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Abstract
Microvillus inclusion disease (MVID) is a rare congenital severe
malabsorptive and secretory diarrheal disease characterized by blunted or
absent microvilli with accumulation of secretory granules and inclusion
bodies in enterocytes. The typical clinical presentation of the disease is
severe chronic diarrhea that rapidly leads to dehydration and metabolic
acidosis. Despite significant advances in our understanding of the
causative factors, to date, no curative therapy for MVID and associated
diarrhea exists. Prognosis mainly relies on life-long total parenteral nutrition
(TPN) and eventual small bowel and/or liver transplantation. Both TPN and
intestinal transplantation are challenging and present with many side
effects. A breakthrough in the understanding of MVID emanated from
seminal findings revealing mutations in   as a cause for MVID.MYO5B
During the last decade, many studies have thus utilized cell lines and
animal models with knockdown of   to closely recapitulate theMYO5B
human disease and investigate potential therapeutic options in disease
management. We will review the most recent advances made in the
research pertaining to MVID. We will also highlight the tools and models
developed that can be utilized for basic and applied research to increase
our understanding of MVID and develop novel and effective targeted
therapies.
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Diagnosis of microvillus inclusion disease
In 1978, Davidson et al. presented a case report of five infants  
with persistent severe diarrhea from birth and marked  
abnormalities of absorption associated with failure to thrive, 
leading to death in four infants1. The common histological  
abnormalities in duodenal mucosa from those infants were  
villus atrophy, crypt hypoplasia (without an increase in mitoses 
or inflammatory cell infiltrate in the lamina propria) and absence 
of a brush border in villus enterocytes, and an increase in  
lysosome-like inclusions2,3. Originally referred to as Davidson’s 
disease, congenital microvillus atrophy, and intestinal micro-
villus dystrophy, the disease was named microvillus inclusion  
disease (MVID) in 1989 by Cutz et al.4.

As with all rare genetic diseases, the diagnosis of MVID was  
quite challenging until recently and required histological  
evaluation for confirmation. It is important to note that  
MVID has a very low incidence, making it extremely difficult 
to investigate its pathophysiology5. The morphological anom-
alies observed in the enterocytes of patients with MVID 
are widely utilized in disease diagnosis2. Until recently, 
the gold standard in diagnosing MVID was combined light 
and electron microscopy of small bowel biopsy samples of  
patients. The abnormalities are mainly observed in the small 
intestine and less frequently in the colon6. However, some  
studies have shown that the colon and rectum biopsies may 
also contain characteristic features which would be useful in  
diagnosing MVID2,6,7.

The key hallmarks which aid in the differential diagnosis 
include blunted or absent microvilli, accumulation of secretory 
granules, and microvillus inclusions (MIs) in the epithelial  
cells2,8. As depicted in Figure 1, these granules, in most cases, 
are positive for periodic acid Schiff (PAS) stain and CD10 with 
an intracellular PAS or CD10 positive line in enterocytes that is  
commonly detected. Another apical marker which may aid 
in the identification of the trademark MIs is villin, an apical  
surface marker of enterocytes9. An important factor which  
should be accounted for during histological evaluation of  

biopsies is sampling variability and patient-to-patient variability. 
The diagnosis is confirmed further by genetic testing, which 
can specifically identify the genetic anomaly of each patient. 
In this instance, currently, there is a registry which tracks each  
genetic variation observed in MVID patients to facilitate ease 
of access to patient-related data for clinicians involved in the  
management of this rare genetic disorder10.

Differential diagnosis
There are several features that differentiate MVID from 
other diarrheal conditions with similar clinical presentation  
including the onset at birth, absence of inflammation, presence 
of vacuoles containing granules with the characteristic PAS and 
CD10 positive stain observed under light microscopy, and presence  
of MIs (Table 1). Other congenital disorders such as chloride 
and sodium diarrhea can be easily excluded from biochemical  
assays or genetic testing6,11. Tufting enteropathy is a disorder 
with similar onset and blunted villi; however, the presence of  
surface apical tufts as opposed to apical inclusion bodies in 

Figure 1. Characteristic histological features of microvillus 
inclusion disease reprinted with permission from Ruemmele  
et al.2. MVA, microvillous atrophy; PAS, periodic acid Schiff

Table 1. Characteristic features of congenital diarrheal disorders.

Congenital disease Major gene/s mutated Distinctive feature(s)

Microvillus inclusion disease MYO5B12, STX313, STXBP214 Blunted microvilli, microvillus 
inclusions

Chloride diarrhea SLC26A3 or Down Regulated in Adenoma (DRA)15 High-chloride diarrhea (fecal Cl–  
>90 mM/L) and normal microvilli 

Sodium diarrhea SPLINT2 (serine peptidase inhibitor 2), GUCY2C 
(guanylate cyclase C), and SLC9A3 (sodium 
hydrogen exchanger 3 (NHE3)16

High-sodium diarrhea (fecal Na+  
>145 mM/L) and normal microvilli

Tufting enteropathy EPCAM (epithelial cell adhesion molecule)17 Presence of surface apical tufts with 
blunted villi

Enteroendocrine cell 
dysgenesis

NEUROG3 (neurogenin-3)18 Lack of enteroendocrine cells with 
normal villi

Abetalipoproteinemia MTTP (microsomal triglyceride transfer protein)19 Fat vacuoles with foamy cytoplasm 
and normal villi
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enterocytes distinguishes tufting enteropathy from MVID.  
Enteroendocrine cell dysgenesis can be differentiated from  
MVID by the lack of enteroendocrine cells and the presence 
of normal microvilli. Finally, abetalipoproteinemia is distin-
guished from MVID by the presence of fat vacuoles and a foamy  
cytoplasm20.

Clinical manifestations of microvillus inclusion 
disease
Earlier studies in patients with MVID showed high stool  
volume (150 to 300 mL/kg/day) with remarkably elevated sodium 
content (approximately 100 mmol/L)2,21. The diarrhea present 
in MVID is considered to be non-osmotic in nature (i.e. fecal 
ion gap <100 mOsm) and is persistent even when the patient is  
unfed22. This type of diarrhea is categorized as electrolyte  
transport-related diarrhea caused by mechanisms involving 
net secretion of anions (chloride, bicarbonate, or potassium) 
and/or net inhibition of sodium or chloride absorption11,23–25.  
Steatorrhea and impaired glucose absorption have also been 
reported in MVID patients26,27. Various studies have shown  
mislocalization of apical membrane-targeted proteins such as 
sucrase isomaltase, alkaline phosphatase, and sodium hydrogen 
exchanger 3 (NHE3) in MVID, which might partly explain the 
pathophysiology of malabsorption and diarrhea28. Due to the  
high-volume and persistent diarrhea observed in these patients, 
the main life-saving treatment option remains life-long total  
parenteral nutrition (TPN). The use of life-long TPN poses  
many complications including sepsis and worsening cholestatic 
liver disease that may require intestinal transplantation. However, 
outcomes of intestinal transplantation remain poor2,27. Owing 
to the immature nature of the enterocytes present in infants 
with MVID, absorption of essential nutrients is hampered and, 
therefore, recent studies are directed at developing therapeutic  
agents which are capable of increasing the maturity of the  
enterocytes to ultimately recuperate the loss of absorptive  
capacity of the small intestine29. Although little progress has  
been made in developing treatment options, the growing 
research has certainly highlighted relevant mechanisms linking  
perturbation in cellular trafficking and signaling pathways to 
functional physiological defects leading to malabsorption and  
chronic diarrhea30.

Pathophysiology of microvillus inclusion disease
Studies in patients and human cell lines
The identification of gene mutations linked to trafficking  
pathways in MVID has paved the way for further research 
into better understanding of this intricate and challenging  
enteropathy. The major mutation observed in MVID patients 
is in the MYO5B gene, the key molecular motor gene regulating 
trafficking of important proteins into the brush border of the  
intestinal epithelial cells31. An online registry for MVID patients 
and their mutations has been generated which currently has 
188 MVID patients10. Although the majority of MVID patients  
exhibit mutations in MYO5B, mutations in other genes have 
also been identified that present with less severe enteropathy. 
For example, mutations in soluble N-ethylmaleimide-sensitive  
factor attachment protein receptor (SNARE) protein syntaxin-3 
(STX3) cause a variant form of MVID with lateral microvilli and 

occasional microvillus occlusions13. In addition, patients with 
mutations in STXBP2, encoding the syntaxin-binding protein-2 
(MUNC18-2) protein, also have intestine-related hallmarks of 
MVID besides their primary diagnosis of familial hemophago-
cytic lymphohistiocytosis type 5 (FHL5), a hyper-inflammatory  
immune disorder14. Recent studies by Dhekne et al.32 provided 
further evidence that MYO5B, STX3, and STXBP2 genes are  
functionally linked in MVID patients. In this regard, analysis of 
subcellular distribution of STX3 and MUNC18-2 in enterocytes 
of intestinal biopsies from patients with MYO5B or STXBP2 
mutations showed that MUNC18-2 and STX3 accumulated  
in intracellular puncta in the enterocytes of MVID patients as  
compared to apical localization in brush border plasma  
membrane in control enterocytes. In addition to the native 
biopsy samples, in vitro Caco2 model epithelium has been used  
extensively to recapitulate the loss of MYO5B on epithelial 
polarity and intracellular trafficking. Interestingly, MYO5B  
knockdown mimicked the loss of apical microvilli and lack 
of polarity and was associated with internalization of several  
apical membrane transporters such as Na+/H+ exchanger  
NHE331,33,34 and Down Regulated in Adenoma (DRA)34. While 
both NHE3 and DRA localization were significantly reduced 
on the apical membrane of human MVID enterocytes and  
MYO5B knockdown (MYO5B-KD) C2BBe cells, the localiza-
tion of cystic fibrosis transmembrane conductance regulator 
(CFTR) was mostly preserved28. Functional studies confirmed 
that Forskolin-stimulated CFTR ion transport was intact in  
MYO5B-KD T84 cells28.

Another recent study using stable MYO5B-KD in CaCo2-BBE  
cells established the critical role of MYO5B interactions 
with specific RAB small GTPases (RAB8A and RAB11) in  
MVID35. MYO5B-KD cells showed loss of microvilli; however, 
no MIs were observed. The expression of WT MYO5B in  
MYO5B-KD cells restored microvilli, while the expression of 
MYO5B–P660L, an MVID-associated mutation found within 
the Navajo population (that cannot bind to RAB11A), induced 
the formation of MIs but did not rescue the MYO5B-KD  
phenotype. On the contrary, the expression of a RAB8A  
binding-deficient MYO5B mutant partly restored the microvilli 
loss, but no inclusions were formed. These studies demon-
strated that the disruption of the MYO5B–RAB11A interaction 
results in the formation of MIs, whereas MYO5B–RAB8A  
binding is important for microvilli formation35. Recent studies 
by Vogel et al. identified Rab11- and/or Rab8-positive recycling 
endomembrane compartments that were enriched with apical  
membrane proteins, including STX3 and NHE3, in MVID  
patients’ enterocytes36.

With respect to mechanisms underlying the origin of inclusions 
and microvillus loss, a recent review by Schneeberger et al.29  
highlighted three potential models or a combination of these 
models to explain the pathological hallmarks of MVID. In  
the first, described as a trafficking model, defects in vesicle  
trafficking caused by MYO5B or STX3 mutations result in the  
subapical accumulation of vesicles and in the lack of appropri-
ately polarized apical proteins. In the second model (recycling  
model), perturbations in the recycling and delivery of apical  
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recycling endosomes (AREs) result in the subapical accumula-
tion of apical proteins and in the formation of microvilli-contain-
ing macropinosomes. As discussed above, MYO5B is required for 
the localization of RAB11A-positive AREs, which contain various 
signaling molecules, such as pyruvate dehydrogenase kinase  
(PDK1), protein kinase C (PKCi), and serine threonine protein 
kinase (MST4) colocalized with ezrin28,32,37. The third local  
induction model proposes that in MVID, RAB11A-positive  
AREs accumulate and function as a subapical signaling  
platform to induce ectopic intracellular microvillus formation37. 
The presence of MIs in MVID is the pathognomonic finding  
based on microscopy of intestinal tissues in diagnosing patients. 
However, the formation of these inclusions in enterocytes is not 
yet defined as a cause or consequence of the disease, although 
the latter is more accepted in the current clinical setting. 
Plausibly, MIs may represent a secondary effect of overall  
disrupted epithelial polarity in MVID38.

Animal models to study microvillus inclusion disease
In the first report of animal models of MVID initiated about  
4 years ago, in 2015, Schneeberger et al. and Cartón-Garcia  
et al. described the deletion of the MYO5B gene in mice and its  
close phenotypic similarity to the human disease39,40. The  
inducible intestine-specific knockdown of MYO5B could  
successfully recapitulate human MVID in just 4 days post  
induction. However, germline knockdown of MYO5B in mice 
very closely showcases hallmarks of MVID in the duodenum  
during the gestational stage (day 20 of gestation) and in  
newborn mice40. In addition, in a recently developed swine  
model published as an abstract form, where the mutated gene 
in MYO5B (P663L) is introduced, the disease phenotype is  
similarly discernable41. The pig model is the first large animal  
model of human MVID that develops diarrhea shortly after  
birth and may be useful for preclinical studies.

Similar to studies in cell lines and patients with MVID, intestinal 
tissues from MYO5B-knockout mice showed decreased  
localization of apical protein NHE3 but not CFTR42. Also, the 
tamoxifen-inducible VilCreERT2;MYO5Bflox/flox model demonstrated 
a loss of apical NHE3, sodium glucose transporter-1 (SGLT1), 
DRA, and aquaporin-7 (AQP7)38. These mice did not show an  
intestinal barrier defect, based on Ussing chamber analysis, 
but exhibited decreased SGLT1 activity and increased CFTR  
activity. However, in MVID patient intestinal explants, increased 
permeability has been reported43. Also, mislocalization of CFTR 
was demonstrated in some patient biopsies34. These differences 
further highlight that knockout of myo5B may not necessarily  
resemble the presence of a mutated MYO5B protein. In  
addition, it is unclear if these models have defects in the large 
intestine, as most of the studies have utilized the small intestine  
alone.

Enteroids derived from models of microvillus inclusion 
disease
Intestinal enteroids have recently emerged as an important  
model which closely recapitulates the human disease phenotype 
due to epithelial defects. Because of the presence of all types of 
epithelial cells and the self-renewing capacity of the enteroids, 

these cultured native intestinal epithelial cells represent a supe-
rior model as compared to cancer cell lines. In this regard, there 
is a significant scarcity of patient-derived enteroids from MVID13.  
This is mainly due to the lack of a reasonably large patient  
cohort and the very early onset and fatality of the disease. 
However, intestinal enteroids generated from different mouse  
models where MYO5B is knocked down exhibited abnormali-
ties with features similar to those seen in the small intestinal  
tissues of MVID patients33,38,42. A recent study conducted 
by Mosa et al. underscored the importance of studying the  
pathology of MVID by demonstrating the ability to rescue the 
defects present in MUNC18-2 (mutated in FHL5) knockdown 
mouse enteroids by expressing the human WT protein and not 
by the mutant FHL5 patient variant (P477L)36,44. It is noteworthy 
to mention that owing to the rare nature of the enteropathy,  
long-term preservation of patient samples to generate organoids is 
warranted to enhance the current understanding of the disease.

Caenorhabditis elegans nematode model
Although very simple, consisting of only a few enterocytes,  
the C. elegans nematode model possesses a close resemblance 
to human intestinal epithelium with distinct polarization of  
apical and basolateral membranes with a prominent microvillus 
brush border. In this regard, by silencing various components  
in the V-ATPase complex (an important regulator of cellular 
trafficking), the authors identified that specific subunits of the  
protein complex, in particular V0, are upstream of other 
genetic defects which leads to a MVID-like phenotype in this  
model45. Due to the simplicity of the model, this may be  
important for use as a platform to study the development of 
the disease as well as potential cellular mechanisms, which 
can be a target for developing drug molecules for MVID  
management.

Extraintestinal manifestations in microvillus inclusion 
disease
The MYO5B gene is expressed in all epithelial tissues, but the 
most prominent phenotype is observed in the intestine. However,  
several extraintestinal pathologies have also been reported in 
other tissues. In this regard, pathologies identified include renal  
Fanconi syndrome, cholestasis, hematuria, and pneumonia27,46. 
Therefore, animal models of MVID could be useful to study  
these conditions that may be missed in humans owing to the  
complications associated with disease diagnosis, the very early 
onset, and lack of survival. With respect to biliary dysfunc-
tion, a recent study found cholestasis in 30% of their patient 
cohort, which was characterized by a low level of serum  
gamma-glutamyl transpeptidase (GGT)47. The study reported 
abnormalities in the recycling of MYO5B and RAB11A and  
mistargeting of bile salt export pump (BSEP) to the canalicular 
membrane of hepatocytes. Although cholestasis in MVID patients 
was previously thought to be solely due to TPN-related toxicity, 
evidence has emerged supporting cholestasis in the absence of 
TPN due to apical trafficking defects in MVID hepatocytes48. 
In this regard, the investigators noted that the unexpected low  
levels of GGT in MVID patients contrasted with the high  
levels of this surrogate in cases of liver failure associated with  
TPN. In a very recent preliminary study conducted in MYO5B 
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null mice and pigs with Navajo mutation (published in an  
abstract form), the authors demonstrated an interference with 
apical membrane trafficking in hepatocytes. Specifically,  
multidrug resistance associated protein-2 (MRP2) and BSEP were  
mislocalized to subapical compartments. In addition, dipeptidyl 
peptidase-4 (DPPIV) enzyme was mistrafficked and the liver 
bile canaliculi lacked branching, highlighting the importance 
of MYO5B in studying liver dysfunction associated with MVID  
patients49.

Conclusions
Malabsorptive disorders lead to retarded growth and nutritional 
deficiencies. The complex nature of these disorders poses a  
challenge for treatment options50. Understanding the pathophysi-
ological mechanisms of malabsorption should improve current  
management protocols and immensely enhance our knowl-
edge regarding intestinal physiology. In this regard, increased  
understanding of the intriguing malabsorptive disorders of  
childhood such as MVID should offer new insights at the  
cellular and molecular levels to unravel the link between cellu-
lar trafficking and epithelial absorptive processes. The research 
in the field of MVID has considerably progressed over the last  
decade. The generation of novel mouse models with MYO5B 
deletion has been successful in recapitulating various hallmark  
features of MVID. So far, the utilization of these models has 
not only substantiated the role of MYO5B and trafficking  

machinery in the disease’s pathogenesis but also underscored the 
importance of cellular trafficking mechanisms in maintaining  
optimal function of nutrient and electrolyte transporters such 
as SGLT1 and NHE3. Unlike the in vitro and in vivo mouse  
models, where loss of MYO5B ideally disrupts intracellular  
trafficking in all cells, the manifestation of abnormalities in MVID 
patients is patchy and sometimes confined to a few enterocytes5. 
In addition, although some studies described the presence of  
abnormalities in the colon and rectum of MVID patients, most 
animal models focused only on the duodenum and upper small  
intestine35,38,39,42. More studies in the distal parts of the small  
intestine and colon should broaden our understanding of the 
compensatory mechanisms that the intestine may employ to  
adapt in consequences of MYO5B mutations. The mechanisms 
underlying lipid malabsorption associated with MVID remain  
elusive. Therefore, investigations to explore the molecular basis 
for dysregulation of lipid absorption in MVID patients and 
mouse models are warranted. The inducible MYO5B-deficient 
mouse models have the additional advantage of studying  
the consequences of time- and age-dependent occurrences of  
disease-specific hallmarks29,33,38. Although MVID is a rare  
disorder, the organoids derived from MVID patients can  
provide unique opportunities to model the disease and modify 
the mutated genes by state-of-the-art approaches, including the 
CRISPR/Cas9 gene editing system, for rescuing the defective  
phenotype29.
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