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Super-enhancer in prostate cancer: transcriptional disorders
and therapeutic targets
Xuanrong Chen 1, Qianwang Ma1, Zhiqun Shang1✉ and Yuanjie Niu1✉

Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans.
Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer.
Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic
alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as
large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene
expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype
relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-
related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene
regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
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The hallmarks of cancer, including sustaining proliferation,
activating invasion, metastasis, and aberrant replicative immortal-
ity, are closely connected to cancer-specific regulatory mechan-
isms of gene expression1. Prostate cancer (PCa) is one of the
leading causes of cancer-related deaths in men worldwide2,3.
Although clinically beneficial treatment options for localized PCa
include surgery, radiotherapy, and androgen ablation therapy,
there is basically no cure for metastatic castration-resistant PCa
(CRPC)4–6. Therefore, it is most necessary than ever to further
understand the crucial regulators within the PCa and develop new
therapies7.
The enhancer is a class of regulatory DNA sequence that defines

the genetic regulatory circuitry8. It increases the promoter activity
to activate target genes through specific transcription factors
(TF)9. For cancer-type-specific gene expression, enhancer closely
interact with the promoter, over either short or long distances,
independent of the corresponding orientation and position
concerning the transcription start sites (TSS)10,11. Enhancers often
contain conserved recognition DNA sites for RNA polymerase, TFs,
and co-activators and function as binding platforms10–12. Accu-
mulated evidence reveals that enhancers are bound by epigenetic
modifications, such as mono-methylation at H3 lysine 4
(H3K4me1) and acetylation at H3 lysine 27(H3K27ac), gener-
ally13,14. In addition, the three-dimensional structure of enhancers
to TSS affects the interaction activity and expression output, with
the distance varying from less than 10 Kb to more than 1 Mb15,16.
Super-enhancer (SE) is defined as large clusters of enhancers

spanning across a long-range region of genomic DNA that drives
stronger transcriptional activation ability than individual enhan-
cers4. Similar to the typic enhancer, SE incorporates modelized
regulation mechanisms. Specific TFs bind to SE to trigger
promoter-enhancer interaction, mediated by chromatin looping,
to load the SE to the cognate promoter. Then the basal machinery
is recruited to initiate the downstream transcription activity
(depicted in Fig. 1). The SE was first proposed in mouse embryonic
stem cells (mESCs), by chromatin immunoprecipitation (ChIP)-

sequencing analysis of active histone marker (H3K27ac) and other
TFs17. The ROSE (Rank ordering of super-enhancers) algorithm is
designed to search SEs by locating genomic proximity for
grouping elements to a putative target gene17,18. Generally
accepted models of SEs are considered to be large clusters of
regulatory elements (after over 20 Kb) binding with dense
transcriptional coactivators, such as BRD4 and CDK7, and with
high potential to activate target gene expression output19

(summarized in Table 1). As shown in mESCs, pluripotency genes
like OCT4, SOX2, and NANOG are all controlled and activated by
SEs, given the concept that SEs can drive specific gene expression
that controls and defines the cell identity and engages in cell-
type-specific biological processes20. It is worth noting that the
expression level of SE-related genes is significantly higher than
that of the typical enhancer-control genes, which has been widely
validated in a variety of cancer types21. On the other hand, this
addiction makes SEs and SE-related genes as potential therapeutic
targets and diagnosis22.
The most cutting-edge research has revealed that membrane-

less organelles, such as the nucleolus, stress granule, processing
body, and nuclear speckles form subcellular compartments to
facilitate signaling transduction and transcriptional regulation by
liquid–liquid phase separation23–25. In essence, the SE can be
described as a co-assembly of high-density transcription factors,
co-factors, chromatin regulators, non-coding RNA, and RNA
polymerases26,27. Computer simulations and experimental valida-
tions indicate that, in the context of the number and valence of
interacting components and the affinity of the interaction
between transcription factors and nucleic acids, phase separations
play essential roles in the SE assembly and function26,28. Inhibition
of the activity of SE function highlights sensitivity and vulnerability
in cancers along with cancer-specific oncogene downregulation,
which could be a possible therapeutic target for cancer
treatment29. SE complexes are dynamic, highly enriched con-
densates, particularly sensitive to SE-related inhibition26,28. The
essential components of SE are dysregulated in PCa, such as
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increased MED1 phosphorylation at T1457 in a CDK7-dependent
manner in metastatic CRPC and enzalutamide-resistant cells.
Bromodomain-containing proteins (BRDs) are overexpressed in
CRPC and show particular prognostic value in PCa.
Given the cancer-specific SE complexes in PCa, we summarize

the critical transcriptional regulation and therapeutic targets of
the SEs and SE-associated regulator proteins and provide
promising future directions for SEs in the prostate cancer
community (depicted in Fig. 2).

SE-RELATED PROTEIN BET/BRD4 IN PROSTATE CANCER
The bromodomain and extra-terminal domain (BET) family
proteins act as “readers” of acetylated histones, and are important
transcriptional regulators. BRD2, BRD3, BRD4, and BRDT (bromo-
domain testis-specific protein) are part of the BET family30. BRDT is
most commonly expressed in germ cells, while the other three are
ubiquitously expressed. BRD2, BRD3, BRD4, and BRDT share an
extra-terminal domain and conserved N-terminal bromodomains
(BD1 and BD2). BRD4, as a chromatin reader, recognizes acetylated
histones and facilitates the transcription activation by propelling
the recruitment of the positive transcription elongation factor P-
TEFB31. In particular, BRD4 shows a density binding activity in SE
and drives the cell-identical gene expression32. In PCa, AR-positive
or AR-signaling-component cell lines (VCaP, LNCaP, and 22RV1)
are selectively sensitive to BRD4 inhibition, but not in AR-negative
cell lines (PC3 and DU145)33,34. BRD4 has been found that
sequence-specific DNA-binding TFs may physically interact with it

in a gene-specific manner, such as AR35. Mechanically, BRD4
physically interacts with the N-terminal domain of AR, and BRD4
colocalizes with AR at AR target loci to drive AR-mediated gene
transcription. For the BMPR1B gene, AR-and BRD4-associated
binding signals in the enhancers and SEs are significantly induced
by dihydrotestosterone (DHT) treatment. The expression levels of
BMPR1B are corroborating with the ChIP-seq data. Moreover,
almost half of the known BRD-containing proteins are related to
PCa, which also contribute the main chromatin-related processes
and changes in PCa, beyond BRD436. These BRD-containing
proteins (such as ATAD2, BRD8, CREBBP, and KTM2A) perform a
wide range of downstream functions by recognizing acetylated
histones, also present to be TFs, AR co-activators or methyltrans-
ferases37–39. Therefore, BRD-containing proteins are important
transcriptional regulators that initiate chromatin restructuring
beyond the SE function.
AR signaling remains the most common resistance mechanism

in most CRPC patients40. On one hand, BRD4, by functioning
downstream of AR signaling, appears to be effectively blocking
the oncogenic drivers of PCa and less likely to be bypassed by
acquired treatment resistance of AR therapy. BRD4 inhibition
preferentially blocks both BRD4 and AR recruitment (the BRD4 and
AR cistrome) to target loci on a genome-wide scale and leads to
defects in transcriptional elongation. The acquisition of BRD4-
associated SEs leads to prompt expression of key oncogenic
genes, including TMPRSS2-ETS, KLK3, and BMPR1B in PCa,
especially CRPC. Urbanucci et al. demonstrated that the transcrip-
tion of certain BET proteins (BRD2 and BRD4), and ATAD2, a
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Fig. 1 The structure and function of enhancer and super-enhancer. a Schematic structure of the typical enhancer. b Schematic structure of
the super-enhancer. H3K27ac, acetylation of histone 3 lysine 27; TF, transcription factor; RNA pol II, RNA polymerase II; mRNA, messenger RNA.

Table 1. The main difference between enhancer and super-enhancer.

Regulatory element H3K4me1 mark H3K4me3 mark H3K27ac mark TF binding Mediator binding Transcriptional output

Enhancer + – + + + +/++

Super-enhancer + – +++ +++ +++ +++

H3K4me1 H3 lysine 4 monomethylation, H3K4me3 H3 lysine 4 trimethylation, H3K27ac H3 lysine 27 acetylation, TF transcription factor.
“+” and “–” indicate the presence or absence, respectively.
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recently reported common coactivator of AR, may be induced by
androgen41. The upregulated AR leads to a positive loop that
boosts the expression of BRDs to expand the AR cistrome by
increasing chromatin accessibility. On the other hand, BET
inhibitors can also operate via mechanisms other than AR
signaling. Shah et al. demonstrated that BET inhibitors resensitized
drug-resistant tumors to enzalutamide by inhibiting the gluco-
corticoid receptor42. Cai et al. showed that the BRD4 inhibitor, JQ1,
significantly inhibited androgen-independent growth of CRPC
cells in vitro and in vivo by blocking AR-V7 chromatin binding and
transcriptional programs co-activated by AR-V7 and ZFX in
addition to the canonical AR signaling43.

SE-related protein CDK7 in prostate cancer
The mammalian cyclin-dependent kinases (CDKs) contain sub-
families with specific functions related to cell cycle (CDK1, CDK2,
CDK4, CDK6) and transcriptional regulation (CDK7, CDK8, CDK9,
CDK12, and CDK19)44,45. CDK7 is a ubiquitously expressed kinase
that activates the cell cycle controlling through phosphorylation of
CDKs and plays a key role in transcription regulation46. The mRNA
and protein expression levels of CDK7 alone showed no significant
change in benign cells and PCa cells47. However, CDK7 activity
affects chromatin modification by promoting the recruitment of
histone methyltransferases SETD1A/B and SETD2, which are
phosphorylated by the C-terminal domain48,49. CDK7 also
phosphorylates a range of TFs, including p53 and nuclear
hormone receptors (RAR, AR, ER, etc.), to promote the transcription
activation activity and subsequent protein-degradation50–53.
Studies show that CDK7 inhibition can transiently block the
functional activity and expression of the oncogenic drivers (AR,
ETS, MYC, and E2F) in prostate cancer, and all these changes
require the involvement of MED1 as a cofactor47,54–56. CDK7
activates MED1 via ligand-specific phosphorylation, and the IDRs
(intrinsically disordered region) of MED1 form phase-separation
properties to be recruited to the AR-bound SEs, resulting in the
high-density assembly of the SE-related transcription apparatus.
CDK7 inhibition has been effectively tested in several aggressive
cancer types, including MYCN-amplified neuroblastoma, T-cell
acute lymphoblastic leukemia, triple-negative breast cancer, and
small-cell lung cancer50,57–60. The CDK7-related SEs mediate the
recruitment of AR and RNA polymerase II to boost the expression
of a host of target genes, known as the “Achilles cluster” genes,
thus becoming transcriptional addictive and sensitive to CDK7
inhibition50.

SE-related protein ERG in prostate cancer
The erythroblast transformation-specific (ETS) family proteins are
the essential transcription factors necessary for cell-type-specific
lineage differentiation and expression patterns61. ERG protein is

the master transcription factor for endothelial, hematopoietic, and
luminal cell differentiation62–65. It interacts with other transcription
factors by forming complexes to establish the cell-type-specific
patterns. In PCa, ERG expression and rearrangement is per se not a
strong prognostic biomarker and only relevant in the context of a
specific molecular subtype66–68. Gerke et al. found that it was
crucial to determine the prognostic value with other biomarkers,
such as RRM2 and TYMS, when applying the ERG status to predict
the outcomes69. ChIP-seq data show ERG binds to the vast
majority of SEs in VCaP (a TMPRSS2-EGR fusion-positive cell line)
cell65. The SE-associated lineage-specific machinery of ERG is
linked with the TFs like FOXA1 and HOXB13, which play important
roles in prostate-cancer-specific gene expression. Mechanically,
ERG increases the SEs activity partially through the BRG1-
associated chromatin remodeling complex to establish accessible
chromatin of SEs and transcriptional regulation. In summary, ERG
drives the prostate-cancer-specific lineage genes by regulating
SEs. TMPRSS2-ERG structural rearrangements occur in close to
50% of PCa patients and contribute to the ERG overexpression70.
The proposed model of ERG overexpression was previously
thought to be driven by TMPRSS2 promoter hijacking. Ken et al.
showed that TMPRSS2, along with the rearranged ERG allele,
formed an expanded SE71. The expanded SE still contains cis-
regulatory elements and extends into the ERG locus, which
promotes ERG overexpression. This work firstly confirms that the
expansion of the SE region after chromosomal rearrangements
could positively drive the target gene expression. As for ERG, it
synergistically regulates by physically interacting with prostate-
cancer-specific regulators AR, HOXB13, and FOXA1. The regulatory
landscape difference between TMPRSS2-ERG fusion and non-
fusion PCa types may depend on the SE-related ERG-specific
transcriptional profile, including activated NOTCH pathway. In
light of the present findings, we conclude that ERG contributes to
the SE-driven oncogenic transcriptional addiction, and that SEs
lead to the overexpression of the ERG gene, leading to subsequent
overexpression of ERG-target genes that drive the development
of PCa.

Other SE-associate factors in prostate cancer
Abundant evidence shows that the transcriptional regulatory
regions of SEs are practically enriched with cancer-related single
nucleotide polymorphisms (SNPs), resulting in dysregulation of
target genes and contribution to cancer development72–74. Chen
et al. demonstrated that high enrichment of PCa-specific risk
variants in SE regions, particularly in the disease-specific
regulatory regions and the DNA regulatory elements, may lead
to prostate carcinogenesis75. O-GlcNAc transferase (OGT), a
glycosyltransferase, catalyzes the addition of a single O-GlcNAc
sugar to serine and threonine residues76. OGT, as a major
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metabolic integration point in human cells, is also involved in the
hexosamine biosynthetic pathway (HBP) to increase O-
GlcNAcylation-modified nuclear proteins77. RNA polymerase II is
reported to be the most prominent O-GlcNAcylation-modified
protein that regulates the formation of the transcriptional pre-
initiation complex formation. Also, increased OGT expression has
been found in many cancers, including prostate cancer, where
high O-GlcNAc protein levels are associated with poor clinical
prognosis. Harri et al. showed that OGT regulated SE-dependent
transcription through chromatin compaction78. Over 70% of the
SE-related genes are related to the OGT chromatin mark, and the
OGT inhibition significantly decreases the SE-related mRNA
expression. The activity of OGT is required for the expression of
MYC-target mitotic proteins. Thus, OGT could be an effective
target for MYC-addicted PCa.
AR is a predominant target for PCa, owing to the functional AR

signaling in the early-and late-stage PCa. Simon et al. demon-
strated that R1881-activated AR bound at a comparable number of
SE sites in VCaP cells, and indicated that AR attributed to the SE-
associated action79. The androgen-regulated SE-target genes are
associated with cell-proliferation-associated gene sets, stem cell
properties, and hallmark AR signaling, such as KLK2, KLK3,
TMPRRSS2, and FKBP5. In addition, abundant evidence shows
that AR also tightly cross-talks with other factors80. In low
androgen environments or AR-overexpression status, AR promotes
the expression of some SE-complex-associated proteins, such as
BRD441. AR closely interacts with the BRDs in the N-terminal
domain (NTD) instead of the ligand-binding domain (LBD), since
the NTD was essential for the transcriptional activity of AR81.
Alternative splicing variants of the AR that lack LBD are
overexpressed in patients who are resistant to enzalutamide or
the androgen synthesis inhibitor abiraterone acetate82. For AR
mutants (full-length AR with point-mutated forms and AR with
lack of LBD splice variants and nonsense mutants), such as AR-V7,
AR T878A, and AR H875Y, some BET inhibitors (PFI-1 and BETi)
could reduce these mutants’ expression by regulating RNA
processing and reducing alternative splicing83,84. In this regard,
we suspect that the formation of AR-bound-SE may be partly
affected and the cistrome of AR mutants could redistribute while
retaining some binding sites. The current inhibitors may still be
effective for AR mutants, but the extent of the effect still needs to
be specifically evaluated.
The forkhead box A1 (FOXA1) transcription factor plays a pivotal

role for the development and differentiation of several endoderm-
derived organs, including prostate85. FOXA1 directly binds to and
de-compacts condensed chromatin to increase accessibility of the
binding sites for partnering nuclear hormone receptors, including
estrogen receptor and AR86. Lupien et el. showed that FOXA1
functionally collaborated with AR and was predominantly
recruited to the AR-regulated enhancers and SEs to establish a
lineage-specific program in PCa87. FOXA1 plays a key role in
prostate tumorigenesis by reprogramming the AR cistrome to new
binding sites and driving the transformation of normal prostate
epithelial cells88. Besides, FOXA1 also interacts directly with AR89.
Considering the AR-bound-SE complexes, the alterations in FOXA1
may impact subsequent effects on the AR cistrome and lineage-
specific programs in PCa.

Promising pharmacological targets
SEs drive PCa cells into becoming addicted to dysregulated
transcriptional programs mediated by BRD4, CDK7, ERG, and other
factors, but also become a powerful rationale for therapeutic
interventions. Targeting SE may disrupt the dysregulated net-
works of the oncogenic functions, and some small molecule
inhibitors and blockers have been tested to selectively target PCa
cells. We summarize these inhibitors and their mechanisms as
below and an overview description in Table 2.

First, BET proteins have been targeted by JQ1 in preclinical
models in vitro and in vivo90. JQ1 exhibits a high binding affinity
to the bromodomain pocket and displaces BRD4 from the active
chromatin in most SE sites and is believed to act predominantly
on BRD4, BRD2, BRD3, and, BRDT. In acute myeloid leukemia (AML)
and myeloma, pre-clinical models and clinical trials already show
the BRD4 inhibition induces strong suppression of tumor
progression91. In CRPC xenograft mouse models, BRD4 inhibition
(JQ1) is more effective than direct AR antagonism (enzaluta-
mide)33,84. This novel approach can be used to synergistically
block the oncogenic drivers in advanced PCa for better
treatments. BRD4 contains two conserved bromodomains, BD1
and BD2. Dual-bromodomain BET inhibitors are designed to
competitively inhibit the binding of the BD1 and BD2, such as
OTX015, CPI-0610, and ABBV-07592–96. However, in some mono-
therapy clinical trials, dose-limiting adverse events, such as
reduced numbers of thrombocytes in the blood and some
gastrointestinal toxicity, are limited the clinical activity. Fairre
et al. proposed a highly potent and selective inhibitor of the BD2
domain by a medicinal chemistry campaign named ABBV-74497.
ABBV-744 selectively maintains high activity in PCa cell lines and
xenografts and has a lower toxicity than ABBV-075. Further
analyses demonstrate that ABBV-744 displaces BRD4 from AR-
bound SE sites and disrupts the AR-target transcriptional
programs. The successful development of the preclinical com-
pound JQ1 for BET inhibition has also enabled several compounds
of BET inhibitors (ABBV-075, ABBV-744, GSK525762, ZEN003694,
and GS-5829) to successfully enter the clinical trials.
THZ1, a covalent inhibitor of CDK7, shows the ability to suppress

the CDK7-dependent phosphorylation activity to achieve clinical
activity58. The inhibition of CDK7 by THZ1 is related to the global
transcriptional downregulation at high dose levels, but studies
have found that cancer cell lines are sufficiently sensitive to lower
doses of THZ1. Further reports indicate that THZ1 may selectively
target SE-driven transcription programs, including MYC-
dependent transcription amplification and the expression of other
cancer-specific oncogenic TFs and signaling molecules98,99. Rasool
et al. demonstrated that THZ1 attenuated the AR-signaling and
maintained efficacy in CRPC and enzalutamide-resistant PCa
cells47. Also, CDK7 selective inhibitors have been developed, such

Table 2. Overview of selected inhibitors in prostate cancer.

Target Compound Status Identifier

ERG YK-4-279 Preclinical

NSC139021 Preclinical

BET/BRD4 GSK525762 Phase 1 active, not recruiting NCT03150056

GS-5829 Phase 1 completed NCT02607228

ABBV-075 Phase 1 completed NCT02391480

ABBV-744 Phase 1, recruiting NCT03360006

ZEN003694 Phase 1 completed NCT02705469

ZEN003694 Phase 1 active, not recruiting NCT02711956

ZEN003694 Phase 2 active, not recruiting NCT04471974

CDK7 THZ1 Preclinical

SY-1365 Phase 1 active, not recruiting NCT03134638

CT7001 Phase 1, recruiting NCT03363893

CT7001 Phase 2, recruiting NCT03363893

Only the most advanced clinical studies are shown.
ERG erythroblast transformation-specific-related gene, BET the bromodo-
main and extra-terminal domain, BRD4 bromodomain containing protein 4,
CDK7 cyclin dependent kinase 7.
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as SY1365 and CT7001, and evaluated in clinical trials in other
advanced solid tumors100,101.
ERG overexpression is observed in a large group of primary PCa

and CRPC. A highly selective small-molecule inhibitor of ERG,
NSC139021, inhibits the growth of ERG-positive cancer cells102.
Another small-molecule inhibitor, YK-4-279, reduces the ERG-
positive PCa patient-derived xenograft growth103.
Advances in SE profiling and chromatin landscape profiling

make it possible for identifying essential SE regulators and SE-
target genes in cancers104,105. Also, the relevant information will
feed to the pharmacologic industry for therapeutic interventions.

Future directions
Super-enhancers are a large cluster of active transcriptional
enhancers and are rich in enhancer-related chromatin features.
Compared to typical enhancers, SEs are larger, exhibit a higher
density of TFs, and are often associated with critical lineage-
specific genes.
In PCa, fundamental components of the SE complexes, such as

BDR4 and ERG, densely bind to the enhancer and SE elements to
promote tumorigenesis and tumor growth. In advanced CRPC
patients, the SE activity created by these transcription factors
remains stable and evolves to be more specific, which makes it
possible that SEs may be promising therapeutic targets47,97,106,107.
Several pre-clinical and clinically relevant studies targeting SEs

have been successfully carried out in various tumors, including
PCa21. BRD4 inhibition has been validated and investigated in
leukemia, lymphoma, myeloma, neuroblastoma, breast cancer,
prostate cancer, and other cancer types. Compared to castration-
sensitive status, advanced CRPC patients exhibit an AR deregula-
tion status41. Evidence shows that BRDs (BRD2, BRD4, and ATAD2)
are prognostic markers that are overexpressed in CRPC. AR-
deregulation-mediated BRDs upregulation intensifies the SE
activity and feeds back a positive loop for AR chromatin binding.
In other words, AR deregulation forms a transcription addiction
status by enhancing the SE activities. To define the BET inhibition
response in CRPC, a ten-gene signature, BROMO-10, was designed
and used to guide patient selection for combinatorial trials of the
BET inhibition against other agents. Remarkably, the BROMO-10
signature still needs to be refined and evaluated for AR signaling
status and BRDs expression as well. Using this method, we can
design specific gene signatures to evaluate the efficacy of other
inhibitors and screen patients for potential therapeutic benefits.
CDK7 inhibition has shown surprising therapeutic effects in
preclinical models without evident systemic toxicity, which gives
us high hopes for further human clinical trials108. Besides, it has
been reported that SEs tend to undergo double-strand breaks and
are therefore susceptible to deficiencies in cellular DNA-repair
mechanisms. This shows that the combination of endocrine
therapy and drugs targeting DNA damage repair will improve the
anti-tumor efficiency, and clinical studies have already been
conducted. Strikingly, Ma et al. found that SEs reorganization was
tightly linked to drug resistance109. In repetitive cisplatin-treated
cancer cells, the developmental transcription factor ISL1 invokes
an unconventional trans-differentiation identity via SE reorganiza-
tion to escape the drug-induced near-to-death status and facilitate
tumor colonization. This may raise the question of how to
effectively target cancer cells by avoiding the acquisition
resistance in a SE-reorganization manner. The inhibition of
transcription factors, such as SOX10 and ISL1, might potentially
blockade the SE reorganization beyond BRDs or CDK7 inhibitors.
However, researchers have discovered that SE-related inhibitors

might not have therapeutic effects in certain PCa types110,111. PCa
cell lines and organoids from individuals with SPOP mutations
show therapeutic resistance to cell growth arrest and apoptosis
induced by BRD4 inhibitors112,113. The resistance to BRD4
inhibition in SPOP-mutant PCa can be overcome by combining

with AKT inhibitors, and SPOP mutations may be used as
biomarkers to guide the choice of treatment options for PCa
patients, including those with urgent needs seeking precision
medicine, and to determine whether the treatment is valid or
not114,115. Moreover, it is worth noting that targeting SEs for
cancer can cause side effects that cannot be ignored, because
blocking SEs may also suppress specific SE-dependent tumor
suppressor genes that are associated with cancer risk, such as
cancer cell death116,117. Therefore, before using SEs as a
therapeutic approach for the treatment of specific cancers, we
urgently need to do more detailed research and make effective
decisions.
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