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We recently showed that impaired gait function in adults with cerebral palsy (CP) is associated with reduced rate of force
development in ankle dorsiflexors. Here, we explore potential mechanisms. We investigated the suppression of antagonist
excitability, calculated as the amount of soleus H-reflex depression at the onset of ankle dorsiflexion compared to rest, in 24
adults with CP (34.3 years, range 18–57; GMFCS 1.95, range 1–3) and 15 healthy, age-matched controls. Furthermore, the
central common drive to dorsiflexor motoneurons during a static contraction in the two groups was examined by coherence
analyses. The H-reflex was significantly reduced by 37% at the onset of dorsiflexion compared to rest in healthy adults
(P < 0 001) but unchanged in adults with CP (P = 0 91). Also, the adults with CP had significantly less coherence. These findings
suggest that the ability to suppress antagonist motoneuronal excitability at movement onset is impaired and that the central
common drive during static contractions is reduced in adults with CP.

1. Introduction

When we move, our nervous system ensures that our muscles
are activated to the appropriate extent and at the right time in
relation to each other so that the movement may progress
according to our intentions and with little or no conscious
attention required. This is not something that comes easily
and quickly. It takes children 10–12 years to attain the
mature characteristics of bipedal gait seen in adults [1–4].
Step-to-step variability of gait is significantly larger than in
adults and involves significantly more coactivation of antag-
onistic muscles [1, 3, 4]. Reaching and grasping follow a
similar developmental trajectory, and an adult-likemovement
pattern is not achieved until around 12–14 years of age [5].

People with early brain lesion (cerebral palsy (CP)) in
contrast continue to show very significant coactivation of
muscles and high step-to-step variability of gait into adult-
hood [6–8]. They also lack the normal maturation of gating

of sensory feedback at rest [9] and during gait [10, 11]. This
may possibly be linked to an impaired development of the
ability to predict and therefore suppress sensory feedback,
which is linked to adequate prediction of the sensory conse-
quences of the movement [12]. However, little is known
about the underlying neural mechanisms that are responsible
for the maintained coactivation pattern in adults with CP.

One of the mechanisms known to be important for the
coordination of antagonist muscles is Ia reciprocal inhibition.
Ia reciprocal inhibition involves a group of interneurons,
which are activated through collaterals fromdescending path-
ways in parallel with agonist motoneurons and project to
antagonist motoneurons [13]. In contrast to what is usually
observed in other people with lesion of descending motor
pathways, such as stroke and multiple sclerosis [14, 15], Ia
reciprocal inhibition appears to be similar at rest in adults
with CP as in healthy, age-matched controls [9]. However,
pathophysiological changes in transmission in spinal motor
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circuitries observed at rest may have little relevance for how
those circuitries are controlled and modulated during motor
activities [16–18]. Indeed, Leonard et al. [19] found that Ia
reciprocal inhibition was similar in adults with CP and in
healthy adults whenmeasured at rest, but during static agonist
contraction, the inhibition was increased in healthy subjects
and reduced in adults with CP [19]. Morita et al. have also
shown impaired regulation of Ia inhibition at the onset of
agonist contraction in adults with multiple sclerosis and
suggested that this could explain increased coactivation of
antagonists in these subjects [20]. We recently showed that
impaired gait function in adults with CP is associated with
the ability to perform fast ankle movements [21], but it is
not known how reciprocal inhibition is modulated at the
onset of contraction in adults with CP.

Here, we consequently hypothesized that impaired
descending control of spinal inhibitory circuits is responsible
for the inability of adults with CP to adequately suppress
antagonist muscle activity in relation to voluntary movement
and that this may explain their continued coactivation during
functional motor tasks. To assess modulation of spinal
reciprocal inhibition, we measured the suppression of the
soleus H-reflex at the onset of dorsiflexion, and to assess
the central drive to the agonist motor pool (dorsiflexors), we
measured the size of coupled oscillations in tibialis anterior
motor units.

2. Material and Methods

2.1. Participants. Twenty-four adults diagnosed with CP (age
34.3 years, range 18–57; 15 men, 9 women; GMFCS 1.95,
range 1–3) were recruited through the Danish Cerebral Palsy
Organization. Fifteen subjects were diplegic, eight hemiple-
gic, and one quadriplegic. All subjects were described as
spastic, and most of the subjects had received antispastic
medication for shorter or longer periods. Many subjects
had a history of multiple surgeries. See [21] for a detailed
description of the participants. Furthermore, 15 age-
matched (age 32.9 years, range 23–47; 9 men, 6 women)
neurologically healthy adults were recruited to serve as a
healthy control group.

The study was approved by the local ethics committee
(H-4-2012-107), and all procedures were conducted within
the standards of the Helsinki declaration. Prior to the exper-
iments, all the participants received written and verbal infor-
mation, and a consent form for participation was obtained.

2.2. Testing Procedures. Functional reciprocal inhibition
(experiment 1) and central common drive (experiment 2)
were assessed on the same day following the application of
electromyography (EMG) electrodes and tests of the maxi-
mal voluntary contraction strength (MVC) and the rate of
force development (RFD).

2.2.1. EMG Recordings. EMG activity was recorded using
bipolar electrodes (Ambu Blue sensor N-10-A/25, Ambu
A/S Ballerup; recording area 0.5 cm2, interelectrode dis-
tance 2 cm) placed over the soleus muscle and the proximal
and distal parts of the tibialis anterior muscle (TAprox and

TAdist, respectively). The skin was gently abraded with
sandpaper (3M red dot; 3M, Glostrup, Denmark). A
ground electrode was placed on the distal part of the tibia.
EMG signals were filtered (band-pass, 5Hz–1 kHz), ampli-
fied (500-2000x), sampled at 2 kHz, and stored on a PC for
offline analysis.

All EMG and H-reflex measurements (see below) were
normalized to the maximal M-response (Mmax) evoked in
either the TA or soleus muscle by supramaximal stimula-
tion (1ms rectangular pulses; model DS7A, Digitimer,
Hertfordshire, UK) of the common peroneal nerve or the tib-
ial nerve, respectively. In these measurements, the intensity
of stimulation of the respective nerves was increased from a
subliminal level until there was no further increase in the
peak-to-peak amplitude of the M-response with increasing
stimulation intensity [22].

2.2.2. Measurement of MVC, RFD, and Cocontraction. The
MVC and RFD procedures have been comprehensively
described by Geertsen et al. [21]. Briefly, subjects were seated
in a chair with their leg fastened to a stationary dynamometer
and were carefully instructed to contract “as fast and force-
fully as possible” and to hold the contraction for about 3 sec-
onds. During each trial, the subject was verbally encouraged
by the experimenter to produce maximal torque. Each
subject performed 3 dorsiflexions with maximal effort. If an
initial countermovement (identified by a visible drop in the
torque trace) was observed, a new trial was performed. Data
was recorded with Spike 2.611 software (CED 1401+;
Cambridge Electronics Design, Cambridge, UK). Offline,
the trial that produced the highest dorsiflexion peak torque
(MVCDF) was determined. The MVCDF trial was then used
to calculate the RFD at 200ms following the onset of contrac-
tion (RFD200) as a measure of explosive muscle force. The
level of cocontraction in the MVCDF trial was calculated as
the area of rectified, smoothed soleus EMG (in percent of
soleusMmax) divided by the area of rectified, smoothed TAdist
EMG (in percent of Mmax in TAdist) for the first 1000ms
following the onset of TAdist EMG.

2.2.3. Experiment 1: Functional Reciprocal Inhibition.
Functional reciprocal inhibition was evaluated by compar-
ing the size of soleus H-reflexes at rest with H-reflexes
elicited at the onset of explosive dorsiflexion contractions.
H-reflexes were elicited by stimulation (1ms rectangular
pulses; model DS7A, Digitimer, Hertfordshire, UK) of
the tibial nerve using a ball-shaped monopolar electrode
(Simon electrode) placed in the popliteal fossa and the anode
placed proximal to the patella. All H-reflex measurements
were normalized to Mmax.

To produce comparable afferent input to the soleus
motoneuron pool at rest and at the onset of dorsiflexion con-
traction, the tibial nerve stimulation intensity was adjusted, if
necessary, to elicit an M-response of approximately 10% of
Mmax in all trials. However, the actual intensities used were
similar at rest (15.78± 4.86mA) and at the onset of dorsiflex-
ion (15.64± 4.83mA). At rest, 15 H-reflexes were elicited
with an interstimulus interval of 10 s. The subject was then
asked to dorsiflex the ankle as fast as possible every 10 s
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(to 50% of MVCDF to avoid fatigue) following an auditory
cue (see Figure 1). A window discriminator made it possi-
ble to time the tibial nerve stimulation to the onset of TA
EMG activity.

At least 45 trials, 15 tibial nerve stimulation and 30 no
stimulation trials randomly interspersed, were obtained dur-
ing dorsiflexion contraction. Offline, the peak-to-peak ampli-
tude of the H-reflex at the onset of dorsiflexion was then
compared to rest (see Figure 2).

In six participants with CP and one participant from
the healthy control group, it was not possible to obtain
an H-reflex at rest while keeping the M-response at 10% of
Mmax. Also, two participants with CP could not produce a
voluntary dorsiflexion contraction. These subjects were
therefore excluded from this part of the analyses.

2.2.4. Experiment 2: Central Common Drive. The common
drive to the dorsiflexor motoneuron pool was evaluated by
coherence analysis of the surface EMG activity from TAprox
and TAdist obtained while subjects performed a static dorsi-
flexion contraction to a torque level of 10% MVCDF for two
minutes while given visual feedback. Coherence in the beta
band (15–35Hz) has been shown to be dependent on intact
corticospinal activity [23–25] and is therefore thought to
reflect central common drive.

Trigger

SOL EMG

TA EMG

Torque

m. tibialis anterior (TA) EMG

m. soleus (SOL) EMG
Torque

Tibial nerve stimulation

Dorsiflexion (DF)

Figure 1: Experimental setup. Subjects were seated with their examined leg fastened to a stationary dynamometer. For experiment 1, subjects
were instructed to dorsiflex their foot as fast as possible to 50% of MVC in response to an auditory cue. A window discriminator made it
possible to time the tibial nerve stimulation to the onset of tibialis anterior (TA) EMG activity. This elicited an M-response (first grey
shaded box) and an H-reflex (second grey shaded box) in the soleus (SOL) EMG. At least 45 trials, 15 tibial nerve stimulation and 30 no
stimulation trials randomly interspersed, were obtained during dorsiflexion contraction. In experiment 2, subjects were asked to keep a
steady dorsiflexion contraction at 10% of MVC for 2min while given visual feedback of the target torque.

1 mV

H-reflex

M-response

10 ms

Rest
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Figure 2: Evaluation of functional reciprocal inhibition in a healthy
control. To produce a comparable afferent input to the soleus
motoneuron pool at rest and during contraction, the tibial nerve
stimulation intensity was adjusted to keep the M-response (first
shaded box) at approximately 10% of Mmax both at rest and at the
onset of dorsiflexion (DF). The peak-to-peak amplitude of the
H-reflex (second shaded box) could then be compared in the two
situations, as a measure of the ability to suppress excitability of
antagonist motoneurons at the onset of dorsiflexion (i.e., functional
reciprocal inhibition).
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Time and frequency domain analysis of the data was
performed in MATLAB (version R2016b, MathWorks, MA,
USA) using the methods described by Halliday et al. [26]
and Farmer et al. [27]. Full-wave rectification of surface
EMG signals was performed in order to maximize the infor-
mation regarding timing ofmotor unit action potentials while
suppressing information regarding waveform shape [28, 29].
The two rectified TA EMG signals were then normalized to
have unit variance [30]. Rectified and normalized EMG sig-
nals are assumed to be realizations of stationary zero mean
time series, denoted by x and y. The analysis of individual
records generated estimates of the autospectra of the two
EMGs [fxx(λ), fyy(λ)], and their cross-spectra [fxy(λ)]. Fre-
quency domain analyses were performed with a frequency
resolution of 1Hz. We estimated three functions that charac-
terize the signals’ correlation structure: coherence, Rxy λ 2;
phase, Φxy λ ; and cumulant density, qxy u . Coherence

describes the linear association between two signals at each
frequency of interest and reflects the consistency of phase dif-
ferences and amplitude ratios between signals across trials.

Coherence estimates are bounded measures of association
defined over the range of 0, 1 where 0 indicates no associa-
tion between signals, and 1 indicates a strong association;
cumulant density estimates are not bounded, and phase is
defined over the range −π, +π . For the present data,
coherence estimates provide a measure of the fraction of
the activity in one surface EMG signal (TAprox) that is
correlated with the activity in the second surface EMG sig-
nal (TAdist). In this way, coherence estimates quantify the
strength and range of frequencies of common rhythmic
synaptic inputs distributed across the motoneuron pool
[27, 31–33]. The timing relations between the EMG signals
are estimated from the phase. The cumulant density pro-
vides a time-domain representation of the correlation
structure analogous to the cross-correlogram. The signifi-
cance of the individual coherence and cumulant density
estimates are assessed by inclusion of an upper 95% confi-
dence limit in coherence plots and upper and lower 95%
confidence limits in cumulant density plots (see example
in Figure 3), based on the assumption of statistical inde-
pendence. For details, see [26].
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Figure 3: Example of intramuscular coherence analyses from a healthy control. (a, b) Autospectra from the proximal (TAprox) and the distal
(TAdist) parts of the tibialis anterior during static dorsiflexion. (c) Coherence at frequencies from 1 to 60Hz between TAprox and TAdist
rectified EMG signals. The dashed horizontal line denotes the upper 95% confidence level, and the grey shaded area highlights the
15–35Hz frequency band referred to as beta coherence. (d) The phase between the TAprox and TAdist rectified EMG signals indicating the
synchronization between coherent EMG frequencies. (e) Cumulant density (range± 250ms) associated with the coherence.
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All individual coherence plots were visually inspected for
signs of cross-talk, i.e., high coherence across a wide range of
frequencies and close to zero lag synchronization in the time
domain as evidenced in cumulant density plots [27]. None of
the coherence plots displayed these characteristics, so all data
from each group were pooled resulting in single group esti-
mates at each frequency of interest for the adults with CP
and the healthy controls, respectively. Pooled coherence
estimates, like individual coherence estimates, provide a
normative measure of linear association on a scale from 0
to 1 [30]. The interpretation of pooled estimates is similar
to those for individual records, except that any interference
relates to the population as a whole [27]. Group differences
were investigated using the χ2 extended difference of coher-
ence test [34], a nonparametric test that provides the
amount of pooled coherence differences between groups at
each frequency in relation to an upper 95% confidence
interval limit.

As described previously, two participants with CP
could not produce a voluntary dorsiflexion contraction.
These subjects were therefore excluded from this part of
the analyses.

2.2.5. Statistics. Sigma Plot statistical software version 12.5
was used for statistical analysis. A one-way ANOVA was
used to investigate differences in the amount of cocontrac-
tion between adults with CP and healthy controls. A two-
way repeated measure ANOVA with group (CP or CON)
and state (rest or onset of dorsiflexion) was applied for
H-reflex and M-response analyses. To investigate possible
associations between H-reflex modulation and muscle
strength in the adults with CP, we used the Pearson product-
moment correlations. For experiment 2, the extended χ2 test
was used to calculate the difference of coherence between
adults with CP and healthy controls. Coherence was also
quantified as the sum (i.e., area) of alpha (5–15Hz) and beta
(15–35Hz) coherence. These values were transformed loga-
rithmically to symmetrize distributions for statistical analyses
[35] and compared using Student’s t-test. Associations
between H-reflex modulation and coherence area within and
across groups were assessed by means of the Pearson
product-moment correlations. Statistical significance was
given for P values smaller than 0.05. Data are presented as
the means± standard error unless reported otherwise.

3. Results

Data from the test of the dorsiflexion strength has already
been reported by Geertsen et al., where we showed that for
adults with CP, MVCDF was 42% of healthy controls
(P < 0 001) and RFD200 only 21% healthy controls
(P < 0 001) [21]. Further analyses performed here showed
that during MVCDF, adults with CP exhibited significantly
more cocontraction (10.6± 1.5%) than healthy controls
(5.9± 1.2%; P = 0 003).

3.1. Functional Reciprocal Inhibition. We found a significant
group-state interaction when comparing the H-reflex
amplitude at rest with the amplitude at the onset of

dorsiflexion for the adults with CP and healthy controls
(F1,27 = 22 35, P < 0 001). Post hoc analysis revealed that
the healthy control group significantly reduced the H-reflex
amplitude by 37% from 40.7± 4.1% of Mmax at rest to
25.6± 5.0% at the onset of contraction (P < 0 001). This
functional reciprocal inhibition was not evident in the partic-
ipants with CP (rest: 37.3± 5.1%, dorsiflexion: 37.5± 4.5%,
P = 0 91; Figure 4). There was no significant group-state
interaction when comparing the amplitude of the
M-response at rest with the amplitude at the onset of dorsi-
flexion for the adults with CP and healthy controls
(F1,27 = 1 32, P = 0 26), indicating a comparable afferent
input to the soleus motoneuron pool in the two states for both
groups (Figure 4).

In adults with CP, the amount of H-reflex suppression
was significantly correlated with both MVCDF (r = 0 58,
P = 0 02) and RFD200 (r = 0 56, P = 0 03).

3.2. Central Common Drive. Figure 3 shows individual coher-
ence data from a healthy control during static dorsiflexion.
The autospectra for TAprox and TAdist (Figures 3(a) and
3(b)) illustrate the origin of the elements used for time and
frequency domain analysis. Coherence estimates calculated
from the autospectra and cross-spectra are shown in
Figure 3(c). Here, a clear peak can be seen in the beta
(15–35Hz) frequency band, as well as a small peak in the
alpha (5–15Hz) frequency band. Figure 3(d) shows the phase
difference between the two rectified EMGs. The cumulant
density constructed from the rectified EMG data is shown
in Figure 3(e). Note the clear central peak around 0ms indi-
cating synchronization between the rectified EMG data from
TAprox and TAdist.
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Figure 4: Functional reciprocal inhibition in healthy controls and
adults with CP. Mean and individual M-response and H-reflex
amplitudes in % of the maximal M-responses (M-max) at rest and
at the onset of dorsiflexion (DF). The M-response was comparable
at rest and at the onset of DF for both healthy controls (CON)
and adults with CP. At the onset of DF, the H-reflex was
significantly reduced in the healthy controls, whereas it was
unchanged in adults with CP. Significant differences between rest
and onset of DF are indicated by ∗∗∗P < 0 001.
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Pooled TA-TA EMG coherence estimates from adults
with CP and healthy controls are presented in Figure 5(a).
For both groups, pooled alpha and beta coherence esti-
mates exceeded significance levels, but adults with CP dis-
played considerably less coherence across all frequencies
compared with the healthy adults. This observation was con-
firmed by the results from the extended χ2 test of the group

coherence estimates displayed in Figure 5(b), which showed
a statistical difference at both alpha (5–15Hz) and beta
(15–35Hz) frequencies.

Reduced TA-TA coherence in adults with CP was also
confirmed when comparing the coherence areas at alpha
and beta frequencies across individuals (Figure 6). Compared
to healthy controls, adults with CP had significantly less
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Figure 5: Pooled coherence plots and χ2 analyses. (a–d) Pooled power in the proximal (TAprox) and distal (TAdist) parts of the tibialis anterior
during static dorsiflexion for the healthy control group (CON) and adults with cerebral palsy (CP). (e) Pooled coherence between TAprox and
TAdist for adults with CP (grey) and CON (black). (f) χ2 analyses of the difference between adults with CP and the CON group. (g–h) Pooled
cumulant density associated with the coherence for the CON and the CP groups.
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alpha (−0.705± 0.083 vs. 0.034± 0.071; P < 0 001) and beta
(−0.549± 0.079 vs. 0.155± 0.064; P < 0 001) coherence.

We also investigated possible associations between
the central common drive to the TA motoneuron pool
(log TA-TA coherence area) and the ability to suppress the
antagonist motoneuron pool (reduction in soleus H-reflex
amplitude at the onset of DF compared to rest). We observed
a negative correlation (i.e., more coherence and larger
H-reflex reduction) that approached significance in both
healthy controls (r = −0 53, P = 0 05) and adults with
CP (r = −0 43, P = 0 13), and the correlation was significant
across groups (r = −0 74, P < 0 001).

4. Discussion

The main findings of this study are that the central common
drive to ankle dorsiflexors and functional reciprocal inhibi-
tion of ankle plantar flexors are impaired in adults with CP.
This may contribute to the reduced coordination of antago-
nistic muscles and impaired gait function observed in adults
with CP.

4.1. Impaired Functional Reciprocal Inhibition in Adults with
CP. The inability of adults with CP to suppress the soleus
H-reflex to the same extent as healthy adults at the onset of
dorsiflexion is similar to what has been observed in adults
who have acquired lesion of descending motor pathways as
adults because of multiple sclerosis [20], stroke [36], or spinal
cord injury [37, 38]. Our findings indicate that a similar
impaired control in adults may also be seen as the result of
a lesion early in life and that the intervening years of motor
practice and experience apparently do little to change this.
We were not able to address the mechanisms responsible
for the reduced suppression of the H-reflex further, but based

on previous experiments in healthy subjects [13] and adults
with lesion of central motor pathways [20, 39], it appears
likely that impaired regulation of spinal interneurons
responsible for conveying reciprocal Ia inhibition and/or
presynaptic inhibition of Ia afferents is involved. These two
spinal interneuronal populations have been shown to be
responsible for suppressing stretch reflex activity in antago-
nist muscles by reducing antagonist motoneuronal excitabil-
ity and limiting the input from antagonist stretch-sensitive
receptors to the motoneurons at the onset of movement
[39, 40]. Suppressing transmission in the stretch reflex cir-
cuitry through two different populations of interneurons
and at two different points may be an efficient safeguard to
ensure that stretch of the antagonists does not elicit
unwanted stretch reflex activity.

It follows from this that the impaired functional recipro-
cal inhibition that we have found in adults with CP here
could provide an explanation of the inability of the subjects
to generate force quickly and efficiently [21]. Previous studies
have indicated that people with central motor lesions may
move slowly in order to avoid eliciting stretch reflex activity
in antagonists when they are stretched at the onset of (fast)
movements [15, 16, 41, 42]. However, some caution is
required. The adults with CP in our study did not as a group
have larger stretch reflexes than healthy subjects at rest
(see Figure 4) and the subjects who were the least able to sup-
press the H-reflex were not those who had the largest stretch
reflexes. It should also be kept in mind that the opposite
causal relationship is equally likely and that H-reflexes were
only slightly suppressed in the adults with CP because they
were unable to generate an efficient descending drive to the
agonist motoneurons and thereby activate reciprocal inhibi-
tory mechanism efficiently. Our observations of strongly
reduced common synaptic drive to ankle dorsiflexors sup-
port this interpretation.

4.2. Reduced Central Common Drive in Adults with CP. We
used coherence between surface EMG recordings obtained
from two different sites over the tibialis anterior muscle as a
measure of the central common drive to populations of
motoneurons within the same motor pool. This approach
requires that the EMG recordings reflected the activity of dif-
ferent populations of motoneurons and that the recordings
were not contaminated by cross-talk. Although cross-talk is
difficult to rule out definitively, we are confident that we were
able to minimize cross-talk to the extent that it cannot
explain the findings in the present study: First, we made sure
always to position electrodes at least 10 cm apart since muscle
fibers in the tibialis anterior muscle have been shown not to
exceed 6 cm [43, 44]. Second, cross-talk is easily identified
from coherence between the recordings at all frequencies
and a large, narrow peak at zero time lag in the cumulant
density function [45, 46]. The recordings in the present study
only showed coherence within restricted frequency bands
(Figures 3 and 5) and peaks of synchronization in the cumu-
lant density function were always found to have a distinct lag
with respect to zero. We may therefore safely conclude that
the observed coherence and synchronization peaks in the
cumulant density function reflect a common central drive
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Figure 6: Coherence area estimates. Logarithmic coherence area
between the proximal (TAprox) and distal (TAdist) part of the
tibialis anterior in alpha (5–15Hz) and beta (15–35Hz) frequencies
during static dorsiflexion for healthy controls (CON; blue) and
adults with CP (red). Significant differences between the groups are
indicated by ∗∗∗P < 0 001.
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to the tibialis anterior motoneurons in the spinal cord
[47–49]. The narrow central peak in the cumulant density
function and the coherence dominantly in the alpha and beta
bands are similar to what has been observed in numerous
studies during static contraction in healthy adults previously
[31, 47, 49]. There are strong arguments supporting the
notion that the narrow central synchronization reflects input
to the motoneurons from collaterals of common last order
neurons [31, 47, 49], and there is also strong evidence to sug-
gest that the coherence in the beta band reflects activity in
corticospinal neurons and that the central drive responsible
for these two phenomena therefore originates in the motor
cortex and may possibly be explained by activity in the direct
monosynaptic corticospinal pathway to the spinal motoneu-
rons [31, 47, 49]. If so, our findings would be consistent with
impaired transmission in the corticomotoneuronal pathway
in adults with CP, since both coherence and the central
short-term synchronization peak in the cumulant density
function were reduced in this group. Similar findings with
similar interpretation have been reported previously for chil-
dren with CP [3, 7] and for adults with spinal cord injury
[45], stroke [23, 25], and multiple sclerosis [50], but we
believe that our findings are the first to demonstrate this for
adults with CP. Although the coherence measurements were
performed during static contraction rather at the onset of
dorsiflexion where reciprocal inhibition was evaluated, the
two measures were correlated, and it makes sense from a
physiological perspective that the reduced common drive to
the dorsiflexors and the impaired reciprocal inhibition at
the onset of dorsiflexion are related. The corticomotoneuro-
nal pathway has been shown to be important for the initia-
tion of fast, ballistic movements such as the dorsiflexion we
used when testing reciprocal inhibition [51–53]. Corticomo-
toneuronal cells have also been shown to have collaterals to
the Ia inhibitory interneurons responsible for reciprocal inhi-
bition [54–56]. It is therefore, in our opinion, very likely that
the reduced coherence between tibialis anterior motor units
during static dorsiflexion and the reduced reciprocal inhibi-
tion at the onset of dorsiflexion are both linked to impaired
transmission in the corticomotoneuronal pathway in the
adults with CP.

Petersen et al. [3] found that coherence between tibialis
anterior motor units during both static dorsiflexion and gait
reached adult levels when children are 10–12 years old in
parallel with reduced step-to-step variability of gait and
suggested that this was related to the development of the
corticospinal tract. In children with CP, this development
of coherence was not observed and Petersen et al. [7] there-
fore suggested that the development of corticospinal drive
was impaired. We may now extend these findings to
conclude that adults with CP continue to show impaired
corticospinal drive to the dorsiflexors and that this also
impacts the coordination of antagonistic muscles. It follows
that the intervening years of motor practice have not been
sufficient to change this.

In children younger than 10 years, 4 weeks of daily tread-
mill training may increase coherence between tibialis ante-
rior motor units in parallel with improved ability to lift the
toes and make ground contact with the heel during gait

[57]. This suggests that transmission in the corticospinal
pathway is sufficiently plastic in this age group to induce
important functional improvements through relatively
short-lasting training. However, Willerslev-Olsen et al. [57]
also found that such improvements were not found in chil-
dren older than 10 years and it may therefore be anticipated
that this is also the case in adults, although we have at present
no knowledge about this. This may be put into the context of
current ideas in computational neuroscience, which suggests
that motor abilities are the result of a continuous updating of
a predictive model that monitors the discrepancy between
predicted and actual sensory consequences of movement
[58–60]. With 10–12 years of gait experience, a relatively pre-
cise predictive model is likely to have been developed and it
may therefore be more difficult to alter and require more
training than earlier in life. This is consistent with the find-
ings showing that an adult-like gait pattern with little vari-
ability (and little cocontraction) is attained around 10–12
years of age [1–4]. It is of interest in this relation that imped-
ance control (i.e., cocontraction of antagonists) and slow
movements (i.e., low RFD) have been found to be an optimal
control strategy under dynamic conditions that are difficult
to predict [61–63]. The characteristics of gait and other
movements in adults with CP thus may reflect the most opti-
mal strategy that their nervous system could find under the
restrictions imposed by weak muscles and noisy and rela-
tively unpredictable sensory feedback signals. It follows from
this that efficient interventions in this group will have to
involve “de-learning” of the unwanted movement pattern
(cocontraction). This may be followed by learning of a more
adequate movement pattern once the prerequisites for this
have been established by strengthening muscles, reducing
noise in the motor and sensory systems and facilitating rele-
vant sensory signals.

5. Conclusion

We have shown in this study that the central common drive
to ankle dorsiflexors and functional reciprocal inhibition of
ankle plantar flexors are impaired in adults with CP. This
likely reflects the most optimal control strategy under the
constraints imposed by an early brain lesion. We suggest
that the development of efficient functional interventions
in adults with CP will have to take into account that all
movements—including “abnormal” movements—may have
to be seen as the result of a long learning process involving
predictive coding of the sensory consequences of movement.
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