
1Scientific REPOrtS |  (2018) 8:1815  | DOI:10.1038/s41598-018-19960-4

www.nature.com/scientificreports

Ordered states in the Kitaev-
Heisenberg model: From 1D chains 
to 2D honeycomb
Cliò Efthimia Agrapidis1, Jeroen van den Brink1,2 & Satoshi Nishimoto1,2

We study the ground state of the 1D Kitaev-Heisenberg (KH) model using the density-matrix 
renormalization group and Lanczos exact diagonalization methods. We obtain a rich ground-state 
phase diagram as a function of the ratio between Heisenberg (J = cosφ) and Kitaev (K = sinφ) 
interactions. Depending on the ratio, the system exhibits four long-range ordered states: 
ferromagnetic-z, ferromagnetic-xy, staggered-xy, Néel-z, and two liquid states: Tomonaga-Luttinger 
liquid and spiral-xy. The two Kitaev points φ = π

2
 and φ = π3

2
 are singular. The φ-dependent phase 

diagram is similar to that for the 2D honeycomb-lattice KH model. Remarkably, all the ordered states of 
the honeycomb-lattice KH model can be interpreted in terms of the coupled KH chains. We also discuss 
the magnetic structure of the K-intercalated RuCl3, a potential Kitaev material, in the framework of the 
1D KH model. Furthermore, we demonstrate that the low-lying excitations of the 1D KH Hamiltonian 
can be explained within the combination of the known six-vertex model and spin-wave theory.

It is well-known that magnetic ordering (e.g. the Néel state) is induced by the spontaneous breaking of some 
sort of symmetry at low temperatures. If one can prevent such a conventional magnetic ordering, an exotic type 
of quantum-disordered state — the so-called quantum spin liquid (QSL) — may arise. In the spin liquid phase, a 
macroscopic number of quasi-degenerate low-energy states compete with each other. Since Anderson’s proposal 
of a resonating valence bond state as a theoretical realization of a QSL in 19731, geometrical frustration2, a situa-
tion where the network of magnetic interactions is incompatible with the spatial symmetry, had been considered 
to be almost the key to achieve such situation3. But in 2006, the advent of the Kitaev model4 shifted the focus on 
another way to realize a QSL — frustration due to bond-dependent exchange interactions5. This model has non-
trivial topological phases with elementary excitations exhibiting a Majorana algebra. After that, the microscopic 
origin of such Kitaev-type interactions in the d5 transition metal compounds was worked out6,7. In the last decade, 
there has been a growing number of researches on the Kitaev materials8,9.

The first Kitaev material candidates are 5d5 honeycomb iridates A2IrO3 (A = Na or Li)7,10. The Ir4+ ions cen-
tered in the edge-sharing IrO6 octahedra form a planar hexagonal network. In each Ir4+ ion, the two eg levels are 
split off by the crystal field and five electrons in the 5d shell are put into the t2g orbitals with a finite effective angu-
lar momentum l = 1. Besides, the strong spin-orbit coupling (SOC) for 5d electrons splits up the t g2

5  manifold into 
a fully occupied =j 3

2
 quartet band and a half-filled =j 1

2
 doublet band. The latter half-filled band gives an 

effective =j 1
2

 pseudospin model, in association with the opening of a Mott gap. In the edge-sharing IrO6 octa-
hedra, there are two Ir-O-Ir exchange paths with a ~90° bond angle. The anisotropic Kitaev-type coupling then 
arises from the particular superexchange interactions between the =j 1

2
 pseudospins. A more realistic spin 

model to describe the magnetic properties is the Kitaev-Heisenberg (KH) model, that accounts for the residual 
Heisenberg-type couplings. It is known that the Kitaev QSL is most likely preempted by a certain level of the 
Heisenberg interaction. In fact, the above iridates exhibit long-range magnetic order at low temperatures11–14, 
possibly assisted by off-diagonal and/or long-range interactions.

At present, one of the most promising materials close to the Kitaev QSL is the 4d5 ruthenium trichloride 
α-RuCl3 in its honeycomb crystal phase15–21. For this compound the effective =j 1

2
 description, as a Ru3+ 4d 

analogue to the iridates, seems to still give a good description of the magnetic properties, although some degree 
of admixture between =j 1

2
 and =j 3

2
 in the t g2

5  states may arise from a weaker SOC for 4d electrons than in the 
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Ir 5d orbitals. Neutron and Raman scattering studies gave evidence for fractionalized excitations typical of the 
Kitaev QSL22–24, and both theoretical25 and experimental investigations26–31 indicated, for this material, the exist-
ence of a transition into a QSL in the presence of external magnetic field. Furthermore, a recent X-ray diffraction 
measurement suggested the Kitaev QSL is induced by a small applied pressure of about 0.7 GPa32. A possibility of 
pressure-induced QSL has been also reported for the other Kitaev materials, honeycomb iridates β-Li2IrO3

33 and 
γ-Li2IrO3

34. In both materials the low temperature phase is magnetically ordered without field and under ambient 
pressure. Namely, the Kitaev QSL is derived through a melting of the magnetic ordering by field or pressure. 
Therefore, it is crucial to deeply understand the characteristics of the magnetically ordered states.

Very recently, a temperature-dependent electron energy loss spectroscopy (EELS) measurement was per-
formed in a K-intercalated RuCl3, denoted as K0.5RuCl3 (Knupfer M., private communications). The intercalated 
K+ ions provide charge carriers, however, a sharp gap was observed at ~0.9 eV, instead of the charge gap Eg = 1.1–
1.2 eV for the undoped α-RuCl3

35–37. This indicates an insulating feature of K0.5RuCl3 and differs from the pseu-
dogap behavior seen for charge localization in disordered metals. This has been interpreted as half of the =j 1

2
 

pseudospins being replaced by nonmagnetic d6 ions. Therefore, this insulating state can be pictured as a formation 
of superlattice by charge disproportionation (charge ordering). Different possible charge ordering patterns are 
shown in Fig. 1. Of particular interest in the present context is the zigzag chain-type pattern exhibited in Fig. 1(c), 
where chains of nonmagnetic ions are separated by chains of magnetic ions with KH interactions.

The above motivations lead us to studying the 1D KH model not only for fundamental theoretical reasons, 
but also as a possible minimal spin model to describe the magnetic properties of the K-intercalated RuCl3. So 
far, there are few studies on the 1D KH model38–46. Using the density-matrix renormalization group (DMRG) 
method, we calculate total spin, real-space spin-spin correlation functions, static spin structure factor, central 
charge, and various order parameters in the ground state. Based on the results, we obtain the ground-state phase 
diagram, including four long-range ordered and two liquid phases, as a function of the ratio between Heisenberg 
and Kitaev interactions. Moreover, the relevance of the phase diagram to that of the honeycomb-lattice KH model 
is discussed. It is striking that all the magnetically ordered states of the honeycomb-lattice KH model can be inter-
preted in terms of coupled 1D KH chains. Furthermore, we calculate the dynamical spin structure factors via the 
Lanczos exact diagonalization (ED) technique. The basic low-lying excitations are considered by use of the known 
six-vertex model and the spin-wave theory (SWT). The present investigation can thus contribute to an elucidation 
of the fundamental properties of the K-intercalated RuCl3 as well as a better insight in the understanding of the 
physics of the honeycomb-lattice KH model.

Model and Numerical Methods
Pattern of charge ordering in the K-intercalated RuCl3.  The insulating feature of K0.5RuCl3 with a 
sharp peak at ~0.9 eV in the EELS spectrum can be explained by charge ordering associated with a superlattice 
formation rather than a random distribution of K+ ions (Knupfer M., private communications). The superlattice 
structures are simply constructed by replacing half of the =j 1/2eff  pseudospins with nonmagnetic sites in the 
original hexagonal cluster. In practice, there are three possibilities for the charge ordering pattern, they shown in 
Fig. 1(a–c). Recently, for exfoliated α-RuCl3, a first-order structural phase transition at ~150 K between low-tem-
perature C2/m and high-temperature P31 structures was reported47. At high temperature, the emergence of charge 
ordering, originating from anisotropy in the charge distribution along Ru-Cl-Ru hopping pathways, was 
observed. It suggests a strong tendency to the bond-directional anisotropy along the Ru-Ru axes. In this sense a 
realization of the zigzag-type charge ordering [Fig. 1(c)] may be most likely. Besides, the zigzag-type charge 

Figure 1.  Possible charge ordering patterns of K0.5RuCl3; (a) triangular, (b) dimer and (c) zigzag. (d) Lattice 
structure of the 1D Heisenberg-Kitaev model. The labels ‘x’ and ‘y’ indicate the x-bond and y-bond, respectively 
(see text).
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ordering can gain the largest exchange energy (see below). To fix the detailed charge distribution, experimental 
observation and/or microscopic analysis including structural distortion by the K-intercalation are required in 
future.

1D Kitaev-Heisenberg Hamiltonian.  At present, it is widely believed that the magnetic properties of 
the undoped α-RuCl3 are well described by the KH model on a honeycomb lattice. If we assume the zigzag-type 
charge ordering in Fig. 1(c), the zigzag chains are well separated by the nonmagnetic ions. Then, each chain is 
considered to be a 1D KH model, which is equivalent to a system obtained by removing the z-bonds from the 
honeycomb-lattice KH model. The Hamiltonian of 1D KH model is written as

∑ ∑= + +
→

⋅
→

=
− +

=
+K S S S S J S S( )

(1)i

L

i
x

i
x

i
y

i
y

i

L

i i
1

/2

2 1 2 2 2 1
1

1

for a system with L sites, where 
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i
z  is a spin -1

2
 operator at site i, and the Kitaev and exchange cou-

plings are defined as K = sinφ and J = cosφ via a phase parameter φ. Throughout the paper, we take + =K J 12 2  
as the energy unit. The system has two kinds of neighboring links and they appear alternately along the chain. 
Hence, the structural unit cell contains two lattice sites. Hereafter, we call the links (2i − 1, 2i) and (i, 2i + 1) 
“x-link” and “y-link”, respectively. By rewriting Eq. (1) as
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we can easily notice that a XXZ Heisenberg chain containing exchange ( ex ) and Ising ( Ising ) terms is disturbed 
by sign-alternating double-spin-flip (dsf) fluctuations46.

Numerical methods.  We employ the density-matrix renormalization group (DMRG) method, which is 
one of the most powerful numerical techniques for studying various quasi 1D quantum systems48. Open bound-
ary conditions are applied unless stated otherwise. This enables us to calculate ground-state and low-lying 
excited-state energies, as well as static quantities, quite accurately for very large finite-size systems. We are thus 
allowed to carry out an accurate finite-size-scaling analysis to obtain energies and quantities in the thermo-
dynamic limit L → ∞. We hence study chains with several lengths up to L = 200 sites for a given φ. Since, in 
hindsight, the system (1) exhibits only commensurate phases in the ground state and the largest magnetic unit 
cell contains four lattice sites, its size is taken as L = 4n (n: integer). For each calculation, we keep up to m = 1200 
density-matrix eigenstates in the renormalization procedure and extrapolate the calculated quantities to the limit 
m → ∞ if needed. Since the SU(2) symmetry is broken in system (1) and total Sz is no longer a good quantum 
number except at φ = 0, π, one may have some difficulty in obtaining accurate results in comparison to usual 
DMRG calculations. Nevertheless, in this way, the maximum truncation error, i.e., the discarded weight, is less 
than 1 × 10−10 while the maximum error in the ground-state is less than 1 × 10−8.

For the dynamical properties calculation, we used the Lanczos exact diagonalization (ED) method. To exam-
ine the low-energy excitations for each phase, we calculate the dynamical spin structure factor, defined as

∑
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where γ is z or −(+), ψν  and Ev are the v-th eingenstate and the eigenenergy of the system, respectively (v = 0 
corresponds to the ground state). Under periodic boundary conditions, the spin operators γSq  can be precisely 
defined by

∑=γ γS
L

S iqr2 exp( )
(3)q

i
i i

where ri is the position of site i and the sum runs over either i even or i odd sites. They provide the same results. 
The momentum is taken as = πq n

L
4  ( = ± … ±n 0, 1, , L

4
) since the lattice unit cell includes two sites and the 

number of unit cells is L
2

 in a system with L sites. We calculate both spectral functions S±(q, ω) and Sz(q, ω) as they 
are different due to broken SU(2) symmetry except at φ = 0 and π. We study chains with L = 24, namely, 12 unit 
cells, by the Lanczos ED method. As shown below, system (1) contains only commensurate phases with unit cell 
containing one, two, or four sites. Therefore, a quantitative discussion of the low-lying excitations is possible even 
within the L = 24 chain.

Results
Ground-state properties.  Quantum phase transitions.  Lets first look at the ground-state energy and total 
spin with respect to φ in order to capture the overall appearance of quantum phase transitions. The results, using 
a periodic 24-site KH chain, are shown in Fig. 2. We clearly see discontinuities in the first derivative of the 
ground-state energy at four values: φ = π

2
, π, π3

2
, and π≈ .1 65 , which indicate the first-order phase transitions. The 
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second derivative φ−∂ ∂E /2
0

2 is, in a precise sense, continuous except for the above four φ points, nonetheless, 
there exists a distinguishable peak around φ π≈ .0 65 , which may corresponds to a second-order (or continuous) 
phase transition. Furthermore, as shown below, we find another phase transitions at φ = 0. Therefore, we suggest 
that the simple 1D model (1) exhibits a variety of phases including six quantum phase transitions. It will be con-
firmed by studying various corresponding order parameters or spin-spin correlation functions. We also confirm 
that the ground-state energy of the 1D KH chain is always lower than that given by the dimer-type charge order-
ing [see Fig. 2(a)].

Ferromagnetic-xy phase π φ< < π( )3
2

.  Since both K and J are ferromagnetic (FM), a long-range FM ordered 
state is naively expected in the range π φ< < π3

2
. At the spin isotropic point φ = π, the spins can align along any 

arbitrary spatial direction due to SU(2) spin rotation invariance and the total spin takes the maximum value 
=S

L
1
2

tot  [see Fig. 2(c)]. Away from the isotropic point, the SU(2) symmetry is broken to U(1) and the configura-
tions for higher | |Sz  sectors are projected out [see Fig. 3(c)]. When φ is still close to π (− − >J K 0), the 
ground state is approximately expressed as

Figure 2.  (a) Ground-state energy E0, (b) the second derivative of E0 with respect to φ, and (c) total spin Stot as a 
function of φ, obtaind with a 24-site periodic Kitaev-Heisenberg chain. Dotted line in (a) indicates ground-state 
energy for the dimer-type charge ordering.

Figure 3.  Schematic pictures of five states realized in the 1D KH model, except the TLL state at φ< < π0
2

. In 
the phases (a,c,d), the spins lie mostly on the xy-plane and these states are rotational invariant around the z-axis. 
In phases (b,e), the spins almost align along the z-direction and a state having opposite spin directions is 
degenerate.
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
∑ ψΨ = | 〉

1 ,
(4)m

m0

where ψ| 〉m  is a basis in real space, namely each site state is represented by either spin-up (↑) or spin-down (↓). The 
basis is here restricted to a = ∑ 〈 〉 ==S S 0ot

z
i
L

i
z

t 1  subspace, so that m is summed over all possible combinations of 
spin configuration with L

2
 up and L

2
 down spins in a L lattice sites.   is the total number of the spin configurations, 

i.e., L
L L

!
( /2)!( /2)!

. The wave function (4) becomes exact in the isotropic spin limit φ = π+. Accordingly, the spin-spin 
correlations have long-range FM ordering for all three spin components: 〈 〉 = 〈 〉 =S S S Si

x
j
x

i
y

j
y 1

6
 and 〈 〉 = −S Si

z
j
z 1

12
 

for any ≠i j. Taking the spin isotropic Hamiltonian at φ = π+ as an unperturbed one, the unperturbed ground 
state is  given by Eq. (4).  When φ π−  1, the perturbed Hamiltonian can be written as 

′ ≈ ∑ +φ π− +
+
− −

+
+S S S S( )i i i i i4 1 1  and the lowest-order energy correction is ′ = φ π−E

4
. Therefore, with increasing 

φ from π, the antiferromagnetic (AFM) fluctuations increase and the long-range FM ordering is weakened. 
Nonetheless, the correlations 〈 〉S Si

x
j
x  and 〈 〉S Si

y
j
y  retain the same asymptotic behaviors indicating the long-range 

FM ordering until φ = π3
2

, characterized by the saturation to a finite negative value in the limit | − | → ∞i j ; 
whereas, 〈 〉S Si

z
j
z  decays in a power law with | − |i j . This is because the AFM fluctuations are mainly introduced 

along the z-direction. It is confirmed by a slow decrease of the total spin as a function of φ, as seen in Fig. 2(c). We 
thus call this state FM-xy state. A collapse of the long-range FM ordering is detected by a drop-off of the total spin 
at φ = π3

2
, suggesting a first-order transition.

Ferromagnetic-z phase π φ π. < <


(0 65 ).  A long-range FM ordered state stabilizes also at φ π< <π3
4

, where 
all the exchange tensors are FM since J + K is negative despite positive K. However, in contrast to the FM-xy state, 
spin alignment along the z-direction is favored because of the easy-axis-XXZ-like interactions | < |+ JJ K2

2
. 

Therefore, the most dominant spin configurations are given by the highest | |Sz  sectors, i.e., the ground state is 
expressed as

Ψ = +
1
2

( ),
(5)0

with | 〉 = | ↑ ↑ ↑ ↑ ↑ ↑ 〉   and | 〉 = | ↓ ↓ ↓ ↓ ↓ ↓ 〉  . This wave function is exact in the isotropic limit of 
φ = π−. We call this type of long-range FM ordering FM-z state. Let us take Eq. (5) as the unperturbed ground 
state. For π φ−  1, the perturbed Hamiltonian can be written as ′ ≈ ∑

π φ−
+S Si i

z
i
z( )

2 1
2

 . This is an Ising-like 
AFM correlation and it clearly disturbs the FM-z state. However, the lowest-order correction to the ground-state 
energy is ′ = π φ−E ( )

8

2
. It means that the perturbation acts only gradually with being away from the isotropic 

point φ = π. As a result, the total spin is not that much reduced around φ = π in the FM-z phase. To estimate the 
lower bound of the FM-z phase, we shall define the FM-z order parameter. A state with long-range FM ordering 
is a state with broken spin symmetry along the z-direction; macroscopically, there are two degenerate ground 
states |Ψ 〉 ≈ | 〉0  and |Ψ 〉 ≈ | 〉0 . Applying open boundary conditions, one of the two ground states is picked 
imposing initial conditions on the calculation. The long-range ordered state is thus directly observable as a 
symmetry-broken state in our DMRG calculations. The order parameter is defined as

 = 〈 〉−
→∞

S2 lim (6)z
L

L
z

FM /2

The finite-size scaling analysis is performed. The extrapolated values in the thermodynamic limit are shown in 
Fig. 4. Notably, the FM-z state survives even at φ < π3

4
, where a part of the interactions is AFM, i.e., J + K > 0. 

(a) (b)

Figure 4.  (a) Finite-size scaling analyses of the FM-z order parameter with polynomial fitting functions. (b) 
Extrapolated values of the FM-z order parameter  −zFM  to the thermodynamic limit L → ∞ as a function of φ.
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Nevertheless, the long-ranged FM order is drastically suppressed by the AFM fluctuations at φ < π3
4

 and com-
pletely destroyed at φ π≈ .0 65 . The order parameter has no jump at the transition point, suggesting a 
second-order phase transition.

Spiral-xy phase φ π< < .π



( 0 65 )
2

.  As shown above, the FM-z phase remains down to φ π≈ .0 65 . Then, we ask 
which kind of phase comes next at φ π< < .π



0 65
2

. In this range, K is AFM, J is FM, and −K J. On the x-links, 
the x-components of spins tend to be antiparallel due to the strong AFM interaction along the x direction; 
whereas, their y-components tend to be parallel due to FM J term. One can think about the y-links in the same 
way. Eventually, the spins lie on the xy plane and rotate by 90° from one site to the next. The magnetic unit cell is 
twice as large as the structural unit cell, i.e., including four lattice sites [see Fig. 3(a)]. We call this state spiral-xy 
state. To confirm this magnetic structure, we calculate the static spin structure factor, defined as

∑= 〈 〉γ γ γ − −S q
L

S S e( ) 2 ,
(7)k l

k l
iq k l

,

( )

where the length of the structural unit cell, i.e., two lattice spacings, is taken to be unity. The DMRG results with 
L = 60 cluster are shown in Fig. 5. Near the AFM Kitaev point φ = π

2
, +S q S q( ) ( )x y  has a large π=q  peak indi-

cating a periodicity of four lattice sites on the xy-plain. On the other hand, S q( )z  is almost zero for all q since the 
FM z interaction J is tiny compared to the dominant AFM x or y interactions +J K . With increasing φ, the π=q  
peak becomes lower and a =q 0 peak in S q( )z  develops. Basically, the spins are tilted in one direction along the 
z-axis with keeping the periodicity on the xy-plain. Those peak heights are reversed around the transition point 
φ = 0.65π from the spiral-xy to the FM-z phases. We note that the height of the =q 0 peak in S q( )z  coincides with 
the FM-z order parameter. As shown in Fig. 5(e), the spin-spin correlations decay as a power law for all the spin 
components in the spiral-xy phase. It means that the π=q  peak in +S q S q( ) ( )x y  disappears in the thermody-
namic limit: the spiral-xy structure is not long-range ordered.

Néel-z ordered phase π φ π. < <


(1 65 2 ).  Next, we turn to the parameter region φ π< <π 23
2

 ( >J 0, <K 0). 
We start from the SU(2) symmetric limit φ = 2π, where the system is the original 1D AFM Heisenberg model. The 
ground-state wave function can be exactly obtained and it is know to have =S 0tot . So, the first perturbative cor-
rection is given by ′ φ π≈ − ∑ ++

+
− −

+
+S S S S( 2 ) ( )i i i i i1 1 , which provides an easy-axis anisotropy to the system. 

Therefore, the possibility of a continuous Néel-z order transition is conceived by analogy to the easy-axis aniso-
tropic XXZ chain. For small π φ−2 , the magnetization is expect to grow gradually with

π
π φ

π
π φ−






−

−






.~M

2(2 )
exp

2 2(2 ) (8)

2

Let us confirm it numerically. In the long-range Néel-z ordered state, the translational symmetry is broken 
in a finite system due to the Friedel oscillation under the open boundary conditions, so that the Néel-z state 
can be directly observed by extracting one of the degenerate states, like in the FM-z state. Generally, the Friedel 

Figure 5.  Static spin structure factors for (a) φ = 0.51π, (b) φ = 0.6π, (c) φ = 0.65π, and (d) φ = 0.75π. (e) Log-
log plot of the spin-spin correlation functions as a function of distance at φ = 0.6π.
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oscillations in the center of the system decay as a function of the system length. If the amplitude at the center of 
the system persists for arbitrary system lengths, it corresponds to a long-range ordering. Here, we are interested in 
the formation of alternating spin flip along the z-direction. Thus, the Néel-z order parameter is defined as

= |〈 〉 − 〈 〉|.
→∞

+é S Slim (9)L
L
z

L
z

N el /2 /2 1

This quantity is equivalent to the magnetization M in the thermodynamic limit. The finite-size scaling analyses 
of éN el  was performed using the results for systems with up to =L 120 and the extrapolated values to the ther-
modynamic limit were obtained. They are shown in Fig. 6. We indeed see a slow increase of éN el  near the SU(2) 
symmetric limit φ π= 2 . Further with decreasing φ, the order parameter develops up to  =é 1N el  and drops 
down to 0 at φ π≈ .1 65 .

In fact, this lower φ-boundary of the Néel-z ordered phase can be estimated analytically. At φ = tan-1 
π− ≈ .( 2) 1 6476 , the exchange term ex disappears in the Hamiltonian (1) and the system is just written as a sum 

of double-spin-flip and Ising parts

∑ ∑
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+
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1 1 1

  

Each of the partition Hamiltonians dsf  and Ising is exactly solvable. For dsf , the system is regarded as non-
interacting fermions with “pair hopping” and the ground-state wave function is

N C C C
⟩ ∑ ∏|Ψ = − ⇑

γ

γ γ−
+S S1 ( 1) ,

(11)i

i
i i0

( ), ( )

1
1

where   is summed over all possible spin configurations created by the double spin flips starting from  or  
( = CL L/2), i and γ( =+ or −) are taken to create the configuration  . While, for Ising, the system is a simple 
Ising one and the ground-state wave function is

∑ ∏|Ψ 〉 =
σ =

− σ σ
† †c c1

2
0 ,

(12)i

L

i i0
1

/2

2 1, 2 ,

where 0  is the vacuum state. The ground-state wave functions (11) and (12) are orthogonal since they do not 
share the same spin configurations. It means the ground state is two-fold degenerate at the critical point 
φ = −−tan ( 2)1 . The ground-state energy is = − φE L

0
cos
4

. This degeneracy is lifted away from φ = −−tan ( 2)1 . 
Equation (12) is the ground state for larger-φ side, namely, in the Néel-z phase; while, Eq. (11) for lower-φ side 
(see Sec. 6). This is consistent with the fact that éN el  reaches exactly 0.5 at φ = −−tan ( 2)1 , as shown in Fig. 6(b). 
Therefore, the ground-state wave function is completely changed at φ = −−tan ( 2)1  and it clearly suggests a 
first-order transition. This is also confirmed by the jump of  éN el as well as by the singularity in φ−∂ ∂E /2

0
2 at 

φ π≈ .1 65 .

Staggered-xy ordered phase φ π< < .π



( 1 65 )3
2

.  Let us then consider a region at φ π< < .π



1 653
2

, where the signs 
of Heisenberg and Kitaev terms counterchange from the spiral-xy state. This may mean the local spin structure is 
similar to the spiral-xy state. As discussed above, the system has a first-order transition at φ π= − ≈ .−tan ( 2) 1 651 . 
In the lower-φ vicinity (φ < .



1 65) the ground state is exactly given by Eq. (11), which derives asymptotic beh 
aviors of the spin-spin correlations: 〈 〉 = +α πS S jcos [( )]x

j
x

0 4 2 2
1
2

2
, 〈 〉 = −β πS S jcos [( )]y

j
y

0 4 2 2
1
2

2
, 〈 〉 =S S 0z

j
z

0 , and 

〈
→→

〉 = +π α β π−S S j jcos( ) sin( )j0
1
4 2 4 2

2 2
. Since the system is rotation invariant around the z-axis, the coefficients α 

Figure 6.  (a) Finite-size scaling analyses for the Néel-z order parameter éN el  with polynomial fitting functions. 
(b) The extrapolated values of éN el  to the themodynamic limit as a function of φ. (c) Central charge, calculated 
with periodic chains, as a function of φ for several chain lengths.
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and β can take arbitrary real numbers under a condition α β+ = 12 2 . As illustrated in Fig. 3(d), all the spins lie on 
the xy-plane and the magnetic unit cell contains four lattice sites as in the spiral-xy state. However, the crucial differ-
ence from the spiral-xy state is that this xy state exhibits a long-range ordering, which is clearly indicated by the 
correlation functions. We call this state staggered-xy state, since it resembles a Néel-like state with a period of four 
sites.

We then investigate the φ-dependence of this xy state. Applying a staggered field along the x-direction on both 
open system edge sites, the presence or absence of the long-range staggered-xy order can be determined by stud-
ying the decay of the x-component of local spin 〈 〉Si

x  as the Friedel oscillation. Thus, the staggered-xy order 
parameter is defined at the center of the system as

 = |〈 〉 − 〈 〉|.
→∞

+S S1
2

lim (13)xy
L

L
x

L
x

/2 /2 1

In the upper and lower vicinity of φ π≈ .1 65 , = 0xy  and 1
2

 are obtained from Eqs (11) and (12), respectively. 
For the other φ values the profile of the x-component of local spin and the finite-size scaling of the order param-
eter are shown in Fig. 7(a,b). The extrapolated values of xy to the thermodynamic limit are plotted in Fig. 7(c). 
We can see that the order parameter jumps at the both phase boundaries suggesting first-order transitions. The 
collapse of the staggered-xy ordering at the lower boundary φ = π3

2
 is clearly confirmed by the profile of 〈 〉Si

x , as 
shown in Fig. 7(a).

Tomonaga-Luttinger-liquid phase φ≤ < π(0 )
2

.  The remaining region is φ≤ < π0
2

. At φ = 0 the system is 
equivalent to the spin-isotropic AFM Heisenberg chain, which is a gapless spin liquid. It is known that the 
low-energy physics is described by a Tomonaga-Luttinger (TL) model with a boson field, which is equivalent to 
the unity central charge (c = 1) conformal field theory (CFT)49. Let us now consider what happens when we move 
away from φ = 0. At φ< < π0

2
 the deviating interactions from the spin-isotropic Hamiltonian are written as

∑= + + − + .
=

+
+
− −

+
+ +

+
+ −

+
−K S S S S S S S S

4
[ ( 1) ( )]

(14)i

L

i i i i
i

i i i ianiso
1

1 1 1 1

Obviously, these interactions cannot produce any explicit magnetic order, since they only enhance the quan-
tum fluctuations. However, it is a nontrivial question whether the c = 1 CFT is conserved. To examine it, we 
directly calculate the central charge, which can be obtained from the von Neumann entanglement entropy in the 
DMRG procedure as follows: Let us consider a quantum 1D periodic system with length L. The von Neumann 
entanglement entropy of its subsystem with length l is given as ρ ρ=−S l( ) Tr logL l l l, where ρ ρ= −rTl L l  is the 
reduced density matrix of the subsystem and ρ is the full density matrix of the whole system. Using the CFT, the 
entropy of the subsystem with length l for a fixed system length L has been derived50–52:

π
π

=



















+S l c L l
L

s( )
3

ln sin
(15)L 1

where s1 is a non-universal constant. In the DMRG calculations this quantity can be accurately estimated by the 
second derivative of Eq. (15) with respect to l, namely,

π
= −

∂
∂

.
=

c L S l
l

3 ( )

(16)
L

l L

2

2

2

2
2

The results for periodic chains with L = 10, 20, and 30 are plotted in Fig. 8. We see a quick convergence to c = 1 
with increasing system size in the whole range of φ≤ < π0

2
. Hence, we confirm the system remains in the TL 

0 20 40 60 80 100

(b) (c)(a)

Figure 7.  (a) The x-component of local spin, where opposite magnetic fields ±10 are applied at either end of 
the system. (b) Finite-size scaling analyses for the staggered-xy order parameter with polynomial fitting 
functions. (c) The extrapolated values of xy to the themodynamic limit as a function of φ.
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liquid state as far as both J and K are AFM. Similarly, we studied the central charge in the Néel-z phase. The results 
for periodic chains with L = 16, 24, and 32 are plotted in Fig. 6(c). Although c = 0 should be retained in the Néel-z 
phase, we see a very slow converge to c = 0 with increasing L near φ = 2π, reflecting the tiny magnetization.

Kitaev points.  As discussed above, the Kitaev points are singular, not adiabatically connected to the neighboring 
phases. At these points φ =± π

2
, the Heisenberg interaction J vanishes in our Hamiltonian Eq. (1) and it is reduced 

to

 ∑ ∑= ± ±
−

+
−

+K S S K S S
(17)x links

i
x

i
x

y links
i
y

i
y

1 1

In order to make the notation easier, we here focus on the case of φ = −π/2. Note that the case of φ = π
2

 can be 
similarly considered. It is convenient to fermionize the Hamiltonian (17). By applying the Jordan-Wigner trans-
formation, we obtain

∑= − +
−

† †c c c c( )( )
(18)x links

i i i ib, b, w, w,

∑− + −
−

+ +
† †c c c c( )( ),

(19)y links
i i i iw, w, b, 1 b, 1

where cb,i and cw,i are the fermion annihilation operators at the black and white labeling sites in the i-th unit cell, 
illustrated in Fig. 1(d), respectively. Generally, it is possible to write fermion operators in terms of Majorana fer-
mions defined as:

=
−†c

b ib
2 (20)i

i i
b,

1, 2,

=
−†c

w iw
2 (21)i

i i
w,

1, 2,

With these operators Eq. (19) is transformed to

 ∑ ∑= − + .
− −

+iK b w iK w b
4 4 (22)x links

i i
y links

i i2, 1, 1, 2, 1

We immediately notice that the Majoranas b1, w2 are not included in the Hamiltonian (22). We then define 
new, non local, fermion operators as

=
−†d

w ib
2 (23)i

i i1, 2,

=
+

d
w ib

2
, (24)i

i i1, 2,

Figure 8.  Central charge, calculated with periodic L = 10, 20, and 30 chains, as a function of φ.
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where the indices i run over the unit cells instead of over the lattice sites [see Fig. (1d)]. Using these operators, 
(22) can be expressed as

∑ ∑= − + + . . .+ +
† †K d d K d d d d

2 4
( h c )

(25)i
i i

i
i i i i1 1

This describes a p-wave paired superconductor53. The exact solution for the ground state is easily obtained by 
a Fourier transformation:

 ∑ ε=




 +

∆
+ . .





−

† † †( )d d i d d1
2 2

h c
(26)q

q q q
q

q q

where ε =− +q(cos 1)q
K
2

 and ∆ = qsinq
K
2

. Using a Bogoliubov transformation, this can be diagonalized and 
the quasiparticle excitation is given by

ε= ± + ∆ .E 1
4 (27)q q q

2 2

Thus, we can confirm the system is still in the gapless region. The ground-state energy is calculated as

∫∑ π π
= − = − = − .

π

π

−

E
L L

E dq E K1 ( ) 1
2

( )
2 (28)q

q q
0

To consider the meaning of the Majoranas b1, w2 which do not appear explicitly in the Hamiltonian (22), we 
take a possible recombination of them into new fermion operators:

=
−



†
d

b iw
2 (29)i

i i1, 2,

=
+

d
b iw

2 (30)i
i i1, 2,

We can now trace these back to the initial spin operators. Using Eqs (20) and (21), we get

= + + − .

† † †d c c c c1
2

( ) (31)i b i b i w i w i, , , ,

Moreover, the inverse of Jordan-Wigner transformation used to obtain Eq. (19) derives

∏ ∏= −
=

−

′=
′



†
d S S iS S( )( )

(32)
i

k

i

k b w
k k
z

b i
x

b i
z

w i
y

1

1

,
, , , ,

Thus, the Majorana operators can be expressed by spin operators, like

∏= + = −
=

−

′
 

†
b d d S S2 ( )

(33)i i i
k

i

k k
z

b i
x

1,
1

1

, ,

∏= − = − − −
′=

′
  

†
w i d d d S S S( ) 2 ( )( )( )

(34)
i i i

k wb
k k
z

b i
z

w i
y

2,
,

, , ,

We now confirm that the system has a free spin per unit cell at the Kitaev points. Therefore, the dimensionality 
of the ground-state manifold, or number of zero Majorana modes, is −2 1L

2  for periodic chain and 2
L
2  for open 

chain. Some more details are given in the Appendix.

Phase diagram.  In Fig. 9(a) we summarize the ground-state phase diagram as a function of φ in a pie chart 
form. Notably, each phase has another exactly-symmetrically-placed phase in the pie chart, i.e, TLL and FM-xy, 
Néel-z and FM-z, spiral-xy and staggered-xy. The paired phases have the common features. The TLL and FM-xy 
states, where the exchange components are either all AFM or all FM, are basically understood within the frame-
work of the isotropic Heisenberg chain; the FM-xy state is long-range ordered and the TLL state is critical. The 
Néel-z and FM-z states are described by the easy-axis XXZ Heisenberg chain. The dominant features are deter-
mined by the Ising term. Depending on the sign of the Ising term, the spins are aligned ferromagnetically or 
antiferromagnetically along the z axis. The spiral-xy and staggered-xy states can be basically interpreted as the 
easy-plane XXZ Heisenberg chain affected by the double-spin-flip term. The system has a four-site periodicity, 
and exhibits a critical behavior and a long-range ordering for the former and latter states, respectively, in analogy 
to the relation between the TLL and FM-xy states.

It is now possible to establish a connection between our ground-state phase diagram and that of the 
two-dimensional KH model on a honeycomb lattice [Fig. 9(b), normalized to the current notation from10]. To 
consider the phase-to-phase correspondence, it is helpful to regard the honeycomb lattice as coupled KH chains, 
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as shown in Fig. 9(c). Here, the interchain coupling is equivalent to the z-bond in the honeycomb-lattice KH 
model, written as

 ∑ ∑= + + +−
+ − − +J S S S S J K S S

2
( ) ( ) ,

(35)
z ond

k l
k l k l

k l
k
z

l
z

b
, ,

where k, l are summed over all connected sites between the KH chains.
Hereafter, we report how the introduction of the z-bonds coupling affects the (quasi-)ordered states present in 

the one-dimensional case, mapping them to those of the honeycomb system:

	 (i)	 At φ≤ < π0
2

 the interchain coupling is AFM. Our TLL state has no long-range order but strong AFM 
fluctuations. Therefore, a Néel order is intuitevely expected once the chains are antiferromagnetically 
coupled. Hence, our TLL phase corresponds to the Néel phase in the honeycomb case.

	(ii)	 At π φ π. < <


0 65  our system is in the FM-z state. While considering this interval, we need to examine 
two different cases as the sign of the interaction on the z-bonds changes from AFM to FM. We obtain a 
zigzag state in the honeycomb case when the FM-z chain state is coupled by AFM interchain couplings; 
whereas, a FM state in the case of FM interchain couplings. The change in sign of the interchain coupling is 
assumed to happen at φ = π3

4
, where J + K = 0. This φ value is reasonably close to the transition point 

φ π≈ .0 81  between the zigzag and FM states in the honeycomb case. Thus, our FM-z phase is distributed 
to either zigzag or FM phases of the honeycomb KH model depending on the AFM or FM nature on the 
z-bond.

	(iii)	 At π φ π. < <


1 65 2  our system is in the Néel-z state. In the same way as above, we need to consider the 
cases of AFM and FM z-bonds. We easily find that our Néel-z state is base for the Néel and stripy states of 
the honeycomb KH model46. Namely, our Néel-z phase is distributed to either Néel phase in the presence 
of AFM interchains coupling or the stripy phase in the presence of FM interchains coupling of the 
honeycomb KH model. The value of φ = π7

4
 giving + =J K 0 is again near the transition point φ π≈ .1 65  

between the Néel and stripy states in the honeycomb case.

Figure 9.  (a) Ground-state phase diagram of the 1D KH model. (b) Ground-state phase diagram of the 
honeycomb-lattice KH model, where the same notations as in Eq. (1) are used for K and J. (c) Brick-wall lattice 
created by coupling the 1D KH chains by the z-bond. This is topologically equivalent to the honeycomb lattice.
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Therefore, it is possible to understand all the long-range ordered phases of the honeycomb-lattice KH model 
in the framework of the coupled KH chains. In brief, an extracted zigzag lattice line from any ordered state of the 
honeycomb-lattice KH model corresponds to one of the phases in the 1D KH chain; and the remaining degrees 
of freedom derive from the fact that the zigzag lines are coupled either ferromagnetically or antiferromagnetically 
by  −z bond.
	(iv)	 Two xy phases in our phase diagram are left. Since these states are stabilized by the dominant xy-Kitaev term, 

they are connected to the Kitaev spin liquid states in the honeycomb case. In hindsight, this means that our stag-
gered-xy ordered state can collapse to the spin liquid state due to strong FM fluctuations along the z-direction.

Low-lying excitations.  To examine the low-energy excitations for each phase, we calculated the dynamical 
spin structure factors ω±S q( , )z , , defined in Eq. (2). Under periodic boundary conditions the momentum is taken 
as = πq n

L
4  = ± … ±( )n 0, 1, , L

4
 since the unit cell contains two lattice sites and the number of unit cells is L

2
 in a 

system with L sites. We study chains with L = 24 using the Lanczos ED method and the results are shown only for 
≥q 0 as ω ω= −± ±S q S q( , ) ( , )z z, , .

Tomonaga-Luttinger-liquid phase φ π≤ <(0 /2).  As confirmed above, the low-energy physics at φ≤ < π0
2

 is 
described by a gapless TL model. The low-lying excitations are expected to be basically equivalent to those of the 
easy-plane XXZ chain because + > >J K J(2 )/2 0 [see Eq. (2)]. If we ignore the double-spin-flip term dsf , the 
main dispersion (lower bound of the spectrum) is given by

ω π µ
µ

=
+q J K q( ) (2 )
4

sin sin
2 (36)

with µ = +
−( )cos 1 K

J2

1
. This was obtained by using the transfer matrix of the six-vertex model54,55. Nevertheless, 

the effect of dsf  is unknown. Therefore, to investigate the effect of dsf  we employ a standard SWT for the bipar-
tite system. Using the Holstein-Primakovff representation the spin operators of dsf  for the black labeling sites in 
Fig. 1(d) are replaced as = −+ †S S a a a2i i i i and = −− † †S a S a a2i i i i ; similarly, for the white labeling sites 

= −+ † †S b S b b2i i i i  and = −− †S S b b b2i i i i, where ai and bi are canonical boson annihilation operators at site i. 
Then, applying the Fourier transform we obtain:

 ∑=



 −





.† †iK q a b a b

2
sin

2 (37)q
q q q qdsf
2 2 2 2

This off-diagonal term gives a splitting in the main dispersion (36). Then, we can speculate the total disper-
sions as

ω π µ
µ

=





+
±






.q J K K q( ) (2 )
4

sin
2

sin
2 (38)

Figure 10(a) shows the dynamical structure factors Sz(q, ω) and S−(q, ω) for φ = π
3

. The largest peak appears 
in ω= =−S q( 0, 0) reflecting the AFM fluctuations. The intensities in Sz(q, ω) are weaker than those in S−(q, ω) 
due to the easy-plane xy anisotropy. The split dispersions are well described by Eq. (38). The splitting is largest in 
the vicinity of the Kitaev point φ = −π

2
 (J → 0+, K → 1):

ω =


 ±



 .q K K q( )

2 2
sin

2 (39)

The main dispersion (lower bound of the spectrum) of the isotropic Heisenberg model at φ = 0 (K = 0) is also 
reproduced by Eq. (38).

Spiral-xy phase φ π< < .π



( )0 65
2

.  Across the Kitaev point from the TL to spiral-xy phases the momentum of 
the Fermi point is shifted from q = π to q = 0. Thus, in the vicinity of the Kitaev point φ = +π

2
 (J →0−, K → 1), 

the momentum of the excitation dispersion is shifted from Eq. (39) by π:

ω =


 ±






 −



q K K q( )

2 2
1 sin

2 (40)

for S−(q, ω). In contrast, Sz(q, ω) exhibits a q-independent continuum between ω = 0 and ω = K since the 
z-component of exchange interaction is much smaller than the other interactions. With increasing φ from π

2
, the 

FM Ising interaction and double-spin-flip fluctuations increase and the exchange interaction decreases becoming 
zero at the critical boundary to the FM-z phase. Figure 10(b) shows the dynamical structure factors Sz(q, ω) and 
S−(q, ω) for φ π= 5

8
. The main dispersion in S−(q, ω) is scaled as ω ∝ −q( ) 1 sin q

2
. Although the largest peak at 

ω π=  q( , ) ( , 0) indicates a four-site periodicity in the spiral-xy state, it diminishes with increasing system size 
because of no long-range ordering. While in Sz(q, ω), a dispersion ω ∝q( ) sin q

2
 appears and a peak toward the 

FM-z state develops at ω ≈q( , ) (0,0). Both the dispersion widths are roughly scaled by | |K .
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Ferromagnetic-z phase π φ π. < <


(0 65 ).  Figure 10(c) shows the dynamical structure factors ωS q( , )z  and 
ω−S q( , ) for φ π= 7

8
. Near φ = π ( ≈K 0) in the FM-z phase, the system is effectively described by a FM XXZ 

Heisenberg chain with easy-axis anisotropy < <+J 0J K2
2

 and the ground state is approximately expressed by Eq. 
(5). An applied operator Sq

z does not change the ground state ψ| 〉0  in Eq. (2) and the final state ψ| 〉ν  has only a zero 
energy excitation from ψ| 〉0 . Therefore, Sz(q, ω) has a very sharp peak at ω =q( , ) (0, 0) and almost no spectral 

Figure 10.  Dynamical structure factors calculated with a periodic 24-site chain for (a) TLL φ = 


π
3

, (b) spiral-
xy [φ = π5

8
], and (c) FM-z [φ = π7

8
] states. The left and right panels show Sz(q, ω) and S−(q, ω), respectively. The 

red lines are analytical dispersions: Eq. (38) for φ = π
3

 and Eq. (41) for φ = π7
8

. The arrow indicates an 
appearance of the spiral-xy fluctuation in the FM-z state.
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weight appears at the other momenta. This peak keeps its weight constant with increasing system length, indicat-
ing the long-range FM-z ordering. On the other hand, in Eq. (2) the operator −Sq  dopes one magnon into the FM-z 
alignment so that the SWT is expected to give a good approximation for the excitation dispersion of S−(q, ω):

ω = − ±
+

.q J J K q( ) 2
2

cos
2 (41)

We can confirm that a gap ∆ = K
2

 opens at q = 0 reflecting the easy-axis anisotropy. With approaching the 
neighboring spiral-xy phase, the double-spin-flip fluctuations grow gradually in influence; accordingly, the q = 0 
peak in Sz(q, ω) shrinks and a peak develops at q = π, ω ≈ 0 in S−(q, ω).

Ferromagnetic-xy phase π φ< < π( )3
2

.  Figure 11(a) shows the dynamical structure factors Sz(q, ω) and S−(q, ω) 
for φ π= 5

4
. Near φ = π ( ≈K 0) in the FM-xy phase, the system is effectively described by a FM XXZ Heisenberg 

chain with easy-plane anisotropy < <+ J 0J K2
2

 and the ground state is approximately expressed by Eq. (4). Thus, 
the excitation spectrum is expected to be gapless. Since the total Sz of the ground state is zero, unlike the case of 
FM-z state both Sz(q, ω) and S−(q, ω) have the same excitation dispersion as

ω = −
+ 


 ±



.q J K q( ) 2

2
1 cos

2 (42)

Note that a sharp peak at ω =q( , ) (0, 0) in S−(q, ω) keeps its weight constant with increasing system length, 
indicating the FM-xy long-range ordering. On the other hand, in the vicinity of the Kitaev point φ ≈ −π3

2
, the 

excitation dispersion of S−(q, ω) is well described by Eq. (39).

Staggered-xy ordered phase φ π< < .π



( )1 653
2

.  In the vicinity of the Kitaev point φ π= +3
2

, the excitation spec-
tra are the same as in the other Kitaev point φ π= +1

2
, namely, Eq. (40) for S−(q, ω) and a q-independent contin-

uum for Sz(q, ω). Whereas in the vicinity of the Néel-z ordered phase φ = − −−tan ( 2)1 , the ground state is 
expressed by Eq. (11). Thus, the dispersions are described by a single magnon excitation:

ω = −


 ±



q K q( )

2
1 cos

2 (43)

for Sz(q, ω), and

ω = −


 ±



q K q( )

2
1 sin

2 (44)

for S−(q, ω). Figure 11(b) shows the dynamical structure factors Sz(q, ω) and S−(q, ω) for φ = π19
12

. The excitation 
dispersions are well reproduced by Eqs (43) and (44). We also find a sharp peak at (q, ω) = (π, 0) in S−(q, ω), 
which indicates the staggered-xy long-range ordering. This peak keeps its weight constant with increasing the 
system length, in contrast to the similar peak for the spiral-xy state.

Néel-z ordered phase π φ π. < <


(1 65 2 ).  In the vicinity of the staggered-xy ordered phase φ = − +−tan ( 2)1 , the 
ground state is expressed by Eq. (12). Accordingly, Sz(q, ω) has only a delta peak at (q, ω) = (0, 0). Whereas, S−(q, 
ω) is exactly explained by a single magnon dispersion. It is obtained by the SWT as

ω = ± .q J K q( )
2

sin
2 (45)

Although this is equivalent to Eq. (43), the spectral weight is uniform for all q values. Since the transition at 
φ = −−tan ( 2)1  is first ordered, there is no peak indicating a connection to the staggered-xy ordered phase. On the 
other hand, near φ = 2π, the system can be basically regarded as an easy-axis AFM XXZ Heisenberg chain so that 
the excitation dispersion is described by Eq. (38) for both Sz(q, ω) and S−(q, ω). Figure 11(c) shows the dynamical 
structure factors Sz(q, ω) and S−(q, ω) for the intermediate region φ π= 17

10
. The main dispersion of S−(q, ω) is 

basically described by Eq. (45) but some features from Eq. (38) seem to be somewhat mixed.

Discussion
We have established the presence of a variety of phases in the 1D KH system. Especially, it is surprising that most 
of the φ ranges are covered by long-range ordered phases despite considering a pure 1D system. In this context, 
we now consider the K-intercalated α-RuCl3, namely, K0.5RuCl3. One should be aware of the fact that several 
different parameter sets have been suggested for undoped α-RuCl3: (i) K = −5.6, J = 1.2 (φ π≈ .1 57 )25, (ii) 
K = 7.0, J = 4.6 (φ π≈ .0 68 )22, (iii) K = 8.1, J = 2.9 (φ π≈ .0 61 )22, (iv) K = −6.8, J = 0 (φ π= .1 5 )56 in unit of meV. 
If we assume that the charge ordering pattern in K0.5RuCl3 is that illustrated in Fig. 1(c), the parameter sets (i)–(iv) 
correspond to the staggered-xy, FM-z, spiral-xy, and FM Kitaev point, respectively. In practice, the charge order-
ing could cause a significant change of the parameter since they are very sensitive to the Ru-Cl-Ru bond angle25. 
In other words, once the magnetic properties of K0.5RuCl3 are observed, we may easily speculate the possible 
parameter set of K0.5RuCl3 and even the charge ordering pattern by comparing then to our rich phase diagram. To 
gain deeper insights, theoretical and experimental studies under magnetic fields are also required.
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It is relevant to seek other possible realizations of 1D KH system. Even if the Kitaev interaction in 1D systems 
is present, it is considerede to be very small. However, as shown above, even a tiny Kitaev interaction can sta-
bilize the ordered state. It might also be intriguing to reconsider quasi-1D materials having two sublattices like 
Ni2(EDTA)(H2O)4, [Ni(f-rac-L)(CN)2], LiCuSbO4, and Rb2Cu2Mo3O12 from the point of view of the 1D Kitaev 
system.

Figure 11.  Dynamical structure factors calculated with a periodic 24-site chain for (a) FM-xy [φ = π5
4

], (b) 
staggered-xy [φ = π19

12
], and (c) Néel-z [φ = π17

10
] states. The left and right panels show Sz(q, ω) and S−(q, ω), 

respectively. The red lines are analytical dispersions: Eq. (42) for φ = π5
4

, Eq. (43) in Sz(q, ω) and Eq. (44) in 
S−(q, ω) for φ = π19

12
, and Eq. (45) for φ = π17

10
.
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The φ-dependent phase diagram of our model is similar to that for the honeycomb-lattice KH model. 
Remarkably, all the magnetically ordered states of the honeycomb-lattice KH model can be interpreted in 
terms of the coupled 1D KH chains. In other words, the key elements to derive the magnetic ordering in the 2D 
honeycomb-lattice KH model are already contained in the 1D KH chain. This will give us a deeper insight in the 
understanding of transition from an ordered state to a disordered state such as the Kitaev QSL.

Methods
In this section, we present a detailed derivation of (33), (34), and the related additional information. We used a 
Jordan-Wigner transformation

= −†S c c2 1 (46)i
z

i i

∏= −+

=

−
†S S c( )

(47)i
k

i

k
z

i
1

1

∏= −−

=

−
S S c( )

(48)i
k

i

k
z

i
1

1

to rewrite the spin operators in Eq. (17) by fermion operators, and we obtained Eq. (19).
By applying the inverse of the Jordan-Wigner transformation

∏ ∏= − −
=

−

′=
′

+†c S S S( )( )
(49)
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1
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, ,
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=

−
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−c S S( ) ,
(52)

b i
k

i

k b w
k k
z

b i,
1

1

,
, ,

the fermion operator 
†

di  was traced back to the initial spin operators, and we obtained Eq. (32) from Eq. (31).
We can also derive the same results as Eqs (33) and (34) by taking a different combination of the Majoranas 

from Eqs (29) and (30):

=
− +†B

b ib
2 (53)i

i i1, 1, 1

=
− +†W

w iw
2 (54)i

i i2, 2, 1

From Eqs (20) and (21), we have

= + − −+ +
† † †B c c ic ic1

2
( ) (55)i b i b i b i b i, , , 1 , 1

= − + −+ +
† † †W c c ic ic1

2
( ) (56)i w i w i w i w i, 1 , 1 , ,

Using (50)–(52), we obtain

∏ ∏= − − −
=

−

′=
′ ′ +

†B S S i S S( )[ ( ) ]
(57)

i
k

i
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Then, we obtain

∏= + = − .
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−
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†b B B S S2 ( )

(59)i i i
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1

1
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In a similar way, we find

∏ ∏= + = − − − .
=

−

′=
′

†w W W S S S2 ( )( )( )
(60)

i i i
k

i

k w b
k k
z

b i
z

w i
y

2,
1

1

,
, , ,

Actually, Eqs (59) and (60) are identical to Eqs (33) and (34).
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