically underestimate alcohol consumption.5

Many dietary assessment methods (e.g. food records
and diet interviews) are limited to short periods of mea-
surement, which makes their validity for assessing long-
term health behaviour poor. The strengths and the
weaknesses of the methods are comprehensively pre-
sented elsewhere.6,7

Health-related surveys have generally indicated
declining trends in response rates.8 More specifically,
the Finnish Drinking Habits Survey reported a
response rate of 60% in 2016 (97% in 1968), and US
data from seven National Alcohol Surveys showed a
response rate of 52% in 2010 (77% in 1995).9,10 The
National Findiet Survey on food consumption also fol-
lowed the same long-term trend of decreasing partici-
pation rates: 60–63% in 1982 and 2007, and 57% in
2012.11–13

Interest in overcoming these challenges by alterna-
tive means of data collection has grown.14 The field of
digital epidemiology studies how big data – social
media data, wearable devices, Twitter data and GPS
tracking, for example – can be used to effectively
address public health problems.15–17 However, innova-
tive technologies do not necessarily overcome the
inherent individual bias related to self-reported dietary
and alcohol intake. Many measurements (e.g. using
wearable devices) provide high-resolution data on a
specific individual, but information on the population
is limited, since this kind of data collection is resource
intensive. On the other hand, instruments that provide
data on many individuals tend to provide little infor-
mation on the individual level and/or lack relevant
structure (e.g. social media data). Ideally, alternative
data sources should be sufficiently ‘big’ in terms of
both the number of individuals and the amount of
measurements, and importantly, provide unbiased
details on these individuals.

Loyalty card data potentially possess these features.
By loyalty cards we mean electronic customer cards
used in grocery retailing, which automatically register
grocery expenditure per purchased item every time the
customer swipes their card at the shop. The incentive is
a financial reward in exchange for data with the retail-
er. Customer loyalty programmes are widely used
among retailers, with the aim of increasing customer
loyalty. For example, in the UK, nearly 90% of retail
customers belong to at least one customer loyalty pro-
gramme.18 By analysing the data, retailers can build
customised marketing communications, identify the

most profitable customers, establish relevant segmenta-
tion and consumer profiles, and promote complemen-
tary or more expensive products to customers on the
basis of their previous purchases.19 Prior studies have
indeed observed an association between card owner-
ship and loyalty.20,21

An obvious problem with loyalty card data from a
research perspective is the distribution of the purchases
over several retailers. This problem may, however, not
always be as restrictive as it first seems. The Nordic
markets are highly centralised: the three largest
market chains claim an average of 80–90% of the
market share.22 In Finland, the largest commercial
operator (S Group) had a market share as high as
47.2% in 2017, which enabled investigation of larger
population groups based on data from a single retail-
er.22 This, combined with the fact that in Finland the
loyalty card uptake among consumers is the highest of
all the European countries,23 provides a relatively reli-
able means with which to evaluate national-level food
intake via loyalty card data. In addition, automated
registration of expenditure and the long duration of
data collection make the assessment of diet, smoking
and mild alcohol consumption less subjective and free
from recollection error. Tin et al.24 reviewed 18 studies
using supermarket sales data for various population
food and nutrition monitoring purposes. Their findings
support the feasibility of using supermarket sales data
to monitor a population’s food purchasing patterns.
Finally, it is possible that unplanned and unhealthy
purchases – including alcohol and cigarettes – are
made in smaller stores. In Finland, since the opening
hour regulation (2016), smaller retailer concepts have
become more competitive than kiosks. Purchases made
in these smaller stores are also recorded to loyalty card
databases, which reduces possible bias due to differen-
ces in the expenditure profiles of large and small stores.

The aim of this paper is to introduce a research
project addressing the potential and the challenges of
loyalty card data for health research. Based on large-
scale loyalty card data obtained from Finland, we pre-
sent our data collection process, as well as the first
empirical results regarding participant and purchasing
profiles. In the discussion, we also provide a SWOT
(strengths, weaknesses, opportunities, threats) analysis
of the value of loyalty card data.

Methods

Setting and recruitment

The loyalty card data were provided by the S Group
(S-ryhm€a), a major Finnish retailer co-operative operating
in Finland, Russia and the Baltic countries (https://www.
s-kanava.fi/web/s/en/s-ryhma-lyhyesti). We contacted the
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card holders (owners of an S Group loyalty card) via

email and asked for electronic informed consent to

obtain selected background characteristics (age, gender

and residential postal code) and grocery expenditure

data concerning them from 1st of January to 31st of

December, 2016, for research purposes, without personal

identifiers.
An invitation to the study, with an electronic con-

sent form, was emailed to 245,877 customers (‘custom-

ers’ sample) (i) with a known email address, (ii) who

had granted permission to be approached with research

queries, (iii) who were at least 18 years of age, and (iv)

who held a loyalty card of the HOK-Elanto retail co-

operative (S Group) operating in the Southern Finland

region, reaching from the capital city of Helsinki about

50 km north. The total number of customers in the

HOK-Elanto database was 915,797, and geographical-

ly they were mainly located in Helsinki and nine nearby

municipalities. The ‘personnel’ sample was based on

email contact with 13,763 S Group employees through-

out Finland. At the time of the queries, the S Group

had 40,482 employees. The emails were sent in April

2017 and the collection of electronic informed consents

ended in May 2017.

Ethical issues

Ethical approval was obtained from the University of

Helsinki Review Board in humanities and social and

behavioural sciences. We committed to following the

‘Responsible conduct of research and procedures for

handling allegations of misconduct in Finland’ (The

Finnish Advisory Board on Research Integrity). Both

the research group and the S Group signed a contract

on data transfer, ensuring the independence of the

research and scientific publishing from busi-

ness interests.

Statistical analysis

The background characteristics and expenditure were

mainly analysed descriptively using summary statistics

and figures. To analyse the determinants of total expen-

diture from S Group stores using the individual-level

data available, we applied a linear mixed model. The

model was based on the customer sample and included

age group (categorised as< 25, 25–29, 30–34, . . .,
80–84, 85– years), gender and their interaction as

fixed effects, and postal code as a random effect to

reflect spatial heterogeneity.
To assess the extent of the similarity of the customer

sample to the general population in the same region, we

obtained the age–gender distribution of the 10 munic-

ipalities in the HOK-Elanto region from Statistics

Finland. We could not identify any relevant reference

population for the personnel sample. We then modelled
the probability of being a HOK-Elanto loyalty card
holder and participation among all residents of the
region applying a logistic regression model, which
enabled the investigation of the distribution of the
dichotomous outcome variable (participant, yes/no)
on several explanatory variables. We included gender,
age, gender by age group interaction, and municipality
in the model as fixed effects. In this analysis, to match
the available statistics, the age groups were defined as
16–19, 20–24, 25–29, . . ., 80–84, 85–. From the model-
ling result, we used inverse probability weighting to
adjust the sample to the regional population and to
reduce the non-participation bias in expenditure.

Results

Sample characteristics

The data on expenditure consisted of 14,595 consenting
loyalty card holders (5.6% of those contacted). We
obtained the background data of 14,522 loyalty card
holders altogether: 13,274 customers (5.4%) and 1248
members of personnel (9.1%). Supplemental figures 1
and 2 illustrate the geographical distribution of the
participants. The majority of the customer participants
lived in Southern Finland as expected, but the person-
nel sample was spread throughout the country.
Employees were included in the sample to offer wider
perspective into nationwide food purchases and as they
form a loyal and interesting socio-economic subgroup,
which is on the front-line facing changes in the labour
market due to digitalisation.

Overall, more than two-thirds of the participants
were women (Table 1). The gender distribution was
particularly skewed in the personnel sample, of which
80.5% were women.

The average age of the participants was 45.7 years
(Table 1). Not surprisingly, the personnel sample par-
ticipants tended to be younger than those in the cus-
tomer sample; the average age difference being
approximately six years. The customer sample con-
tained a substantial proportion of older people: 25%
of the participants were at least 58 years old, and 10%
were at least 67 years old. The same percentiles were 49
and 56 years in the personnel sample, respectively.

The population age–gender distribution in the 10
municipalities showed that women were more likely
to participate in the study than men. Municipality sta-
tistics showed that 52.1% of the HOK-Elanto region
residents, who were at least 15 years old, were women.
Although the mean age of the residents was similar
(46.2 years) to that in the sample, we observed that
young and old participants were underrepresented
(Supplementary Table 1). Residents of Helsinki were
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the most likely to participate. All factors of the model
were highly significant (p< 0.0001; data not shown).

Expenditure data and determinants

Expenditure data contained the total grocery expendi-
ture of >13 million purchase events, which were pre-
classified into 184 product groups and accompanied by
a timestamp: date of purchase and time of day. Each
purchase was recorded in euros.

The overall means of total annual expenditure were
2443 EUR and 4419 EUR in the customer and person-
nel samples, respectively. When corrected to the age
and gender distribution at each municipality, the
weighted mean for the customers was lower: 2322
EUR. In the customer sample, we observed that both
gender and age were significant determinants of total
expenditure (p< 0.0001). Mean expenditure peaked at
middle age and declined towards both ends of the age
range (Figure 1). Men’s expenditure tended to be great-
er than women’s, but the gender difference diminished
in the 35–50-year age range (Figure 1; p¼ 0.016 for the
gender by age interaction term). We also noted some
variation due to postal code areas (p< 0.0001).
However, this variation was not large. The high pro-
portion of women and less widely spread age distribu-
tion in the personnel sample did not facilitate the same
analysis of determinants as that of the customers. The
right panel in Figure 1, however, suggests similar pat-
terns to those in the customer sample. Most notably,
the mean annual expenditure was substantially larger
in this sample, which is probably due to the more
attractive personnel reward system of an additional
3% discount.

When ranked by euros spent annually, we observed
that the 10 most popular product groups were the same
in the two samples, and their expenditure patterns were
similar (Figure 2). Interestingly, beer and cigarette
product groups were among these, and the mean ciga-
rette expenditure of the personnel sample was approx-
imately twice that of the customer sample.

Cyclic purchasing behaviour during the week was
evident (Figure 3); Fridays and Saturdays were the

most active purchasing days, and Sundays and
Tuesdays the least active. National holidays appeared
to be preceded by a peak in expenditure. ‘Skiing holi-
day week’ was in week 8 in 2016, and the associated
decline in expenditure is observable in Figure 3.

Discussion

Our aim was to introduce a research project that would
address the potential of loyalty card data for health
research. The project was based on large-scale loyalty
card data obtained in Finland: altogether 14,595 loyal-
ty card holders consented to releasing their retrospec-
tive expenditure data.

Participation in the study

In recent decades, participation rates in health-related
surveys in Finland, as in most other countries, have
declined.25 In our study, the participation rate fell
well below those of comprehensive surveys, and was
highest among personnel, women, middle-aged
people, and customers living in Helsinki. Several rea-
sons could explain this. First, it is possible that emails

Table 1. Observed background characteristics of customers and personnel. No background data were available for n¼ 73 participants.

Gender Age (at 1.1.2016)

n (%)

Number of distinct

postal codes Female Male Mean (SD) Range

Customers 13,274 (91.4%) 655 8937 (67.3%) 4336 (32.7%) 46.2 (14.7) 16–90

Personnel 1248 (8.6%) 669 1004 (80.5%) 244 (19.6%) 40.1 (11.6) 18–74

Overall 14,522 (100%) 962 9941 (68.5%) 4580 (31.5%) 45.7 (14.5) 16–90
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Figure 1. Mean annual expenditure by age and gender in the two
samples. Observed age–gender specific means are denoted by
markers, and solid lines indicate weighted loess curve fits.
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do not reach everyone who is invited, because

addresses may be outdated, or the invitation could be

directed to the junk folder. Second, an invitation by

email is easy to delete, forget or ignore, particularly if

it does not raise the immediate interest of the recipient.

Third, the recipients could indeed be less willing to

share detailed and retrospective expenditure data on

themselves than to provide answers to surveys. The

determinants of the participation rates are partly in

contrast with the results of the FINRISK surveys con-

ducted in 1997–2012, in which women living in the

capital region were more likely to be non-participants

in surveys than women living in rural areas.25 In sur-
veys, the non-participants are more likely to be young,
male, unmarried, have a lower education level and
income, and of foreign origin, factors that are also

associated with less optimal health behaviour.8,26 As
we did not obtain the background characteristics of
everyone invited, we could not directly compare the
non-participants and the participants. However, we

could obtain summary measures among HOK-Elanto
region loyalty card owners as a whole, including those
who did not fulfil the invitation criteria: their mean age
was 46.0 years and 59.4% of them were women. This

partly explains the difference in the gender distribution
between the residents (of whom 52.1% were female)
and the customers (67.3%), but not completely. The
mean age fell very close to the means of the residents

and of the customers. However, the availability of an
average measure does not shed light on the observed
underrepresentation of the young and old participants
in the sample.

We had limited access to socio-demographic meas-
ures. However, we expected our personnel sample to be
less educated than average Finnish employees, as 13%

of people working in the retail sector have a low-level
(less than high school), 62% a mid-level (high school,
vocational school), and 25% a high-level (BSc degree
or higher) education.27 The respective proportions

among all Finnish employees were 10%, 45% and
45%. Despite the apparent difference between the edu-
cation frequency distribution of the two samples, we
observed a higher participation rate in the personnel

sample than in the customer sample.
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Figure 3. Total expenditure of customers during calendar year.
Daily sums (grey solid line) and centred seven-day moving average
(black solid line). The vertical reference lines are positioned at
Good Friday, 1st of May, Midsummer Eve and Christmas Eve.
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Our study shows that loyalty card data offer the

opportunity to reach a large, potentially more hetero-

geneous sample with far less resources than other sur-

veys of the same magnitude. However, the

participation rates were low, and the data did not

seem to fill all known participation gaps, for example,

those related to age, and we cannot rule out the possi-

bility of the socio-demographic gradient in non-

participation. Therefore, in studies such as ours, with

poor participation rates but cost effectively obtained

large sample sizes, it would be even more important

than in surveys to collect the variables related to non-

participation in order to at least partially correct any

biases that may result from this (e.g. by inverse prob-

ability of participation weighting). Unfortunately, this

is not always possible, and such variables may differ

from those that are predictive of non-participation in

surveys, which means that they would have to be iden-

tified in advance. Parallel interest in the development of

methods for correcting for data missing not at random

may turn out to be useful for large-scale data with

selective participation.28,29

In the future, increasing population diversity along-

side declining trends in response rates will challenge

large national dietary surveys, as a representative

sample will become even harder to recruit, and the rap-

idly changing supply of food products will require com-

prehensive dietary assessment methods and

continuously updated food composition databases. At

the same time, digital development allows easy access

to expenditure data with available detailed informa-

tion, enabling the detection of differences in the diets

of different population groups. However, this often

requires additional information on customers, a type

of data that is more difficult to obtain directly from

retailers due to data confidentiality. A separate ques-

tionnaire on background variables or linkage with

other relevant datasets could provide additional

socio-demographic measures, which would increase

the value of the data.

Expenditure profiles and their determinants

We observed that the top products were the same in the

two samples, even though the participants in the per-

sonnel sample purchased considerably more from the S

Group. The total expenditure does not seem to be

strongly associated with the most commonly purchased

products, which could mean that the purchases from

other retailers are similar to those in our data.

Demonstrating a high proportion of expenditure

within the retailer’s stores combined with similar rela-

tive distribution of purchased products across different

levels of retailer-specific expenditure add to the

credibility of the data. However, we cannot empirically

rule out the possibility of differences between the levels.
Information on household size and members was

not available, but it is likely that the number of chil-

dren and adults in a household could largely explain

the differences between age groups in mean annual

expenditure.
The mean of cigarette expenditure of the personnel

sample was approximately twice that of the customer

sample. This could be partly due to the lower socio-

economic status of the personnel and hence the higher

prevalence of smokers, or because they purchase a

larger share of their groceries and cigarettes in the

store where they work. The variation due to postal

code areas could be indicative of socio-economic differ-

ences or due to the geographical location of the stores.

Strengths

One of the clear fundamental strengths of loyalty card

data is the fact that they are not based on perception:

without risk of impreciseness or over- or underestima-

tion, loyalty card data capture the kind of items a par-

ticular person has bought from a specific retailer. They

use retailers’ existing data infrastructure, cash registers,

and IT infrastructure to collect vast amounts of data

that accumulate continuously over time. Loyalty card

data can be regarded as a by-product: they result from

retailers’ existing processes and can be shared for

health research purposes with marginal addition-

al costs.
The sheer size of loyalty card data is a clear asset. It

not only allows investigation of the whole sample, but

also studies smaller subpopulations such as the elderly,

on whom comprehensive data are often hard to obtain.
As customer loyalty programmes accumulate data

on a household level, loyalty card data automatically

provide longitudinal insight into how food expenditure

evolves over time, given that the share and the compo-

sition of food expenditure for a particular retailer does

not change. Traditional methods are often limited to

cross-sectional data or focus on shorter time periods

(e.g. one month). In contrast to loyalty card data, con-

sumer panel data (e.g. Nielsen Homescan) cover all

purchases for a certain time period but may suffer

from selection bias of more affluent populations and

misreporting, similar to traditional dietary assess-

ment methods.

Weaknesses

Customers often purchase food from different sources.

Some may prefer buying vegetables from marketplaces,

meats from primary retailers, and bread from a local

bakery. Similarly, as customers may divide their
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grocery shopping between several retailers, analysing
data from only one retailer could give an incomplete
picture of household-level expenditure. This is one lim-
itation of loyalty card data in markets with many food
retailers, such as the UK. However, in the Nordic
countries in particular, where the level of market con-
centration in grocery retailing is high, loyalty card data
obtained from even a single retailer could provide a
good picture of household expenditure. Statistics
Finland reports (preliminary data from 2016) that the
average annual consumption of groceries and non-
alcoholic drinks is 2916 EUR per household, and of
alcohol and cigarettes 578 EUR per household.30 Our
estimates fall close to these national benchmarks.
Although indirect, they are indicative of a very high
proportion of expenditure among loyalty card holders
in S Group stores. Interestingly, the observed means of
personnel exceeded the national estimates. This may
indicate that personnel heavily concentrate all their
shopping in S Group stores due to personnel discounts.

Although loyalty card data capture what is bought,
they cannot directly reveal exactly what is eventually
consumed and by whom. Consumers living in the same
household may eat (or drink) out, share dinners with
friends and relatives, or buy food for pets or others not
living in the same household. Loyalty card data there-
fore only partially reflects consumption by household
members. Good compatibility between respondent-
collected household-level food purchase data (covering
all purchases) and individual-level dietary data has
been demonstrated,31–33 and thus, household-level
food purchase data can reasonably reliably be used to
model individual-level dietary patterns if all purchases
are recorded. In addition, consumers with specific
socio-economic backgrounds may be prone to specific
types of retailers. For example, the customers of a pre-
mium food retailer or a hard discounter may offer
heavily biased consumption patterns in relation to
both food consumption and healthiness. Therefore, to
address this weakness, loyalty card data should be
compared with population data whenever possible.
We are currently planning a validation study that will
address these limitations more closely.

The value of loyalty card data is highly dependent
on data accuracy. For example, loyalty card data can
be collected on a total sum level (i.e. expenditure of
43.50 EUR), product category level (24.20 EUR
worth of vegetables), or product level (4.20 EUR
worth of carrots). However, food expenditure data
may not be grouped into clearly demarcated functional
categories, which would be essential for linking with
health data. In nutritional science, commonly used
food groupings are mainly based on earlier findings
regarding the associations between dietary components
and health. The use of different categories weakens

comparability between studies. Too vaguely or incor-
rectly (from the research point of view) categorised
data – such as plant-based protein products being clas-
sified into the same category as whole meat products –
even in large volumes, have little value. In this respect,
access to loyalty card data does not necessarily mean
high health research potential.

Opportunities

Loyalty card data may offer a unique, underutilised
data source for health research that significantly com-
plements existing data sources. Second, utilising loyalty
card data for the benefit of health research could
uncover the societal potential of customer loyalty
card data for collective benefit. In addition to their
business value, the data can be used as a resource for
creating societal value. This could also offer companies
another way in which to fulfil their corporate social
responsibility: Through their own actions, they can
leverage existing data assets for societal benefit.
Third, combining loyalty card data with other data
sources could further amplify their potential for any
research. For example, linking loyalty card data with
health outcome data, either on the individual or region-
al level, could offer new perspectives to the association
between specific diseases and diet/food (un)healthiness.
This could be done using data from national health
surveys or medicine statistics conducted in the same
region, which could be linked by, for example, postal
code area. This strategy would enable ecological anal-
ysis of the association between regional expenditure
and health outcomes. Another possibility would be to
approach the loyalty card owners directly through sur-
veys or invitations to health examinations. However,
this could prove to be difficult in practice. Fourth, loy-
alty card data may provide a lens through which
researchers can evaluate the impact of various health
promotion campaigns and policy interventions (e.g.
taxes) on actual food consumption. For example, in
close collaboration with food retailers, researchers
could design a set of interventions to guide consumers
towards healthier diets, and through loyalty card data
evaluate their impact on different customer groups.
This would help us understand what types of interven-
tions, mechanisms or incentives influence consumers’
food consumption.

In addition to these opportunities, Tin et al.24 iden-
tified other areas of nutrition monitoring that could use
supermarket sales data: the assessment of food pur-
chase patterns within and between population groups,
longitudinal comparison of population food purchase
patterns with regard to policy or economic changes, the
derivation of nutrient availability by linking food pur-
chase data to food composition data, the validation of
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self-reported dietary data by comparing actual food
purchases with reported purchases, and the assessment
of key determinants of the healthier food choices of a
population. We add to this the possibility of tailoring
personal feedback by using customers’ usual food
expenditure and hence influencing their food pur-
chases. Ideally, an online feedback system could
enable a customer to check the dietary quality or
carbon footprint of their own expenditure. Such inter-
action between the customer, researchers and the retail-
er would substantially add to the public health value of
the data. In New Zealand, individualised electronic
supermarket sales data were used to tailor culturally
targeted nutrition resources for ethnically diverse shop-
pers in a large supermarket trial.34

The potential of purchase data would be greater if
they were reliably linked with other relevant datasets,
and with correction factors to provide valid estimates
of consumed food from bought food.24 Keeping up
with the modern food landscape requires systematic,
meaningful linkages across data on food purchase/
sales, food intake, food composition, and nutrition
fact panels.35 Ng and Popkin35 concluded that the abil-
ity of researchers and nutrition professionals to prop-
erly integrate different data sources and to fully
capitalise on the arising opportunities remains some-
what undeveloped. However, the number of studies
based on purchase data supplemented with other data
sources is increasing. A recent Danish study36 com-
bined comprehensive household food purchase data
with nutrition information and individual register
data when assessing the effect over time of unemploy-
ment on food purchase behaviour and diet composi-
tion. The study provided valuable methodological
examples to be utilised with similar datasets. The
Diet-Related GHG Index has also been modelled on
the basis of the same Danish household food purchase
data and a food frequency questionnaire.33 However,
digital epidemiology is still in its early stage of devel-
opment. Methodological robustness is an ethical as
well as a scientific requirement, involving, for example,
the validation of algorithms, a better understanding of
confounding, filtering systems for noisy data, manage-
ment of biases, and the selection of appropriate
data streams.37

Threats

In the past decade, data privacy has become an impor-
tant issue for both companies and consumers; recent
discussion on the issue may have made consumers more
aware of possible misuses of data. For example, in
terms of social media usage, several reports and news
items have highlighted how consumers should be more
concerned about what data are being collected on

them.22,38,39 In general, most consumers are concerned
about the data collected on them on the internet. In
particular, recent data privacy issues with Facebook,
which linked consumers’ social media usage to targeted
political advertisements may have spillover effects on
other forms of customer data usages, including loyalty
programmes. However, with written consent approved
by an ethical board, purchase data could be utilised for
the common good in a transparent manner, while
respecting individual rights and liberties, which is the
crux of the debate on the ethics of big data.37

From a company’s point of view, customer data
have become a key component of almost any business.
Consequently, data privacy and protection have
become a focal competence area. The General Data
Protection Regulation provides new guidelines for
organisations in the European Union for improving
the management of risks and practices related to cus-
tomer data. The regulation may also limit retailers’
willingness to share data to third parties, including
researchers, and companies may become afraid of the
negative publicity that could result from allowing
researchers to investigate their customer data.
However, sharing valuable data offers a company the
opportunity to carry societal responsibility.

Conclusions

More attention needs to be paid to the potential of
loyalty card data for customers, research or society at
large, rather than for retailer purposes only.40 In this
paper, we have introduced a unique dataset of 14595 S
Group (retail markets) loyalty card holders. These data
consist of all food purchases, spanning over a period of
one year, in total >13 million purchase events. They
accumulate automatically, with high resolution, and
without participant-based reporting bias. Although
the potential for these kinds of digital big data is con-
siderable, challenges also arise: 1) the data collected
represent household purchases for most customers, 2)
only a part of all food purchases is from one single
retail chain; and 3) possible future restrictions and con-
cerns regarding individual data privacy. In concentrat-
ed markets such as those in the Nordic countries, these
resources are nevertheless highly intriguing for
researchers. In the future, efforts to overcome their
limitations, and balancing size with sufficient level of
detail could lead to new viewpoints regarding popula-
tion exposure, behaviour and lifestyle.
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