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Abstract

Heterogeneous exposure to mosquitoes determines an individual’s contribution to vector-

borne pathogen transmission. Particularly for dengue virus (DENV), there is a major diffi-

culty in quantifying human-vector contacts due to the unknown coupled effect of key hetero-

geneities. To test the hypothesis that the reduction of human out-of-home mobility due to

dengue illness will significantly influence population-level dynamics and the structure of

DENV transmission chains, we extended an existing modeling framework to include social

structure, disease-driven mobility reductions, and heterogeneous transmissibility from dif-

ferent infectious groups. Compared to a baseline model, naïve to human pre-symptomatic

infectiousness and disease-driven mobility changes, a model including both parameters

predicted an increase of 37% in the probability of a DENV outbreak occurring; a model

including mobility change alone predicted a 15.5% increase compared to the baseline

model. At the individual level, models including mobility change led to a reduction of the

importance of out-of-home onward transmission (R, the fraction of secondary cases pre-

dicted to be generated by an individual) by symptomatic individuals (up to -62%) at the

expense of an increase in the relevance of their home (up to +40%). An individual’s positive

contribution to R could be predicted by a GAM including a non-linear interaction between an

individual’s biting suitability and the number of mosquitoes in their home (>10 mosquitoes

and 0.6 individual attractiveness significantly increased R). We conclude that the complex
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fabric of social relationships and differential behavioral response to dengue illness cause

the fraction of symptomatic DENV infections to concentrate transmission in specific loca-

tions, whereas asymptomatic carriers (including individuals in their pre-symptomatic period)

move the virus throughout the landscape. Our findings point to the difficulty of focusing vec-

tor control interventions reactively on the home of symptomatic individuals, as this approach

will fail to contain virus propagation by visitors to their house and asymptomatic carriers.

Author summary

Human mobility patterns can play an integral role in vector-borne disease dynamics by

characterizing an individual’s potential contacts with disease-transmitting vectors. Den-

gue virus is transmitted by a sedentary vector, but human mobility allows individuals to

have contact with mosquitoes at their home and other houses they frequent (their activity

space). When accounting for the decreased mobility of symptomatic dengue cases in an

agent-based simulation model, however, we found a severely diminished role of the activ-

ity space in onward transmission. Those who received the majority of their mosquito con-

tacts outside their home experienced decreases in expected bites and onward transmission

when mobility changes were accounted for. Onward transmission was driven by a syner-

gistic relationship between the number of mosquitoes in an individual’s home and their

biting suitability, where even those with the highest biting suitability would have limited

contribution to transmission given a low number of household mosquitoes. Reactive vec-

tor control, which often targets symptomatic cases, could be effective for slowing onward

transmission from these cases, but will fail to control virus transmission due to the dispro-

portionate contribution of asymptomatic infections.

Introduction

The rate at which humans encounter vectors (mosquitoes, ticks, bugs) is a fundamental driver

of vector-borne disease transmission dynamics [1,2]. Human-vector contacts can be influ-

enced by a myriad of factors, including the vector’s host-seeking behavior [3,4], the host’s bit-

ing attractiveness to biting vectors [5–8], and the spatial distribution/density of both hosts and

vectors [9–12]. Variations in some or all of these factors can lead to heterogeneous exposure,

where certain individuals have higher contact rates with vectors than others [13–15]. The epi-

demiological consequence of such uneven distribution of human-vector contacts could be sig-

nificant, particularly if it results in key encounters where a large number of vectors are infected

[2]. Therefore, an individual’s contribution to transmission is influenced by not only how

many vector bites are received, but also which vectors the bites are from and whom those vec-

tors encounter next [16].

Given the central epidemiological role of mixing between hosts and vectors, there is a need

for better quantification of its frequency and temporal variability, particularly because epide-

miological outcomes depend on coupling among a variety of heterogeneities; i.e., human

(behavior, immunity, etc.), vector (dispersal, longevity, etc.), and environmental [17]. Theoret-

ical and simulation models have been used to assess the importance of such factors. One

model focused on how heterogeneous exposure to vectors, poor mixing, and finite host num-

bers can determine the spatial scale of transmission [16]. Poor mixing can lead to infections

being clustered in groups of closely connected individuals, as observed in the clustering of
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infections within social groups [18–20]. This association between human behavior and mixing

is of particular relevance for dengue and other Aedes-borne viruses (dengue, chikungunya,

Zika) [1,21–23], because house-to-house human movement, rather than mosquito mobility, is

an underlying feature of spatial patterns of human incidence [18,20,24].

Dengue is an acute illness caused by any of four immunologically related viruses in the fam-

ily Flaviviridae and transmitted by Aedes spp. mosquitoes (primarily Aedes aegypti). Prevalent

in the tropics and subtropics, it is the most important mosquito-borne viral disease of humans

worldwide [25]. Symptoms associated with dengue (acute fever, headache, musculoskeletal

pain, and rash) only disrupt a person’s daily routine or result in treatment seeking in a small

proportion of cases, whereas the other 70% of infected individuals experience either mild

symptoms (inapparent) or no symptoms (asymptomatic) [26–28]. It has been recently shown

that human mobility patterns change during the course of symptomatic (febrile) dengue infec-

tion. Specifically, symptomatic individuals visit fewer locations and stay at home more than

when they were not infected [29–32]. Although disease-driven mobility changes have been

shown to significantly influence the spread of directly transmitted pathogens, they have not yet

been included in theoretical models of dengue virus (DENV) transmission [33,34]. For

DENV, we hypothesize that the distribution of mosquitoes at an individual’s home and across

the rest of the places they frequent (their activity space) will determine the impact of disease-

driven mobility reductions on their mosquito contacts and onward transmission potential

[17,21,32]. At a population level, we predict that human mobility changes could affect patho-

gen spread in a variety of ways depending upon which individuals in the population experi-

ence symptoms and change their mobility and potential exposure to Aedes aegypti mosquitoes.

For those DENV-infected individuals who experience symptoms, infectiousness tends to

peak during the first few days after symptom onset when mobility is restricted and human-

mosquito contacts are most likely occurring in the individual’s home [35–37]. There are, how-

ever, a few days before symptom onset when individuals have sufficient viremia levels to be

infectious to mosquitoes, but have not yet changed their mobility [35,37]. A recent theoretical

model of within-host viral dynamics estimated that 24% of an individual’s onward transmis-

sion results from mosquito bites during this pre-symptomatic phase [38]. We hypothesize that

the pre-symptomatic period could have a significantly different contribution to onward trans-

mission when accounting for mobility reductions, where individuals have normal mobility

patterns during the pre-symptomatic period and decreased mobility during symptomatic

infectiousness. To test our hypotheses, we examined the role of disease-driven mobility change

in DENV transmission by theoretically exploring how day-to-day reductions in a symptomatic

individual’s mobility and contacts with mosquitoes, combined with heterogeneous attractive-

ness to mosquitoes, may impact population-level DENV transmission dynamics.

Methods

Ethics statement

This manuscript is a theoretical modeling exercise and no field collected human or entomolog-

ical data was included. The modeling was supported under human use protocol NAMRU-

62014.0028 approved by the NAMRU-6 ethic committee and the Loreto Regional Health

Department.

Model framework

Our model builds on a previously published mathematical framework that describes where

and when human-mosquito contacts occur based on fine-scale human and mosquito mobility

[16]. In the original framework, parameters with set values were defined (S1 Table), then a set
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of houses, {f}, and larval development sites, {l}, were arranged on a disc. Each house was

assigned a number of residents equal to 2 plus a Poisson random variable (λ = 3.5), creating a

two-person minimum per household. In order to assign the numbers of mosquitoes/larvae at

each house/larval site, mosquito movement and reproduction were simulated for a total of 200

time steps, with the first 100 acting as a burn-in period. Counts of mosquitoes and larvae at

each location were averaged over the second 100 time steps, providing the ‘equilibrium’ values

(Fig 1A). Poorly mixed mosquito movement was characterized by matrices L and F, giving the

distance-based probabilities of an adult female mosquito moving from any house to any larval

site, and vice versa (Fig 1A and S2 Table) [16].

Fig 1. Diagram with setup of model framework for each scenario and simulation run. (A) For each scenario, this model includes houses and larval

sites in which mosquitoes breed and move with specific daily probabilities. (B) For each of 200 simulation runs, a random social network (SN) is

generated for humans, defining their contacts at home and at other houses and further determining the human movement matrix (HM). (C) Diagram of

our stochastic compartmental transmission model in which mosquitoes at the household level were modeled as SEI (with M subscripts) and humans as

an individual-based SEIR (with H subscripts). The I (infectious) stage for humans was divided into five sub-stages, each with their infectiousness value,

shown here with weighted arrows. Individuals can either progress to the next (IHi) infectious sub-stage or move straight to the (RH) recovered stage based

on a probability function. The probability of moving to the recovered stage is shown with weighted arrows (thicker arrows indicate higher weights).

https://doi.org/10.1371/journal.pcbi.1008627.g001
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Rather than defining human mobility patterns based on distance (as in [16]), we generated

a socially structured human mobility matrix for each of 200 simulation runs (Fig 1B). First, a

random social network with household structure was constructed using the “configuration

model” [39]. Each individual was assigned a number of “half-edges” (their degree) from a Pois-

son distribution with rate λ = 2.8, the mean number of residential locations visited in a data set

described by Perkins et al. [32]. Based on human mobility data indicating that 14.7% of people

do not regularly visit any houses (based on a 15 day monitoring period), a random sample of

individuals predicted in the model to have a degree higher than 0 were reassigned a degree of 0

in order for the total modeled population to reach 15% of individuals with no half-edges and

therefore no movement from their home [20]. Half-edges were then paired uniformly at ran-

dom to form the edges of the social network, making sure there were no self-loops, multiple

edges, or loops within houses (Fig 1B). This random network was represented as an |h|-by-|h|

adjacency matrix SN, where |h| is the size of the set of hosts {h} (Table 1). A separate |h|-by-|f|

presence/absence matrix, Homes, is constructed, where Homes[j,x] denotes whether or not the

jth host lives at the xth residential site (Fig 1B and Table 1). Multiplying the SN and Homes
matrices produced an |h|-by-|f| matrix, HM, denoting which residential sites an individual will

visit based on their social network (note that this matrix was not presence/absence, as when

the jth host was socially connected to multiple individuals at the xth residential site, HM[j,x] >

1) (Fig 1B and Table 1). This matrix was used to populate the human mobility matrix, H,

which documented the proportion of time each host spent at each household (Table 1). Each

host, j, spent 50% of their time at home (H[j, home] = 0.5) and divided the remaining 50% of

their time into the houses visited in HM (When HM[j,x] > 1, as mentioned above, a propor-

tionally larger amount of time was allocated at that residential location). For the 15% of indi-

viduals, j, who had no mobility outside their home H[j, home] = 1. As in the original model,

each row of the H matrix described where a single host spent time and each column detailed

all of the individuals spending time at a single household [16].

Following the original model, each individual was also assigned a biting suitability score

(which accounts for biting attractiveness, avoidance behavior, and defensive behavior) using a

random exponential draw with rate based on empirical biting data [40]. Based on the mobility

matrix, H, and biting suitability scores, an |f|-by-|h| matrix U was created to describe the distri-

bution of mosquito bites on all individuals at each house, where each row gave the distribution

of bites on all hosts at a single household and each column depicted the bites distributed on a

single individual across all households (Table 1).

A stochastic transmission model was layered on top of this framework, which included a

household-level SEI (susceptible, exposed, infectious) model for mosquitoes and an individ-

ual-based SEIR (susceptible, exposed, infectious, recovered) model for hosts (Fig 1C and S1

Fig). Individuals transitioned through one exposed (E) stage, based on pathogen latency of

DENV in terms of feeding-cycle-length time steps. Hosts also transitioned through a maxi-

mum of five infectious (I1 –I5) sub-stages, until a stochastic transition into the recovered (R)

stage. Rather than use a single set value for human infectiousness (as seen in Perkins et al.), val-

ues were chosen for each of these sub-stages (I1 –I5) based on data giving the mean daily prob-

ability of infection for mosquitoes after feeding on individuals with primary infections [16,38]

(Fig 1C). For each 3-day infection time point in our model, we averaged these mean infectious-

ness values (Table 2). The updated transmission model also defined the first time step in the

human infectiousness stage (I1) as the “pre-symptomatic period” and all subsequent infectious

time steps (I2 –I5) as the “symptomatic” period, where the pre-symptomatic period contrib-

uted to 25% of infectiousness for individuals who progressed through all five infectiousness

stage (I1 –I5) before recovery [38]. Simulation outbreaks were initiated by moving a single

human into the first infectious (I) stage.
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Model simulations had discrete time steps to capture the length of a mosquito gonotrophic

cycle (~3 days). During each time step, hosts would allocate their time at houses based on H.

The mosquitoes at each house would take blood meals from possible hosts (one blood meal

per mosquito) based on U matrix probabilities and move to a larval site based on L probabili-

ties. Eggs were laid based on a Poisson distribution with mean equal to number of adult

females at the site multiplied by average egg batch size. Adult mosquitoes then moved to a

house searching for their next blood meal based on F probabilities. During each time step,

mosquito larvae also progressed through 4 developmental stages based on site-specific density

dependence until emerging into adult mosquitoes. For both mosquitoes and humans, each

time step also accounted for progression through incubation (E), infectiousness (I), and (for

hosts) recovery (R). Virus transmission occurred from infectious hosts to susceptible mosqui-

toes and from infectious mosquitoes to susceptible hosts. At the end of each time point, host

mobility was changed for those hosts who were symptomatically infectiousness.

Host Mobility Changes: Two different scenarios were considered to examine mobility

changes: (1) no symptomatic movement change and (2) movement change throughout

Table 1. Definitions of parameters mentioned in text.

Symbol Type: Size Definition

{f} Vector: | f | Number of houses

{l} Vector: | l | Number of larval sites

{h} Vector: | h | Number of hosts

ci Vector: 5 Host-to-mosquito transmission efficiency for infectiousness stage Ii

L Matrix: | f | x |

l |

Probability of mosquito movement from house to larval site

F Matrix: | l | x |

f |

Probability of mosquito movement from larval site to house

SN Matrix: | h | x

| h |

Random presence/absence social network

Homes Matrix: | h | x

| f |

Presence/absence matrix denoting where each host lives

HM Matrix: | h | x

| f |

Houses each host will visit based on SN

H Matrix: | h | x

| f |

Proportion of time each host spends at each house, based on SN and HM

U Matrix: | f | x |

h |

Distribution of mosquito bites on each host at each house

Bnorm Matrix: | h | x

| f |

Expected number of mosquito bites on each host at each house pre-epidemic

Bi Matrix: | h | x

| f |

Expected number of mosquito bites on each host at each house for each

infectiousness stage, i (I1 –I5)

V Matrix: | h | x

| h |

Expected secondary bites on each host arising from primary bites on all other hosts

over one time step

Vi Matrix: | h | x

| h |

Expected secondary bites on each host arising from primary bites on all other hosts

at each time step of infectiousness, i (I1 –I5), accounting for mobility change

Rnorm Matrix: | h | x

| h |

Expected probability of a host receiving 1+ secondary infectious bites arising from

primary infection of any other host

Rmovement Matrix: | h | x

| h |

Expected probability of a host receiving 1+ secondary infectious bites arising from

primary infection of any other host, accounting for mobility changes

Rx(home) Matrix: | h | x

| h |

Subset of Rx accounting for secondary cases that arise only from primary infectious

bites at the primary host’s home (x = norm, movement)

Rx(other
houses)

Matrix: | h | x

| h |

Subset of Rx accounting for secondary cases that arise from primary infectious bites

that occur anywhere but at the primary host’s home (x = norm, movement)

https://doi.org/10.1371/journal.pcbi.1008627.t001
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symptomatic infection. For scenario (1) no changes were made to the mobility matrix. For sce-

nario (2), host mobility changes occurred at each 3-day time step of symptomatic infection

based on recently published data on human mobility throughout symptomatic DENV infec-

tion [31] (Table 2 and S2 Fig). As data from Schaber et al. [31] were grouped as days 1–3, 4–6,

and 7–9 after symptom onset, they corresponded to the I2, I3, and I4 stages here. When indi-

viduals were in the first three days after symptom onset, they were significantly more likely to

spend all of their time at home and visit no other residential places. Accordingly, when an indi-

vidual transitioned into symptomatic infection in the simulation (I2), their movement was

completely stopped (HM[j,] = 0) and all time was spent at home (HM[j, home] = 1). During

days 4–6 after symptom onset (sub-stage I3), individuals spent an average of 76% of time at

home and visited approximately 1/3 of normally frequented places. On days 7–9 after symp-

tom onset (sub-stage I4) time at home and fraction of places being visited averaged 69% and 2/

3, respectively. Therefore, we set the time at home to be 80% (70%) for the I3 (I4) stage and had

individuals visiting 1/3 (2/3) of their originally frequented houses (Table 2). The order in

which houses were added back into an individual’s movements in stages I3 and I4 was deter-

mined by random sample where a house’s probability of being chosen was weighted by its

original HM value. This made it more likely that individuals would resume visiting houses

where they were socially connected to multiple residents. When individuals reached the I5

stage (days 10–12 after symptom onset), movement patterns and time at home were reset to

original values (Table 2). At the end of each time step, once these movement changes were

updated for all symptomatic individuals in the HM matrix, the H and U matrices were recalcu-

lated as described above.

The effect of the pre-symptomatic period was accounted for by including two more scenar-

ios of interest: (1b) no movement changes and no pre-symptomatic period and (2b) movement

change throughout symptomatic infection and no pre-symptomatic period. For these scenar-

ios the first stage of infectiousness (I1), the pre-symptomatic period, was removed and individ-

uals became symptomatic immediately after the incubation period (E), with infectiousness and

movements corresponding to the I2 –I5 stages.

In order to simplify the model and the effects of mobility change, two simplifications were

made: inapparent cases were left out and mobility was completely halted on the first three days

of symptoms. Two further versions of scenario (2) were created to ascertain the robustness of

the model to changes in these parameters. The impact of symptomatic mobility change in the

presence of inapparent and asymptomatic infections was examined with scenario (2c), where

only 30% of individuals (chosen from a random binomial draw) had symptomatic infection

with mobility change. In scenario (2d), we assessed the sensitivity of model outputs to mobility

changes the first three days of symptoms. Rather than having mobility completely stop after

symptom onset, it was decreased to the same level as days 4–6, where 80% of time was spent at

home and 1/3 of original houses were visited (S3 Table).

Table 2. Parameters that vary by infectiousness stage.

Stage of infectiousness S I1 I2 I3 I4 I5

Day of Symptoms − − − Pre-symptomatic Days 1–3 Days 4–6 Days 7–9 Days 10–12

Infectiousness − − − 0.4 0.7 0.4 0.1 0.01

Time at home (%) 50% 50% 100% 80% 70% 50%

Fraction of original houses being visited 1 1 0/3 1/3 2/3 1

Values calculated for individuals when susceptible, and at each sub-stage of infectiousness based on data from [31,38].

https://doi.org/10.1371/journal.pcbi.1008627.t002

PLOS COMPUTATIONAL BIOLOGY Disease-driven reduction in human mobility influences dengue transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008627 January 19, 2021 7 / 27

https://doi.org/10.1371/journal.pcbi.1008627.t002
https://doi.org/10.1371/journal.pcbi.1008627


Model Outputs: Perkins et al. created multiple metrics to explore how mobile hosts and

mosquitoes contribute to pathogen dispersal [16]. Of particular interest was the matrix R,

which corresponded to the concept of effective reproductive number. This matrix gave the

probability that a primary infection in one host will result in a secondary infection in some

other host, where summing each row provided the number of expected secondary infections

arising from a single individual. The B matrix was also utilized to measure the expected num-

ber of bites per time step on each host at each blood-feeding habitat (house). Each row of B
provided the number of expected bites on a single individual at all households and each col-

umn gave the expected number of bites occurring on all individuals at a single household dur-

ing one time step. At the population level, dynamics were examined using the simulation

outputs of cumulative number of infections at each time step and number of infectious hosts

at each time step. We utilized these original metrics and created versions that accounted for

mobility change.

The B matrix could be used as a way to examine heterogeneity in human-mosquito contact

rates, not only across hosts/locations, but also throughout an individual’s infectiousness

period. This metric was derived to account for multiple sources of heterogeneous biting,

namely spatial variation in biting intensity, hosts’ allocation of time at a location, and relative

biting attractiveness of hosts at that location. Spatial variation in biting intensity was included

as a numeric vector with the number of expected bites per feeding cycle at each house (based

on average number of new adult females emerging at each larval site and their subsequent

mobility to nearby houses). Multiplying this numeric vector by the distribution of bites across

hosts at each site (U), which account for the latter two factors of heterogeneous biting, results

in the B matrix. Because this metric was based on the U matrix, and therefore affected by the

human mobility matrix (H), a list of B matrices was created to measure biting pre-epidemic

(with normal movements) and during each time step of infectiousness. Within each simula-

tion, Bnorm was calculated for all individuals before infection spread began. During disease

spread, Bi[j,] was recorded for each host, j, at each infectiousness sub-stage (I1 –I5), i. This set

of matrices gave us the expected number of mosquito bites on each host at each house

throughout infectiousness/mobility changes (Table 1).

The previously-derived version of the R matrix, referred to as Rnorm, measured the probabil-

ity of host k receiving one or more secondary infectious bites arising from primary infectious

host, j (Table 1). This accounts for the primary infectious host transmitting the virus to a sus-

ceptible mosquito (the primary infectious bite) and that newly infectious mosquito then trans-

mitting the virus to a susceptible host (the secondary infectious bite). The R metric was slightly

adjusted to account for time-step-specific infectiousness where

Rj;k ¼ 1 � e� bVðc1þc2þc3þc4þc5Þ

with ci values representing an individual’s time-step-specific infectiousness values. The V
matrix gave the number of expected secondary bites on each host arising from primary bites

on all other hosts over one time step, where each column provides the number of expected sec-

ondary bites received by a single individual from primary bites on all other hosts during one

time step and each row described the number of expected secondary bites on all hosts from

primary bites on a single individual. To derive the V matrix, we considered an individual, k,

who received an expected number of (primary) bites per feeding cycle at each house based on

the B matrix. The mosquitoes from this house then went on to make an expected number of

(secondary) bites at all possible houses based on mosquito mobility matrices. These secondary

bites were distributed among hosts according to the U matrix. Because the U matrix affected

the V matrix, host mobility change was accounted for by creating a set of matrices, Vi, for each
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sub-stage of infectiousness (I1 –I5) (Table 1). When host j was infectious in the simulation,

their Vi[j,] values were recorded for each I sub-stage (I1 –I5). At the end of the simulation run

a matrix referred to as Rmovement was created, where

Rmovement ¼ 1 � e� bðV1c1þV2c2þV3c3þV4c4þV5c5Þ:

In order to examine the importance of the location where the primary infectious bite occurs

on host j, we also divided Rmovement into two separate matrices, Rmovement (home), and Rmovement

(other houses) (Table 1). This was done by calculating Vi(home) and Vi(other houses), which

derived the number of expected secondary bites on each host arising from primary bites that

occur at each time point of infectiousness, i, on all other hosts at their home and everywhere
but their home, respectively. These Vi (home) and Vi (other houses) matrices were then used to

derive Rmovement (home) and Rmovement (other houses), respectively. Similarly, Rnorm was divided

into Rnorm (home) and Rnorm (other houses) in order to compare the effect of where a primary

infectious bite occurred when not accounting for mobility (Table 1).

A new metric that focused on the number of mosquitoes present in each individual’s home

was also calculated. The number of mosquitoes in each individual’s home was recorded at the

beginning of the simulation run (pre-epidemic) and at each time point of infectiousness for

that individual. For each scenario a list was output with all of these metrics for each of 200 sim-

ulation runs.

Data analysis

Analysis of simulation outputs had three main objectives: determining the effects of disease-

driven mobility changes on (1) population-level outbreak dynamics (e.g., total infections, tim-

ing of infection peak, length of epidemic), (2) individual-level onward transmission (i.e., the

number of secondary infections arising from a single individual), and (3) individual-level

human-mosquito contacts (i.e., the number of mosquito bites on a single host at each location

during each stage of infectiousness).

For the first objective, determining the effects of mobility change on population-level dis-

ease dynamics, we compared four scenarios: no mobility change and no pre-symptomatic

period (baseline); no mobility change and pre-symptomatic period; mobility change and no

pre-symptomatic period; mobility change and pre-symptomatic period. The effect of mobility

changes could be determined by comparing the “no mobility change” and “mobility change”

scenarios. To determine the role of the pre-symptomatic period when mobility changes occur,

we compared the difference in ‘mobility change, no pre-symptomatic’ and ‘mobility change,

pre-symptomatic’ to the difference in ‘no mobility change, no pre-symptomatic’ and ‘no

mobility change, pre-symptomatic’ in order to account for the effect of removing one period

of infectiousness (the pre-symptomatic period).

The number of infectious hosts at each time step was used to calculate the maximum infec-

tion prevalence, the time to maximum prevalence, and the length of the epidemic (when the

number of infectious hosts was 0 without increasing again). The cumulative number of infec-

tions at each time step was utilized to record the total percent of the population infected in an

epidemic, as well the time point when the percent of cumulative infections reached 10% and

65% (representing the time the epidemic starts to take off and starts to slow down). For the

remaining two objectives, we focused our analyses on the scenario where a pre-symptomatic

period was present and mobility changes were occurring. In order to determine the effect of

these mobility changes on onward transmission, the Rnorm and Rmovement matrices were uti-

lized. Row sums of Rmovement and Rnorm gave the expected number of secondary infectious bites

arising from all primary bites on an individual host either with or without accounting for
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movement changes. Similarly, row sums of Rmovement(home), Rmovement(other houses), Rnorm(-

home), and Rnorm(other houses) determined the expected secondary bites arising from an indi-

vidual due to only primary bites at their home or only primary bites at other houses (with and

without movement changes). The distributions of Rmovement and Rnorm values were compared

and both absolute (Rabs_change) and relative change (Rrel_change) were calculated to examine how

accounting for mobility affects an individual’s R-value, where

Rabs change ¼ Rmovement � Rnorm

and

Rrel change ¼
Rmovement � Rnorm

Rnorm
:

Possible predictor variables for onward transmission were examined using generalized

additive models (GAMs) [41]. Best-fit models were determined for Rnorm, Rmovement, Rmove-

ment(home), Rrel_change, and Rrel_change(home). The variables considered as predictors were an

individual’s biting suitability score (which accounts for biting attractiveness, avoidance behav-

ior, and defensive behavior), the number of mosquitoes in their home, the number mosquitoes

in their activity space pre-exposure (places they frequented), and the percent of expected mos-

quito bites that occur at their home pre-exposure (i.e., prior to being bitten by a virus-infected

mosquito). Best-fit was determined with ΔAICc and the percent of deviance explained by each

model.

For the third objective, we calculated the expected number of mosquito contacts for each

individual pre-exposure and at each stage of infectiousness (I1 –I5). Expected counts were cal-

culated as row sums of Bnorm and each Bi matrix. For all individuals that experienced infection,

the change in number of expected mosquito contacts was calculated for each infectiousness

stage, as compared to pre-exposure. Percent change was also calculated to account for varia-

tion in healthy mosquito contact counts

Bi � Bnorm

Bnorm
:

We examined the importance of these variations in healthy mosquito contacts for the entire

population. Further, given the epidemiological significance of those with the top 20% of con-

tacts [15], we also compared individuals with the top 20% of expected contacts pre-exposure to

the rest of the population (bottom 80%). B matrices were also used to determine the percent of

an individual’s mosquito contacts that occurred at their home. Generalized additive models

(GAMs) were examined for change in expected mosquitoes contacts, both as a number and a

percent. Predictors and methods for finding best-fit models are as mentioned above. All statis-

tical analyses were performed in R 3.3.0 statistical computing software.

Results

Epidemic dynamics

Compared to a baseline model, naïve to pre-symptomatic infectiousness and disease-driven

mobility change, a model including both parameters predicted an increase of 37% in the prob-

ability of a DENV outbreak occurring (from 39.5% to 76.0%) (Table 3). Models only including

disease-driven mobility change or pre-symptomatic infectiousness increased the probability of

an outbreak by 14% and 15.5%, respectively, compared to the baseline model (Table 3). In the

simulations where outbreaks did not occur, the infection only spread to a few people (<1% of
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the population) before virus transmission ceased. For simulations leading to epidemics, the

inclusion of pre-symptomatic infectiousness had minimal effects on parameters such as time

to peak infection, the length of the epidemic, or how many individuals were infected (Table 3).

Adding symptomatic mobility reductions to the baseline scenario had little effect on when the

epidemic peaked or how long it lasted; however, there was a 5.2% decrease in peak transmis-

sion (Table 3). This reduction was compensated by accounting for infectiousness in the pre-

symptomatic period (Fig 2).

Onward transmission

At the population level, the distributions of onward transmission (R) values increased slightly

when disease-driven mobility reductions were added to a model without them (from an

average ± SD of 5.4 ± 5.1 to 5.9 ± 4.8 infections) (Table 4 and S3 Fig). At the individual level,

models including mobility change led to a reduction of the importance of out-of-home onward

transmission by symptomatic individuals (reductions in R for primary and secondary bites of

-62% and -17%, respectively) at the expense of an increase in the relevance of their home

(increases in R for primary and secondary bites of 40% and 32%, respectively) (Table 4 and Fig

3). While the home environment played a key role in primary infections (Fig 3A), the majority

of secondary infectious bites contributing to transmission occurred at other houses (Fig 3B).

GAMs fitted to individual-level estimates of Rmovement allowed understanding the mecha-

nism by which mobility change influences onward transmission. In univariate GAMs, biting

suitability score (which accounts for biting attractiveness, avoidance behavior, and defensive

behavior) and number of mosquitoes at home pre-exposure explained 32.3% and 27.7% of

deviance, respectively, whereas percent of bites expected at home pre-exposure only explained

9.3% of deviance (S5 Table). Increases in onward transmission were best explained by a GAM

including an individual’s biting suitability and the number of mosquitoes in their home as well

as their interaction (S5 Table and S4 Fig). Increasing biting suitability score from 0 to 1 only

increased predicted Rmovement by 5 new infections when there was a low mosquito count at

home (e.g., 1–3 mosquitoes), compared to an increase of 30 new infections for those with high

mosquito density (e.g., 40–50 mosquitoes) at home (Fig 4). In univariate GAMs for the two

main parameters, including mobility change (Rmovement) increased dramatically the % deviance

explained compared to models excluding it (Rnorm) (from 13.6% to 27.7% for number of mos-

quitoes at home and from 37.7% to 67.1% for biting suitability score) (S4 and S5 Tables).

Table 3. Dengue virus predicted infection prevalence based on presence of pre-symptomatic period and/or disease-driven mobility reductions, presented as

mean ± 2SEM.

Scenarios� Percent of Simulations Where Outbreak

Occurred†

Maximum Percent Infection

Prevalence

Days Until Maximum

Prevalence

Days Until Epidemic

End

Baseline Scenario 39.5% 19.0 ± 0.2% 113.0 ± 2.9 253.2 ± 6.0

+ Pre-symptomatic 53.5% 19.6 ± 0.1% 112.9 ± 2.1 259.1 ± 4.9

+ Mobility Changes 55.0% 13.8 ± 0.1% 122.9 ± 2.7 265.4 ± 4.9

+ Mobility Changes, Pre-

symptomatic

76.0% 20.3 ± 0.1% 111.1 ± 1.8 250.3 ± 4.0

�Infection prevalence data were analyzed from four scenarios: (1) a baseline scenario with no mobility changes and no pre-symptomatic period, and alternate models

that included (2) no mobility change and pre-symptomatic period included, (3) mobility change and no pre-symptomatic period, and (4) mobility change and pre-

symptomatic period included. For each scenario, the average time point was listed for when infection prevalence reached its maximum and reached 0% at the end of

epidemic. The percent of the population infected during maximum infection prevalence was also listed, as well as the number of simulations where an outbreak

occurred. Time steps values were converted to days (1 time step = 3 days).

† Given as a percent out of 200 possible simulations.

https://doi.org/10.1371/journal.pcbi.1008627.t003
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Including a variable for the total number of mosquitoes in all houses an individual visited pre-

exposure (their activity space) did not increase the fit of GAMs (S4 Table).

Disease-driven mobility changes can either increase or decrease an individual’s contribu-

tion to onward transmission. GAMs were fitted to the percent change in onward transmission

arising from all mosquito bites (Rrel_change) and from only bites at home (Rrel_change(home)). For

both metrics, the best-fit GAM included biting suitability, percent of bites at home, their non-

linear interaction, and the number of mosquitoes at home (S6 Table). For Rrel_change there was

only a 3.0% loss in deviance explained when instead using a univariate GAM with percent of

bites expected to occur at home pre-exposure (from 83.6% to 80.6%) (S6 Table). When the

Fig 2. Predicted influence of disease-driven mobility reduction and pre-symptomatic transmission on DENV epidemic dynamics. For each scenario and for

each time step, (main) the average proportion of infected hosts is calculated and (inset) the average proportion of cumulative infections is calculated. Averages

are calculated across all simulation runs where an outbreak occurred, with standard deviations included in the shaded ribbons. The baseline scenario is one with

no mobility change and no pre-symptomatic period.

https://doi.org/10.1371/journal.pcbi.1008627.g002
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percent of bites expected to occur at home pre-exposure was below 61%, there was a predicted

decrease in onward transmission, whereas those with greater than 61% of bites expected at

home pre-exposure saw increases in onward transmission when mobility was accounted for

(Fig 5A). The notable exception to this monotonically increasing effect was the tempered

increase in onward transmission for those who received their pre-exposure bites almost exclu-

sively at home (Fig 5A). When examining the percent change in onward transmission only

from primary bites at home (Rrel_change(home)), a majority of the deviance was explained in a

Table 4. Average onward transmission (R) values with and without mobility change and change in R due to mobil-

ity change inclusion.

Mean (sd) Onward

Transmission

Mean (sd) Change in Individual

Onward Transmission with

Movement Changes

Rnorm Rmovement Rabs_change Rrel_change

1˚ bites at home 2.3 (2.7) 4.3 (4.2) 1.0 (1.1) 39.74% (22.67)

1˚ bites at other houses 2.2 (2.6) 1.1 (1.2) -1.9 (1.9) -62.28% (9.13)

2˚ bites at infectious individual’s home 0.3 (0.4) 0.6 (0.7) 0.1 (0.2) 31.86% (35.59)

2˚ bites elsewhere 5.0 (4.7) 5.2 (4.2) -1.5 (3.2) -17.1% (28.97)

Total 5.4 (5.1) 5.9 (4.8) -1.1 (2.5) -15.14% (29.94)

Rnorm values were calculated using an individual’s healthy movement patterns, while Rmovement values accounted for

changes in mobility throughout infectiousness. Changes in R-values due to mobility inclusion were calculated for

each individual as a raw number (Rabs_change) and as a percent of Rnorm value (Rrel_change). Overall R-values were listed,

as well as R-values based on only primary bites occurring at home or at other houses.

https://doi.org/10.1371/journal.pcbi.1008627.t004

Fig 3. Expected onward transmission (R) values with and without mobility changes accounted for, separated by where primary bites

occur and where secondary bites occur. (A) gives onward transmission for primary bites occurring at home (red) and at other houses (blue)

both without (left) and with (right) movement change included. [from left to right: Rnorm(home), Rnorm(other houses), Rmovement(home), and

Rmovement(other houses)] (B) gives onward transmission for secondary bites at the home of the primary infected individual (red) and at other

houses (blue).

https://doi.org/10.1371/journal.pcbi.1008627.g003

PLOS COMPUTATIONAL BIOLOGY Disease-driven reduction in human mobility influences dengue transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008627 January 19, 2021 13 / 27

https://doi.org/10.1371/journal.pcbi.1008627.t004
https://doi.org/10.1371/journal.pcbi.1008627.g003
https://doi.org/10.1371/journal.pcbi.1008627


Fig 4. Predicted contribution to onward DENV transmission (Rmovement) based on a GAM with predictor variables number of mosquitoes in home pre-

exposure, biting suitability score, and their interaction. The predicted values of onward transmission based on biting suitability and number of mosquitoes at

home pre-exposure, presented as a heatmap with contours.

https://doi.org/10.1371/journal.pcbi.1008627.g004
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model with percent bites expected at home pre-exposure and biting suitability score (S6 Table).

The percent change in onward transmission from primary bites at home was predicted to be

positive for all individuals, with the largest percent increase for individuals with low biting suit-

ability scores and a small percent of bites expected to occur at home pre-exposure (Fig 5B).

Human-mosquito contacts during illness

At the population level, the number of expected mosquito contacts was similarly distributed

for each infectiousness sub-stage: before (I1), during (I2 –I4), and after (I5) mobility changes

occurred (S7 Table and S5 Fig). When examining the change in an individual’s expected con-

tacts at each infectiousness sub-stage during symptomatic mobility change, however, 57% of

individuals had a decrease in expected contact and 38% had an increase (S6 and S7 Figs). Dur-

ing the first three days after symptom onset, the average change in expected contacts for indi-

viduals who received the top 20% and bottom 80% of expected mosquito contacts pre-

exposure was a decrease of 13% and 17.5%, respectively (Table 5). Further, of those individuals

who received the top 20% of expected mosquito contacts pre-exposure, 24% had a large

enough decrease in mosquito contacts on the first three days after symptom onset to no longer

be in the top 20% when symptomatic (S5 Fig).

The percent change in expected mosquito contacts from pre-exposure to the first three days

after symptom onset was best explained by a GAM including biting suitability score, percent

of bites expected at home pre-exposure, number of mosquitoes at home pre-exposure, and the

interaction between biting suitability and percent bites at home, which explained 93.4% of

Fig 5. Predictions for percent change in expected onward transmission when mobility is included ((Rrel_change and Rrel_change(home)) based on

GAM models. (A)The predicted percent change in onward transmission (Rrel_change) based on percent of bites expected at home pre-exposure. (B)

The predicted percent change in onward transmission from primary bites at home Rrel_change(home)) based on biting suitability and percent of bites

expected at home pre-exposure, presented as a heatmap with contours.

https://doi.org/10.1371/journal.pcbi.1008627.g005
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deviance (S8 Table). The model with only a term for percent of bites expected at home pre-

exposure, however, was able to explain 92.1% of the deviance (S8 Table). The effect of percent

bites at home on percent change in expected mosquito contacts was very similar to the effect

on percent change in onward transmission, where those with less than 55% of bites at home

pre-exposure had a predicted decrease in mosquito contacts during the first three days of ill-

ness and those with greater than 55% were predicted to see an increase in mosquito contacts

(S8 Fig). Individuals who received none of their bites at home pre-exposure were expected to

have the largest percent decrease, whereas those who received around 90% of their bites at

home pre-exposure had the largest percent increase (S8 Fig). If change in expected mosquito

contacts was examined as a raw value rather than a percent change, all three variables and the

interaction between number of mosquitoes at home and percent of bites at home were needed

to provide an accurate prediction and explain a large amount of the deviance (S8 Table).

Sensitivity analyses

For the scenario where only 30% of cases experienced symptoms (and symptomatic mobility

change), the expected values and relative changes for onward transmission and human-mos-

quito contacts had similar dynamics as in the case above where all individuals were symptom-

atic (S9–S15 Tables and S9–S13 Figs). In the scenario where symptomatic individuals did not

completely halt mobility the first three days of symptoms, we saw similar albeit less intense

dynamics as those above (S16–S22 Tables and S14–S18 Figs). This relaxing of mobility rules

on the first days of symptoms did, however, curtail the importance of the household in onward

transmission. When mobility was halted on days 1–3 there was a 40% increase in expected

onward transmission from primary bites at home, as compared to a 30% increase with partial

mobility on days 1–3 of symptoms (Tables 3 and S16 and S18 Fig). Similarly, the decrease in

expected onward transmission from bites at other residential locations was 62% with no

mobility on days 1–3 and 48% with partial mobility (Tables 3 and S16 and S18 Fig). Given this

decreased role of the household in the case of partial mobility on the first three days of symp-

toms, the best-fit GAMs for predicting changes in onward transmission and changes in mos-

quito contacts could explain less deviance than their counterparts above (S17–S19 and S22

Tables). Regardless, we still saw the same predictor variables/reduced models with the largest

contribution to explaining outcomes in the cases with partial and no mobility during days 1–3

after symptom onset (S17–S19 and S22 Tables).

Discussion

Transmission of DENV is highly focal and dependent on key human-Ae. aegypti encounters

[23,42–44]. Fine-scale human mobility expands the spatial scale of transmission and causes

Table 5. Average change in expected mosquito bites for each infectiousness sub-stage when symptomatic mobility changes are occurring (I2 –I4), separated based

on expected bite values pre-exposure, provided as raw number and percent change relative to expected bites pre-exposure.

Top 20% bites pre-exposure Bottom 80% bites pre-exposure

Mean (sd) change in

expected bites

Mean (sd) percent change in

expected bites

Mean (sd) change in

expected bites

Mean (sd) percent change in

expected bites

Days 1–3 after symptom

Onset

-0.9 (3.8) -13.0% (48.9) -0.2 (0.7) -17.5% (51.0)

Days 4–6 after symptom

Onset

-0.3 (2.7) -5.6% (37.1) -0.1 (0.5) -8.7% (38.1)

Days 7–9 after symptom

Onset

-0.1 (1.6) -1.6% (22.1) -0.1 (0.3) -4.9% (23.2)

https://doi.org/10.1371/journal.pcbi.1008627.t005

PLOS COMPUTATIONAL BIOLOGY Disease-driven reduction in human mobility influences dengue transmission

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008627 January 19, 2021 16 / 27

https://doi.org/10.1371/journal.pcbi.1008627.t005
https://doi.org/10.1371/journal.pcbi.1008627


contacts to occur throughout an individual’s activity space (the houses they routinely visit),

generating variation in exposure to mosquitoes [18,20,21,30,45]. Indeed, in the absence of

mobility changes our models found primary bites at home and in the activity space both signif-

icantly contributed to an individual’s onward transmission potential. When more realism was

incorporated into DENV simulation models, through the coupling between illness and human

mobility and the addition of pre-symptomatic infectiousness, significant changes in the num-

ber of expected mosquito bites for an individual, the locations the bites occurred, the number

of secondary cases they were expected to cause, and the overall epidemic dynamics were

detected compared to models not including such parameters. Effects were apparent both at the

population level, where the consideration of human pre-symptomatic infectiousness and dis-

ease-driven mobility change increased the probability of a DENV outbreak by 37%, and at the

individual level where onward transmission increased in the home environment at the expense

of the activity space, primarily driven by houses with high mosquito density and inhabited by

individuals with a high biting attractiveness score. Our findings were robust to assumptions of

the amount of human mobility change and the presence of asymptomatic infections, providing

a mechanistic understanding of the effect of human movement in disease dynamics.

Symptom-driven reductions in mobility determined an individual’s onward transmission

potential due to the increased role of mosquito contacts in the home and the diminished role

of mosquitoes in the rest of the activity space. This shift in where mosquito contacts occurred

while individuals were infectious led to both increased and decreased contact rates, largely

based on what percent of mosquito contacts were already expected to occur at home before

mobility changed. While the majority (57%) of individuals saw a decrease, those with greater

than 55% of mosquito contacts in their home pre-exposure saw increases in expected mosquito

contacts when mobility changes were present. These individuals were subsequently predicted

to have relative increases in onward transmission. Those with a low percent of mosquito bites

at home pre-exposure were predicted to see a decrease in overall onward transmission; how-

ever, they saw a relative increase in transmission from primary bites at home due to the

increased time spent at home while infectious, as did those with low biting attractiveness

scores. These changes in expected bites, and subsequently onward transmission, may be partic-

ularly important for superspreaders, those with the top 20% of expected mosquito contacts

who are often targeted for control measures given their significant contributions to onward

transmission. However, we found that a quarter (24%) of the individuals with the top 20% of

expected contacts pre-exposure had drastic enough decreases in expected bites that they were

no longer in the top 20% during infectiousness. Accordingly, a portion of individuals who wer-

en’t identified before symptomatic mobility change entered the top 20% during the peak of

their infectiousness (days 1–3 after symptom onset). Our models identify the problem in only

focusing on individuals with high expected contact rates pre-exposure and suggest that if con-

trol targets are selected this way some potential superspreaders will likely be overlooked and

control measures may be less efficacious than expected.

At the individual level, biting suitability has previously been recognized as an important

determinant in onward transmission potential [1,2]. In our model, biting suitability accounts

for host biting attractiveness as well as avoidance and defensive behaviors, leading to a distri-

bution in the number of effective bites each individual is expected to receive. Our analysis fur-

ther identified the significance of a synergistic interaction between biting suitability and the

density of mosquitoes in an individual’s home. Those with only a few mosquitoes in their

home (<10) could go from lowest to highest biting suitability score and cause only a couple

more secondary infections, whereas those with large numbers of mosquitoes in their home

(>30) could cause many more secondary cases. Furthermore, individuals with low values in

either biting suitability score or number of mosquitoes at home were predicted to have low
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onward transmission, partially due to the interaction effect of these two variables. A recent

study characterizing absolute indoor Ae. Aegypti abundance found an average of 12.9 (range:

1–169) females per house, indicating that the ranges of simulated densities and expected find-

ings are within values characterized in endemic areas [46]. While biting suitability has been

proposed as an important driver of DENV transmission dynamics [5,47], our study empha-

sizes that its role in onward DENV transmission prevails even in the presence of other sources

of heterogeneity, such as disease-driven mobility change or human social structure.

While an individual’s biting suitability may not change, the number of mosquitoes in their

home can, which has significant implications for disease control. Reducing household mosqui-

toes is predicted to decrease onward transmission for all individuals, but it would be particu-

larly effective for those with high biting suitability given the synergistic effect of the two factors

on expected transmission. In the case of reactive vector control, reducing mosquitoes at the

home of a symptomatic individual would be important given that the majority of onward

transmission is expected to stem from primary bites occurring in their home; however, only

spraying the homes of symptomatic cases would fail to control virus transmission due to the

prevalence of asymptomatic infections. In comparison, proactive vector control (where resid-

ual vector control is deployed prior to the onset of seasonal transmission and with high cover-

age) would lower an individual’s risk of becoming infected (due to decreased expected human-

mosquito contacts in their home) and if infection did occur, both symptomatic and inapparent

cases would be predicted to have decreased expected onward transmission due to the effect of

vector control [48,49]. Moreover, reducing the number of mosquitoes in an individual’s home

pre-infection could also decrease the percent of bites expected at home (relative to the rest of

the activity space), meaning symptomatic mobility changes could further decrease expected

onward transmission. In the presence of social distancing due to COVID-19, it is therefore

critical to reduce household-level mosquito bites to prevent DENV onward transmission in

the home environment as predicted by our model.

One limitation of our study was the lack of an empirical social network to accurately

parameterize our model framework. However, the configuration model generates a random

graph with a given degree sequence that exhibits the “small world” property [50], allowing us

to account for the inhomogeneous nature of social interactions while also allowing conclusions

to be generalized to multiple locations. Further, by wiring a new random social network at the

beginning of each simulation, it’s unlikely that outcomes will be caused by specific artifacts of

the network structure. The model was also limited by its size, being representative of a neigh-

borhood rather than an entire city (due to computational limitations). However, given that the

most significant effects were seen at the individual level (rather than the population-level),

increasing the number of houses in the framework would likely not have a dramatic impact.

Further research should focus on possible refinements of the model, including the impact of

multiple dengue serotypes (which have different rates of infection in humans and infectious-

ness to mosquitoes), or the effect of heterogeneous mobility and biting attractiveness on vacci-

nation and vector control strategies.

There are numerous factors that can contribute an individual’s onward transmission poten-

tial. In order to better understand the complex dynamics of DENV transmission, we developed

a framework that examines the contribution of multiple heterogeneous factors, both individu-

ally and in relation to each other. In particular, the association between mobility and symptom

severity was empirically parameterized to better understand its role in disease dynamics and to

validate a conceptual model of the role of coupled heterogeneities in disease dynamics [17,51].

Symptomatic mobility change can have a significant impact on the relationship between biting

suitability, density of mosquitoes, and location where the majority of mosquito contacts are

occurring, leading to a spectrum of changes in expected mosquito contacts and onward
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transmission potential. It is necessary to account for the interconnectedness of these factors in

order to understand the relative contribution of symptomatic individuals to overall epidemic

transmission dynamics and predict the efficacy of control measures.
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20/bottom 80% of expected bites pre-exposure.
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exposure.
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