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Many hypotheses attempting to explain the speed and sensitivity with which a T-cell discriminates the antigens it encounters
include a notion of relative spatial and temporal control of particular biochemical steps involved in the process. An essential
step in T-cell receptor (TCR) mediated signalling is the activation of the protein tyrosine kinase ZAP-70. ZAP-70 is recruited to
the TCR upon receptor engagement and, once activated, is responsible for the phosphorylation of the protein adaptor, Linker
for Activation of T-cells, or LAT. LAT phosphorylation results in the recruitment of a signalosome including PLCc1, Grb2/SOS,
GADS and SLP-76. In order to examine the real time spatial and temporal evolution of ZAP-70 activity following TCR
engagement in the immune synapse, we have developed ROZA, a novel FRET-based biosensor whose function is dependent
upon ZAP-70 activity. This new probe not only provides a measurement of the kinetics of ZAP-70 activity, but also reveals the
subcellular localization of the activity as well. Unexpectedly, ZAP-70 dependent FRET was observed not only at the T-cell -APC
interface, but also at the opposite pole of the cell or ‘‘antisynapse’’.
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INTRODUCTION
The question of how the signalling machinery downstream of the

T-cell Receptor (TCR) rapidly integrates the binding information

resulting from the encounter of a T-lymphocyte with an antigen

presenting cell (APC) is central to our understanding of the

adaptive immune response. Many hypotheses attempting to

explain the speed and sensitivity with which a T-cell discriminates

the antigens it encounters, include a notion of relative spatial and

temporal control of particular biochemical steps involved in the

process (reviewed by Burroughs and van der Merwe, [1]). Since

Kupfer and colleagues first described a non-homogeneous

distribution of signalling molecules at the lymphocyte-APC

interface, fluorescence microscopy techniques used in conjunction

with labelled antibodies or autofluorescent protein fusion con-

structs have become indispensable tools in mapping the redistri-

bution or translocation of signalling molecules in the immune

synapse during T-cell activation [2–4]. Such techniques provide

dynamic information about cellular processes with subcellular

resolution that has otherwise been inaccessible to more classical

biochemical techniques (e.g. western blots) traditionally employed

to study signal transduction. However, despite the obvious power

of imaging, one can infer limited information about enzyme

activity or dynamic posttranslational modifications such as

phosphorylation, from the translocation or redistribution of a

given molecule.

TCR engagement leads rapidly to the activation of the Syk

family tyrosine kinase ZAP-70. ZAP-70 activation requires both

Src family kinase dependent phosphorylation of tyrosine residues

in its kinase domain and a conformational switch induced by the

binding of its dual SH2 domains to phosphorylated motifs, such as

those found in the cytoplasmic tail of the TCR CD3f chain [5].

Once activated, ZAP-70 phosphorylates multiple tyrosine residues

on the adaptor protein LAT, resulting in the assembly of a

signalling complex which includes PLCc1, Grb2/SOS, GADS

and SLP-76 [6]. The regulation of ZAP-70 activity is a complex

yet key step in TCR mediated signal transduction. ZAP-70 is

proposed to be involved in feed-back loops required to set a

threshold for TCR sensitivity [7,8].

Numerous studies employing ZAP-70 GFP fusion proteins have

demonstrated that ZAP-70 is rapidly recruited to the cell

membrane upon TCR engagement [9–11]. Interestingly, in an

early study in which fixed immune synapse samples were probed

with phospho-epitope specific antibodies, it was shown that

phospho-ZAP-70 had a shorter lifetime at the synapse than the

global ZAP-70 population [12] suggesting that the dynamics of

ZAP-70 activity and that of ZAP-70 membrane recruitment are

not necessarily equivalent. Elegant strategies have since been

described for creating genetically encodable biosensors which may

undergo a phosphorylation dependent change in FRET ratio and

therefore can be used to directly visualize the temporal and spatial

evolution of a given protein tyrosine kinase activity using

fluorescence video microscopy [13,14]. In order to examine the
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dynamic behavior of ZAP-70 activity in the immunological

synapse more directly, we present here the creation of a novel

biosensor, ROZA (for Reporter Of ZAP-70 Activity) which is

comprised of elements of mouse Grb2, mouse LAT and the CFP-

YFP pair of fluorescent donor and acceptor. Here we report the

use of ROZA expressing cells to directly visualize ZAP-70

dependent phosphorylation in T-cell lines and primary human

lymphocytes with subcellular resolution during the formation of an

immunological synapse. Furthermore, we observe that ZAP-70

dependent activity revealed by ROZA displays a bipolar

distribution, appearing at times at the pole opposite that of the

lymphocyte-APC contact. To our knowledge, ROZA is the first

biosensor engineered for a TCR dependent tyrosine kinase activity

and as such represents a key step forward towards bringing the

wealth of biochemical information available about TCR mediated

signal transduction into the realm of live cell microscopy.

RESULTS AND DISCUSSION

Design of the FRET probe ROZA
As previously described [13,14], a ratiometric FRET based probe

for a tyrosine kinase activity can be prepared by fusing a peptide

sequence encoding a known substrate sequence for the targeted

kinase with its cognate phospho-tyrosine binding domain (e.g. a

Src homology (SH) 2 domain). When assembled with the

appropriate linker sequences and flanked by compatible donor

and acceptor autofluorescent proteins, such an engineered protein

can undergo a phosphorylation dependent change in its FRET

signal, presumably due to a phosphorylation dependent intramo-

lecular binding event which changes the relative distance and/or

orientation of the autofluorescent protein domains (See Figure 1B).

In order to create a ZAP-70 specific probe, we targeted peptide

sequences derived from mouse LAT encompassing tyrosine

residues Y132, Y175 or Y195, known to be substrates for ZAP-

70 [15]. The peptides were fused to their respective SH2 domain

binding partners such as the N-terminal SH2 domain of mouse

PLCc1 for Y132 and the SH2 domain of mouse Grb2 for

Y175and Y195 [16]. ROZA variants were produced in which the

substrate peptide, the SH2 binding partner as well as the length

and composition of the interdomain linkers were varied.

Constructs were screened for their expression levels in Jurkat J-

Tag cells and their ability to generate a phosphorylation

dependent change in FRET signal upon pervanadate (PV) and

anti-CD3 stimulation. The sequence resulting in the most

significant phosphorylation dependent FRET change (see

Fig. 1A) was used for all subsequent experiments. In order to

facilitate the encounter of active ZAP-70 with the substrate probe,

ROZA was targeted to the plasma membrane by incorporating

the 13 N-terminal residues of mouse Lck. As shown in Fig. 1C, the

protein is indeed largely restricted to the membrane of Jurkat T-

cells. A variant was also prepared incorporating the N-terminal 35

residues of LAT, encompassing the transmembrane domain and

palmitoylation sites, however this anchor led to a largely vesicular

probe expression (data not shown).

Stimulation of ROZA-expressing Jurkat T-cells with pervana-

date (PV), a phosphatase inhibitor that unveils constitutive tyrosine

kinase activity, triggered a simultaneous increase of the

436R470 nm signal and a decrease of the 436R535 nm signal

Figure 1. Structure and subcellular localization of ROZA. (A) Scheme of the ROZA sequence including the N-terminal residues from p56 Lck, the
linker sequence and residues 171-178 of LAT (underlined) surrounding Y175 (in bold). (B) Model showing the schematic structure of ROZA (without its
membrane anchor), and illustrating that, in the absence of ZAP-70 activity, ROZA may adopt several conformations, some of them allowing FRET.
Following phosphorylation of the LAT based sequence by ZAP-70, ROZA adopts a constrained conformation incompatible with FRET. (C) In Jurkat T-
cells transiently transfected with ROZA, the probe is mainly located at the plasma membrane as visualized by CFP fluorescence.
doi:10.1371/journal.pone.0001521.g001
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(Fig. 2A upper panel). Stimulation thus triggers a decrease of the

535 nm/470 nm ratio, i.e., of the FRET signal (Fig. 2A lower

panel). Changes in FRET signals could also be detected in Jurkat

T-cells (Fig. 2B upper panel) or human PBT (Fig. 2B lower panel)

after stimulation with anti-CD3. The ROZA expressing Jurkat T-

cells were similarly stimulated by either anti-CD3 or PV and

subsequently lysed and subjected to western blot analysis. Both

phosphorylated forms of ZAP-70 and endogenous LAT where

readily detectable 2 minutes (120 seconds) after stimulation,

confirming that ZAP-70 is indeed activated under these conditions

in the ROZA expressing cells (Fig. 2C). The stimulation

dependent decrease in FRET is compatible with a model in

which the autofluorescent proteins of the non-phosphorylated

form of the probe have a relative distance or orientation which

allows FRET, whereas the phosphorylated form of the probe

assumes a conformation less compatible with FRET. Other FRET

based kinase activity probes described in the literature function

with a phosphorylation dependent decrease in FRET capacity

[17,18]. The most relevant example is the second generation Src

kinase reporter [18], which like ROZA incorporates an SH2

phospho-tyrosine binding domain, and also undergoes a phos-

phorylation dependent decrease in FRET. The authors postulate

that the close positioning of the N and C termini of the SH2

domain would allow a relative proximity of the linked autofluor-

escent protein domains and thus FRET in the probe’s basal state.

This relative proximity would be disrupted during the phosphor-

ylation dependent intramolecular binding event and the FRET

ratio would decrease. The N and C termini of the SH2 domain of

Grb2 are also found on the same face of the domain in its crystal

structure which is consistent with the FRET decrease observed in

ROZA [19]. Fig 1B illustrates such a model, taking into account

the possibility that in the basal state, the probe may adopt several

conformations. In the following figures, ZAP-70 activity is

arbitrarily expressed as the inverse of FRET ratio (Fig. 2B inset).

Using this representation a FRET decrease corresponds to an

increase in net ZAP-70 dependent activity.

Both ROZA FRET and phosphorylation are ZAP-70

dependent
In order to establish that the observed FRET changes were due to

a ZAP-70-dependent phosphorylation of the probe, Jurkat T-cells

transiently expressing ROZA were stimulated, lysed, and subse-

quently subjected to anti-phosphotyrosine immunoprecipitation

and anti-GFP immunoblotting (Fig. 3A). The resulting immuno-

blots of the transfected Jurkat T-cell samples displayed an

Figure 2. (A) In ROZA-expressing Jurkat T-cells, PV induces changes in the 436R535 and in the 436R470 signals (top) and in their ratio
(bottom). Traces correspond to the mean of 3 different T-cells. (B) In Jurkat T-cells (top), anti-CD3 induces a partial activation of ZAP-70 that can be
completed by PV. In peripheral blood T-cells (bottom), anti-CD3 triggers a large and rapid FRET decrease. Inset: ZAP-70 activity is shown as the inverse
of the FRET signals. Traces correspond to the average of 8–17 individual cells. (C) In Jurkat T-cells stably expressing ROZA and stimulated with PV or
anti-CD3, ZAP-70 (site 319) as well as endogenous LAT (site 175) are phosphorylated after a 2 minute stimulation.
doi:10.1371/journal.pone.0001521.g002
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activation-dependent phosphorylated species with the expected

molecular weight of the ROZA probe (69 kD). Pre-treatment of

transfected cells with the Syk family inhibitor piceatannol, or with

the Src kinase inhibitor PP2, resulted in inhibition of ROZA

phosphorylation. Similarly, mutation of the probe’s target tyrosine

residue LAT 175 to phenylalanine resulted in significant inhibition

of the probe phosphorylation (Fig. 3A upper gel). Stripping and

reblotting with an anti-GFP antibody confirmed that the most

prevalent GFP containing species had a molecular weight

consistent with the full length ROZA (Fig. 3A lower gel).

Additional specificity tests were performed by imaging. As

expected, the FRET changes triggered by anti-CD3 stimulation

were strongly inhibited in cells pretreated with PP2 for 30 minutes

before stimulation (data not shown). The strong fluorescence of

piceatannol precluded its use in FRET experiments. Cells expressing

the YF175 ROZA mutant also displayed no significant change in the

FRET signal upon PV stimulation confirming that phosphorylation

of the LAT sequence found within ROZA was necessary for the

FRET ratio change. Finally, in ZAP-70-deficient Jurkat T-cells,

P116, transfected with ROZA, no significant change in the FRET

ratio was observed upon stimulation (Fig. 3B). This clearly shows that

the CEDYVNV tyrosine phosphorylation motif present in the probe

cannot be phosphorylated by Src kinases in the absence of ZAP-70.

ZAP-70 activity can be visualized in the

immunological synapse
In order to validate the utility of ROZA for examining the evolution

and subcellular distribution of ZAP-70 dependent phosphorylation

during a cell-cell activation event, we followed the formation of

conjugates between Jurkat clones stably expressing ROZA and Raji

B cells loaded with superantigen under 40X magnification. Rapidly

after conjugate formation, a synaptic clustering of the probe was

observed. Such a recruitment could be due to the fact that the probe

is anchored to the membrane through a palmitoylated and

myristylated N-terminal sequence derived from the Src kinase Lck,

that presumably targets ROZA into lipid rafts [20]. Accumulation of

ROZA at the immunological synapse was generally quite marked

(Fig. 4). However ZAP-70 dependent phosphorylation as revealed by

the ROZA FRET change was detected before the accumulation of

the probe at the synapse (data not shown). The ROZA signal was

triggered and reached its maximal value within a minute of contact

formation, consistent with literature reports of global LAT

phosphorylation kinetics [21]. Unexpectedly, ROZA accumulation

and FRET evolution was also frequently observed at the cell pole

opposite to the synapse, or the ‘‘antisynapse’’. In some cases, ROZA

FRET and accumulation was observed first at the synapse whereas in

other cases it was observed first at the antisynapse. Fig. 4 illustrates a

case where both poles appeared simultaneously. Antisynaptic

localisation such as we observed with ROZA has previously been

observed with other synaptic molecules such as CD3, or PIP3

[22,23]. However little information is currently available about either

the dynamics or the mechanisms underlying this phenomenon.

Speculation: Is double signalosome formation a

simple biological pattern?
The appearance of a double signalosome could be considered as a

simple case of biological pattern formation. In the theory of

biological pattern formation initially proposed by Turing and later

revisited by others, a pattern-forming reaction uses a combination

of self-enhancing local activator and a long-range inhibitor

triggered by the activator, and may create a dead zone for

activator accumulation around the initial accumulation [24,25].

Similarly, we propose that in T-cells, the initial synaptic contact

may trigger the production of an auto-catalytic activating element

capable of forming a signalosome. The concomitant production of

faster diffusing inhibitory elements initially restricts the formation

of the signalosome to the synapse. However if the diffusing

inhibitory elements become diluted at the antipodal region of the

cell, activator accumulation may occur at the anti-synapse. The

formation of a second signalosome may be facilitated by a cell

asymmetry created by the first signalosome, or by a diffusing

activator, or by cell polarization associated with cell movement.

Figure 3. ROZA is specific for ZAP-70. (A) WT J77cl20 or cells transiently expressing either ROZA or ROZA YF (56106 cells/point) were preincubated
for 30 minutes with inhibitors (A. 10 mM PP2 or B 200 mM piceatannol) or medium alone, followed by a 2 minute activation with 5 mM freshly
prepared PV. ROZA was immunoprecpitated with anti-GFP antibody. Upper panel: anti-phosphoTyr (4G10) western blot. Lower panel: anti-GFP
western blot. (B) PV induces an increase in ZAP-70 activity in Jurkat T-cells expressing ROZA. No change in FRET ratio was observed in ZAP-70-
deficient Jurkat T-cells (P116) cells expressing ROZA or in normal Jurkat T-cells transfected with the mutated probe (YF).
doi:10.1371/journal.pone.0001521.g003
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MATERIALS AND METHODS

Cells and reagents
JTAG, J77 clone 20 and Raji B cells were kinds gifts of Georges

Bismuth (Institut Cochin, Paris, France); ZAP-70 deficient Jurkat

T-cells P116 were a kind gift of Claire Hivroz (Institut Curie, Paris,

France). Human T lymphocytes (PBT) were isolated from blood

donors by Ficoll density gradient centrifugation, followed by

negative depletion on magnetic beads (T-cell negative isolation kit;

Becton Dickinson). Cells were cultivated in RPMI 1640 supple-

mented with 10% FCS. Superantigen was a mix of recombinant

staphylococcal enterotoxin E, staphylococcal enterotoxin A,

staphylococcal enterotoxin B, and staphylococcal enterotoxin C3

(Toxin Technology). Raji B cells were loaded for 30 min at 37uC
in RPMI with superantigen at a final concentration of 200 ng/ml.

All PCR amplifications were performed using Taq polymerase

(Invitrogen). Sequencing was performed by MWG-Biotech AG

(Ebersberg, Germany). DNA modifying enzymes were obtained

from Invitrogen. Synthetic nucleotides were obtained from Sigma-

Genosys, Ltd. (Cambridge, U.K.). Plasmids encoding mCFP and

mYFP were kindly provided by R.Y Tsien (UCSD, USA). Kinase

inhibitors PP2 and piceatannol were from Calbiochem. Mouse

anti-human anti-CD3 (UCHT1) was from BD Pharmingen. HRP

coupled goat anti-mouse antibody was from Immunotech SA

(Marseille France). Anti-phospho-tyrosine antibody 4G10 ascites

was a kind gift of Hai-Tao He, (Marseille, France). Anti-GFP

antibody was from Abgene (U.K.) Anti phospho-ZAP70 319 and

anti-phospho LAT171 were from Cell Signalling (USA).

Construction of ROZA
The sequence encoding ROZA was constructed from three

fragments. A CFP fragment was created by PCR amplification

of mCFP residues 1-228 using a coding primer incorporating a

HindIII site, a kozak sequence, and the 13 N-terminal residues of

mouse Lck and a non-coding primer incorporating a SphI

restriction site. Mouse Grb2 (residues 56-152) cDNA was

amplified using a coding primer incorporating a SphI site and a

non-coding primer which incorporated the linker sequence, mouse

LAT residues 171-178 and a SacI site. The specific amino acids

created were as shown in Fig. 1A. A YFP fragment was created by

amplifying full length mYFP with a coding primer including a SacI

site and a non-coding primer incorporating a stop codon and an

EcoRI site. The three fragments were ligated simultaneously into

the HindIII/EcoRI sites of pCDNA3.1. The Tyr to Phe mutation of

the LAT tyrosine 175 present in central fragment of the ROZA

sequence was created using nested amplifications of the Grb2-

linker LAT sequence. The complete nucleotide sequence encoding

this structure has been deposited in Genebank (accession number

EU035753).

Cell transfections
Jurkat T-cells and PBT were transfected by Amaxa nucleofection

with solution V/ Program G-10 or S-18 and human T solution /

Program U-14, respectively. Typically 56106 cells were transfect-

ed with 5 mgs plasmid DNA. Cells were used 24–48 hours after

nucleofection. Stable clones of the Jurkat J77 cl20 expressing

ROZA were established first sorting the YFP positive cells with a

Becton Dickenson FACSAria cell sorter followed by cloning by

limiting dilution in the presence of 1.5 mg/ml G418 (Invitrogen).

Imaging
Fluorescence acquisition was performed with a Nikon TE2000

equipped with cooled CCD camera (Cascade, Princeton Instru-

ments). Three images were acquired every 10s: visible, excitation

at 435 nm and emission successively at 530 nm (FRET) and

470 nm (CFP). The ratio R = FRET/CFP that gives an estimation

of the inverse of ZAP-70 activity, was calculated with MetaFluor

(Roper Scientific) after background subtraction. The following

filters were used, all from Chroma (Rockingham, US), except

when otherwise mentioned. For CFP excitation and emission:

43665 nmR470615 nm. For YFP: 500610 nmR535620 nm.

Immunoprecipitation and immunoblotting
ROZA expressing cells were cultured at densities less than

0.56106 cells per ml, recovered, rinsed once in serum-free

medium and suspended at 56106 cells per point in RPMI

supplemented with 10 mM HEPES with or without kinase

inhibitors. Cells were stimulated with the pervanadate or antibody

for the indicated time, briefly spun, and resuspended in ice cold

NP-40 lysis buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1% NP-

40, 1mM PMSF, 0.4 mM sodium orthovanadate, and Complete

protease inhibitor Mix (Roche) as per manufacturers instructions)

at 4uC for 20 minutes. In the indicated experiment, post nuclear

supernatants were subjected to immunoprecipitation with an anti-

GFP antibody to pull down the probe. Immunoprecipitates were

subjected to SDS-PAGE transferred to PVDF membrane.

Membranes were probed with indicated antibodies as per

manufacturers recommandations for each specific antibody

followed by HRP conjugated secondary antibody (Immunotech

SA, Marseille, France). Images were revealed using ECL plus

(Amersham).

Figure 4. Synaptic and antisynaptic activation of ROZA. Sequence of
events observed upon interaction of a ROZA-expressing Jurkat T-cell
with superantigen-loaded Raji B cells. Left: transmitted light images;
center: subcellular ROZA localization; right: ZAP-70-dependent activity
in false colours, 1/R ranging from 1.25 (blue) to 1.7 (red). Time zero
corresponds to the initial contact, as detected in transmitted light
images. The bar corresponds to 10 microns.
doi:10.1371/journal.pone.0001521.g004
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