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The nucleotide sequence of Protobothrops flavoviridis (Pf) 30534 bp genome segment
which contains genes encoding small serum proteins (SSPs) was deciphered. The genome
segment contained five SSP genes (PfSSPs), PfSSP-4, PfSSP-5, PfSSP-1, PfSSP-2, and
PfSSP-3 in this order and had characteristic configuration and constructions of the particu-
lar nucleotide sequences inserted. Comparison between the configurations of the inserted
chicken repeat-1 (CR1) fragments of P. flavoviridis and Ophiophagus hannah (Oh) showed
that the nucleotide segment encompassing from PfSSP-1 to PfSSP-2 was inverted. The in-
active form of PfSSP-1, named PfSSP-1δ(ψ ), found in the intergenic region (I-Reg) between
PfSSP-5 and PfSSP-1 had also been destroyed by insertions of the plural long interspersed
nuclear elements (LINEs) and DNA transposons. The L2 LINE inserted into the third intron or
the particular repetitive sequences inserted into the second intron structurally divided five
PfSSPs into two subgroups, the Long SSP subgroup of PfSSP-1, PfSSP-2 and PfSSP-5 or
the Short SSP subgroup of PfSSP-3 and PfSSP-4. The mathematical analysis also showed
that PfSSPs of the Long SSP subgroup evolved alternately in an accelerated and neutral
manner, whereas those of the Short SSP subgroup evolved in an accelerated manner. More-
over, the ortholog analysis of SSPs of various snakes showed that the evolutionary emerging
order of SSPs was as follows: SSP-5, SSP-4, SSP-2, SSP-1, and SSP-3. The unique inter-
pretation about accelerated evolution and the novel idea that the transposable elements
such as LINEs and DNA transposons are involved in maintaining the host genome besides
its own transposition natures were proposed.

Introduction
Protobothrops flavoviridis (Pf ) (Crotalinae snake) [1] inhabit the southwestern islands of Japan,
mainly, Amami-Oshima, Tokunoshima, and Okinawa. The venom of P. flavoviridis contains a huge
variety of toxic proteins. The representatives are snake venom metalloproteases (SVMPs) [2], ser-
ine proteases [3], phospholipase A2s (PLA2s) [4–7], and triflin [8]. High molecular weight SVMPs,
called HR1a and HR1b [9], and middle molecular weight SVMPs, called HR2a and HR2b [10], are
isozymes of each other and cause severe hypodermic hemorrhage [11]. Low molecular weight SVMP,
called HV1, induces apoptosis of vascular endothelial cells [12]. Serine protease, called Flavoxobin
[13,14], is known as coagulant factor. Triflin is a neurotoxin-like protein and blocks muscle contrac-
tion [15]. Protobothrops genus snake venom PLA2 isozymes, which hydrolyze phospholipids [16,17], are
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generally classified into four groups, according to the primary structures and physiological activities [18]: that is, neu-
tral [Asp49]PLA2, named PLA2 (pI 7.9, highly lipolytic and myolytic) [19,20]; basic [Asp49]PLA2, named PLA-B (pI
8.6, edema-inducing) [21]; highly basic [Asp49]PLA2, named PLA-N (pI 10.3, neurotoxic) [22]; and two [Lys49]PLA2s,
named BPI and BPII (pIs 10.2 and 10.3, both weakly lipolytic but strongly myolytic) [19,23,24].

On the other hand, P. flavoviridis serum is known to contain inhibitory proteins to neutralize their venomous
activities. Such serum proteins are thought to act defensively on occasions of the accidental bites by fellow snakes.
PLA2 inhibitors (PLIs) which suppress snake venomous PLA2 activity [25,26], Habu serum factor (HSF) which in-
hibits the hemorrhagic induced by the SVMPs [27,28], and small serum proteins (SSPs) [29] are such well-known
proteins. SSPs are the low molecular weight (∼10 kDa) serum proteins and the five homologs, named Pf SSP-1, -2, -3,
-4, and Pf SSP-5, have been found from P. flavoviridis sera [30]. Pf SSPs form complexes with HSF in P. flavoviridis
serum [8] and have various counterparts of P. flavoviridis venom proteins; Pf SSP-2 and Pf SSP-5 show high affinity
to triflin [8], Pf SSP-1 and Pf SSP-4 to HV1 [31], and Pf SSP-3 to Flavorase, non-hemorrhagic SVMP [29]. Recently,
we found that the homolog of Pf SSP-2 binds to BPII [32].

The complementary DNA (cDNA)s encoding five Pf SSPs, were isolated and the nucleotide sequences of the cDNAs
were also determined [8]. It should be noted that the cDNAs encoding Pf SSP-3 or Pf SSP-4 are interrupted by non-
sense mutations at the same site of the fourth exon and express the truncated mature protein. The genome fragment,
in which the genes encoding Pf SSP-1 and Pf SSP-2, designated as PfSSP-1 and PfSSP-2, respectively, were arranged
in tandem, was also cloned. The nucleotide sequence of the genome fragment from PfSSP-1 to PfSSP-2 including
the intergenic region (I-Reg) between PfSSP-1 and PfSSP-2, named as Pf I-Reg12 (in the present paper), was deter-
mined [33]. Mathematical analysis of the nucleotide sequences of the two genes showed that they have evolved in an
accelerated manner to acquire the different amino acid sequences [8,33].

In the present study, 30534 bp of P. flavoviridis genome segment containing five PfSSPs; PfSSP-4, PfSSP-5,
PfSSP-1, PfSSP-2, and PfSSP-3 in this order, was deciphered. The particular nucleotide sequences of the long inter-
spersed nuclear elements (LINEs), the DNA transposons, and the repetitive sequences were identified in the introns
of PfSSPs and the I-Regs of the array of PfSSPs. The comparison analysis of the configuration of the fragments of
chicken repeat-1 (CR1) LINE between P. flavoviridis and Ophiophagus hannah (Oh) (Elapidae snake) [34] showed
that the chromosome inversion of the genome segment encompassing from PfSSP-1 to PfSSP-2 occurred and the
inactive form of another PfSSP-1, PfSSP-1δ(ψ), was formed at that site. Moreover, according to the types of the nu-
cleotide sequences inserted into the intron of the gene, five PfSSPs were divided into two subgroups. The Long SSP
subgroup, which consisted of PfSSP-1, PfSSP-2, and PfSSP-5, contained the large fragment of L2 LINE in the third
intron of the gene. The Short SSP subgroup, which consisted of PfSSP-3 and PfSSP-4, contained the particular repet-
itive sequences in the second intron of the gene and no L2 LINE in the third intron. The mathematical analysis of the
nucleotide sequences of the genes also showed that PfSSPs of the Short SSP subgroup evolved in an accelerated man-
ner, whereas those of the Long SSP subgroup evolved alternately in an accelerated and neutral manner. The ortholog
analysis of various snake SSPs suggested that the evolutionary emerging order of PfSSPs was reflected in the order of
their configuration on the chromosome. In addition to the unique interpretation about accelerated evolution, a novel
idea was proposed that the transposable elements such as LINEs and DNA transposons are involved in maintaining
the host genome besides their transposition natures.

Experimental
Materials
P. flavoviridis specimen of Amami-Oshima island was provided from the Institute of Medical Sciences of the Uni-
versity of Tokyo. High molecular weight genomic DNAs were prepared from the liver of the snake according to the
method of Blin and Stafford [35]. Restriction endonucleases and KOD plus DNA polymerase were purchased from
Nippon Gene (Tokyo, Japan) and TOYOBO (Osaka, Japan), respectively. The other reagents and antibiotics were from
Nacalai Tesque (Kyoto, Japan) and Takara Bio (Shiga, Japan). Specific oligonucleotide primers were synthesized by
GENNET (Fukuoka, Japan) (Table 1).

Determination of the nucleotide sequence of P. flavoviridis genome
segment containing PfSSPs
From the BLAST analysis against HabAm1 (Habu Amami version 1) [36], we found that PfSSP-5, PfSSP-1, PfSSP-2,
and PfSSP-3 are harbored in this order on the scaffold 2858. Furthermore, PfSSP-4, which had not been identified
via gene prediction so far, was also found in the 5′ upstream region of this arrangement of four PfSSPs on the scaffold
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Table 1 The primers utilized for acquiring the nucleotide sequence of the genome domain of the array of PfSSPs

Name Positions Nucleotide sequence (GC content: %, Tm: ◦C)

JUS1 6973-6993(f) 5′-ATT CCT CCC TAC CAA gAg TCT-3′ (47, 62)

JUS2 11016-11037(f) 5′-TCT ATg TgA Agg gAT gAg AAT C-3′ (40, 62)

JUS5 10961-10983(r) 5′-CAT gCC AAC ATg AAT CCT ATA gg-3′ (43, 64)

JUS8 13451-13473(f) 5′-ACC CAC Tgg AAT AAA TTT CTC AT-3′ (35, 62)

TOY1 1098-1121(f) 5′-ggA gTA TTC CTT TAC CTg AAA Tgg-3′ (47, 68)

TOY2 6964-6985(r) 5′-ggT Agg gAg gAA TTA CCg ggA g-3′ (59, 70)

TOY6 -220-198(f) 5′-ggC TgC ACA TCT ggC TgT TTC AA -3′ (47, 68)

TOY7 1180-1201(r) 5′-TTC CTC CTg gCA gTg TTA gAC C -3′ (45, 68)

prs-1 29119-29138(r) 5′-gAg TgT TCC TCT ACC TAT Ag-3′ (45, 58)

prs-2 26172-26192(f) 5′-TTg TCA TTC TCT gAg AAg Tgg-3′ (43, 60)

prs-5 26342-26364(r) 5′-CgC TTg CAC TgA AgA TgC AAT gg-3′ (52, 70)

prs-6 22895-22917(f) 5′-AAg AgC AgC ACC TCT CTg TgA Ag-3′ (52, 70)

prs-13 30295-30314(r) 5′-TTC CTT CTg gCA gTg gAT TC-3′ (50, 60)

prs-14 29044-29066(f) 5′-TTC TCC Tgg CgT TAT TAg ACA-3′ (43, 60)

The f and r in the parentheses after position numbers indicate the direction of the primers: ‘f, forward’ or ‘r, reverse’ means whether the directions of
elongations are same or opposite to those of transcriptions, respectively. The nucleotide positions were referenced to the nucleotide sequence reported
in the present study (MK574076).

2858. In order to acquire the complete nucleotide sequence of this genome segment, genomic polymerase chain reac-
tions (PCRs) against P. flavoviridis genome were performed with the specific sense and antisense primers referring
to the nucleotide sequences of transcripts and genes of Pf SSP or HabAm1 (Table 1).

The sense primer, JUS1, 5′-ATT CCT CCC TAC CAA gAg TCT-3′, which can anneal specifically to the first exon
of PfSSP-5, and the antisense primer, JUS2, 5′-TCT ATg TgA Agg gAT gAg AAT C-3′, which can anneal specifically
to the fourth exon of PfSSP-5, referring to the nucleotide sequence of the cDNA encoding Pf SSP-5 (AB360910), am-
plified the 4065-bp genome fragment, named Pf jb-I. The Pf jb-I fragment was cloned into pCR®-Blunt II-TOPO®

vector (Life Technologies, Carlsbad, CA, U.S.A.) and transformed with DH5α competent cells (Takara Bio) and se-
quenced. The nucleotide sequences were determined with an ABI 3130xl capillary sequencer. The Pf jb-I was found
to encompass from the first exon to the fourth exon of PfSSP-5. In the present study, PfSSP-5 contained extra Val at
position 89 encoded by 265GTG and Asp at position 91 encoded by 271GAT was also substituted to Asn encoded by
271AAT.

In order to acquire the nucleotide sequence of the I-Reg between PfSSP-5 and PfSSP-1, named as Pf I-Reg51,
genomic PCR was carried out against P. flavoviridis genome with the sense primer, JUS5, 5′-CAT gCC AAC ATg
AAT CCT ATA gg 3′, which can anneal to the fourth exon of PfSSP-5, and the antisense primer, JUS8, 5′-ACC CAC
Tgg AAT AAA TTT CTC AT-3′, which can anneal to the fourth exon of PfSSP-1, referring to the nucleotide sequence
of SSP-1 gene (AB769881), amplified the 2513 bp genome fragment, named Pf jb-II. The Pf jb-II fragment was also
cloned and sequenced. The Pf jb-II was found to encompass from the fourth exon of PfSSP-5 to the fourth exon of
PfSSP-1 including Pf I-Reg51. The 4065 bp Pf jb-I overlapped 77 bp with the 2513 bp Pf jb-II. The physical structure
of 6501 bp segment encompassing from the fourth exon of PfSSP-5 to the first exon of PfSSP-1 was deciphered.

As the nucleotide sequences of the first exons of PfSSP-4 and PfSSP-3 are completely identical, it is hard to design
the specific primer at the first exon which can amplify each gene differentially. So, the sense primer, TOY6, 5′-ggC TgC
ACA TCT ggC TgT TTC AA-3′, which can anneal specifically to 220 bp 5′ upstream of the first exon of PfSSP-4,
and the antisense primer, TOY7, 5′-TTC CTC CTg gCA gTg TTA gAC C-3′, which can anneal specifically to the
second intron of PfSSP-4, avoiding the nucleotide sequence of the open reading frame (ORF) of PfSSP-4 (AB360909),
amplified the 1421 bp genome fragment, named Pf jb-IV. The Pf jb-IV fragment was cloned and sequenced. The
Pf jb-IV was found to encompass from 220 bp 5′ upstream of the first exon to the second intron of PfSSP-4.

Then, the sense primer, TOY1, 5′-ggA gTA TTC CTT TAC CTg AAA Tgg-3′, which can anneal specifically to
the second exon of PfSSP-4, and the antisense primer, TOY2, 5′-ggT Agg gAg gAA TTA CCg ggA g-3′, which can
anneal specifically to the first exon of PfSSP-5, referring to the nucleotide sequence of the cDNA encoding Pf SSP-5
(AB360910), amplified the 5888 bp genome fragment, named Pf ib-III. The Pf jb-III fragment was cloned and se-
quenced. The Pf jb-III was found to encompass from the second exon of PfSSP-4 to the first exon of PfSSP-5 includ-
ing the I-Reg between PfSSP-4 and PfSSP-5, named as Pf I-Reg45.
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The 5888 bp Pf jb-III overlapped 104 bp with the 1421 bp Pf jb-IV. The physical structure of 7205 bp segment
encompassing from 220 bp 5′ upstream of the first exon of PfSSP-4 to the first exon of PfSSP-5 was deciphered.
The nucleotide sequence of the genome segment containing from PfSSP-1 to PfSSP-2 has been already reported by
Tanaka et al. ([33], AB769881). Moreover, the 5888 bp Pf jb-III overlapped 13 bp with the 4065 bp Pf jb-I. The physical
structure of 23202 bp segment encompassing from 220 bp 5′ upstream of the first exon of PfSSP-4 to 5′ terminal of
the first exon of PfSSP-2, including the nucleotide sequence of the genome segment encompassing from PfSSP-1 to
PfSSP-2, was deciphered.

The sense primer, prs-2, 5′-TTg TCA TTC TCT gAg AAg Tgg-3′, which can anneal specifically to 571 bp 3′ down-
stream of the fourth exon of PfSSP-3, and the antisense primer, prs-1, 5′-gAg TgT TCC TCT ACC TAT Ag-3′, which
can anneal specifically to the second exon of PfSSP-3, referring to the nucleotide sequence of the cDNA encoding
Pf SSP-3 (AB360908), amplified the 2967 bp genome fragment, named Pf jb-V. The Pf jb-V fragment was cloned and
sequenced. The Pf jb-V was found to encompass from 571 bp 3′ downstream of the fourth exon to the second exon
of PfSSP-3.

Then, the sense primer, prs-6, 5′-AAg AgC AgC ACC TCT CTg TgA Ag-3′, which can anneal specifically to the
first exon of SSP-2, and the antisense primer, prs-5, 5′-CgC TTg CAC TgA AgA TgC AAT gg-3′, which can anneal
specifically to 378 bp 3′ downstream of the fourth exon of PfSSP-3, avoiding the nucleotide sequence of the ORF of
PfSSP-3 (AB360908), amplified the 3470 bp genome fragment, named Pf jb-VI. The Pf jb-VI fragment was cloned
and sequenced. The Pf jb-VI was found to encompass from 401 bp 5′ upstream of the fourth exon of PfSSP-3 to the
first exon of PfSSP-2. The 2967 bp Pf jb-V overlapped 193 bp with the 3470 bp Pf jb-VI.

The sense primer, prs-14, 5′-TTC TCC Tgg CgT TAT TAg ACA-3′, which can anneal specifically to the second
intron of PfSSP-3, and the antisense primer, prs-13, 5′-TTC CTT CTg gCA gTg gAT TC-3′, which can anneal specif-
ically to 59 bp (the present study) 5′ upstream of the first exon referring to the nucleotide sequence of PfSSP-3
(AB360908), amplified the 1269 bp genome fragment, named Pf jb-VII. The Pf jb-VII fragment was cloned and se-
quenced. The Pf jb-VII was found to encompass from the second intron to 59 bp 5′ upstream of the first exon of
PfSSP-3. The 1269 bp Pf jb-VII overlapped 93 bp with the 2967 bp Pf jb-V. The physical structure of 7420 bp segment
encompassing from the first exon of PfSSP-2 to 59 bp 5′ upstream of the first exon of PfSSP-3 was deciphered. The
3470 bp Pf jb-VI overlapped 37 bp with the first exon of PfSSP-2 (AB769881). Finally, the physical structure of 30534
bp segment encompassing from 220 bp 5′ upstream of the first exon of PfSSP-4 to 59 bp 5′ upstream of the first exon
of PfSSP-3 was completely deciphered.

The nucleotide sequence and the detailed annotations of the genome domain composed of Pf jb-IV, Pf jb-III, Pf jb-I,
Pf jb-II, Pf jb-VI, Pf jb-V and Pf jb-VII, are available in the Genbank/EMBL/DDBJ databases under accession number
MK574076.

Determination of the nucleotide sequences and the chromosomal
configurations of the genes encoding the orthologs of PfSSPs of various
snakes
The draft nucleotide sequences of O. hannah [34,37], Python bivittatus (Pythonidae snake) [38,39], P. mucrosqua-
matus (Viperidae snake) [40,41], and Thamnophis sirtalis (Colubridae, Naticinae snake) [42,43], were downloaded
to make personal genome databases. Referring to the nucleotide sequences and the deduced amino acid sequences of
PfSSPs via tblastn or blastn, the nucleotide sequences encoding the orthologs of PfSSPs and the flanking regions of
them in each snake genome data were deciphered.

RepeatMasker analysis of the nucleotide sequence of the genome
segment harboring SSPs
The personal database was constructed with the repetitive sequences of the genomes of various organisms collected
from the Repbase of the Genetic Information Research Institute [44]. RepeatMasker was carried out the nucleotide
sequences of the genome segments containing SSPs of O. hannah, P. bivittatus, P. flavoviridis, P. mucrosquamatus,
and T. sirtalis, against the database via BLAST+, RMBlast (NCBI), and Tandem Repeats Finder (Boston University)
[45].

Mathematical analysis
Alignment of the amino acid sequences of Pf SSPs was performed using ClustalX software. The nucleotide sequences
of ORFs encoding the mature proteins of Pf SSPs were rearranged, removing the gaps, by PAL2NAL according to
the aligned amino acid sequences. The rates of synonymous (KS) and nonsynonymous (KA) substitutions per site
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between the ORFs of the genes were calculated using Nei-Gojobori method as implemented with PAML [46]. The
rates of substitutions of the introns (KN) were calculated from the aligned sequence data.

Results and discussion
Peculiar structure of the array of PfSSPs
The nucleotide sequence of 30534 bp of P. flavoviridis genome segment was deciphered as described above and found
to contain the array of five PfSSPs, that is, PfSSP-4, PfSSP-5, PfSSP-1, PfSSP-2, and PfSSP-3 in this order (Figure 1A).
The precise construction of each of the five PfSSPs including the promoter and four exons was revealed (MK574076)
3733 bp of PfSSP-4, 4198 bp of PfSSP-5, 2796 bp of PfSSP-1, 3619 bp of PfSSP-2, and 3513 bp of PfSSP-3.

The draft genome data of O. hannah (Elapidae snake) was also investigated to decipher the nucleotide sequences
of the genome segment harboring the orthologs of PfSSPs (see the details in the ‘Determination of the nucleotide
sequences and the chromosomal configurations of 221 the genes encoding the orthologs of PfSSPs of various snakes’
subsection of ‘Experimental’ section). Then, four nucleotide sequences of the genes which encode SSP-1, SSP-2, SSP-4,
and SSP-5, were identified. As the draft genome data contained many unidentified nucleotides which were described
as ‘N’, only the nucleotide sequences of four exons of the gene encoding SSP-4 were identified. The nucleotide se-
quences of the third exons of the genes encoding SSP-1 and SSP-2 were partly identified, and that of the fourth exon
of the gene encoding SSP-5 could not be identified (Figure 1B). The nucleotide sequences encoding SSP-1 and SSP-2
were named as OhSSP-1 and OhSSP-2, respectively. As the nucleotide sequences of the third exons of both genes en-
coding SSP-4 and SSP-5 contained the insertion of 98 and 8 nucleotides to cause nonsense mutation, they were named
as OhSSP-5(ψ) and OhSSP-4(ψ), respectively. It should be noted that the directions of the transcription of OhSSPs
were all the same, in contrast with those of PfSSP-4 and PfSSP-5 were opposite to those of the other three PfSSPs,
PfSSP-1, PfSSP-2, and PfSSP-3. It is likely that the genome fragment harboring PfSSP-1, PfSSP-2, and PfSSP-3, has
been inverted.

Complicated construction of the I-Reg between PfSSP-5 and PfSSP-1
Detailed analysis showed that the I-Reg between PfSSP-5 and PfSSP-1, Pf I-Reg51, was an interesting structure. First,
the nucleotide sequence which encodes another fragmented PfSSP-1 was found in the middle portion of Pf I-Reg51.
The nucleotide sequence, named PfSSP-1δ(ψ), consisted of 48 bp of the 3′ portion of the third intron and the fourth
exon with five nucleotides of the 3′ untranslated region (UTR) of PfSSP-1 (Figure 1C). Second, the Repeatmasker
revealed that the fragments of three types of LINE, L2, R4, and Gypsy, were inserted so as to sandwich the PfSSP-1δ(ψ)
(Figure 1D). The two fragments of L2 and R4 LINEs were located in the 3′ downstream of PfSSP-1δ(ψ) and that of
Gypsy LINE was located in the 5′ upstream of PfSSP-1δ(ψ). Each of the three fragments encoded most of the reverse
transcriptase (RT) domain of each LINE.

Two DNA transposon fragments hAT [47], Mariner [48], and another Gypsy LINE fragment were inserted in
the region between PfSSP-5 and the L2 fragment-R4 fragment-PfSSP-1δ(ψ) arrangement. Both DNA transposons
are known to carry out gene conversion via double-strand break [49,50]. In addition, the 30 bp nucleotide se-
quence predicted to form the stem-loop structure (Figure 1E) was found immediately next to the L2 fragment-R4
fragment-PfSSP-1δ(ψ) arrangement. The stem-loop structure is also known to be the scaffolding of the gene conver-
sion [51,52]. PfSSP-1δ(ψ) should be the remnant of the amplified PfSSP-1 which was destroyed by the plural times
of insertions of LINEs and DNA transposons after being amplified into Pf I-Reg51.

Chromosome inversion interrupted the array of PfSSPs
Further investigation of the nucleotide sequences of the arrays of SSPs of P. flavoviridis and O. hannah showed that
there were two pairs of the particular nucleotide sequences. One pair was 140 nucleotides in the 3′ downstream of
PfSSP-1 and 140 nucleotides in the 3′ downstream of OhSSP-1, the other pair was 937 nucleotides in the 5′ upstream
of PfSSP-2 and 961 nucleotides in the 5′ upstream of OhSSP-2 (Figure 2A,B). The nucleotide sequence of the former
pair was designated as ‘α’ and that of the latter pair as ‘β’. The identity between the nucleotide sequences of α or
β pairs was 69 or 65%, respectively, but the direction of the nucleotide sequences of the α or β pairs was opposite.
These findings showed that the P. flavoviridis genome segment encompassing from theα sequence to theβ sequence
had been inverted, moreover the tandem arrangement of PfSSP-1 and PfSSP-2 had already been formed before the
inversion occurred.

Interestingly, RepeatMasker analysis also showed the five fragments of CR1 LINE, which is the most major LINE
contained in the reptilian genome, were found in all the Pf I-Regs except for Pf I-Reg51. They are CR1 45, the CR1
fragment inserted in the Pf I-Reg45, and CR1 12 i and CR1 12 ii, or CR1 23 i and CR1 23 ii, the CR1 fragments
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Figure 1. Detailed analysis of the genome segments of P. flavoviridis and O. hannah containing SSPs

(A) The schematic representation of P. flavoviridis 30534 bp genome segment containing the array of six PfSSPs including

the fragmented PfSSP-1, PfSSP-1δ(ψ ). Bold and hatched broken arrows indicate the areas and the directions of the transcription

of the genes in the segment. Gray bars represent exons. (B) The schematic representation of O. hannah 17678 bp (except for

4745 ‘N’s) genome fragment containing the array of four OhSSPs. ‘N’ means the unidentified nucleotides. (C) The alignment

of the nucleotide sequences of PfSSP-1δ(ψ ) and the corresponding portion of PfSSP-1. The portions of introns 3 are shown

in lower case letters and those of exons 4 are shown in upper case letters. The stop codons are underlined. 3′ UTRs of exons 4 are

enclosed in the squares. The numerals above the sequences are the position numbers of the corresponding nucleotides reported in

the present study (MK574076). (D) The schematic configuration of the fragments of LINEs and DNA transposons inserted into

the I-Reg PfI-Reg51. Three closed ellipses, open ellipse, and specked ellipse represent the inserted fragments of LINEs, Gypsy, L2,

and R4, respectively. Closed and open stars represent the inserted DNA transposons, hAT and Mariner, respectively. The position

of the stem-loop structure is also shown. PfSSP-1δ(ψ ) is indicated by the hatched arrow. (E) The predicted stem-loop structure

of the 30 nucleotides located between the fragment of Gypsy and the L2 fragment-R4 fragment-PfSSP-1(ψ ) arrangement.

The secondary structure is deduced based on the nucleotide sequence by RNA secondary structure prediction of GENETYX ver.

16. The numerals at both termini of the sequence are the position numbers of the corresponding nucleotides reported in the present

study (MK574076). Abbreviation: UTR, untranslated region.

inserted in this order at the middle portion of Pf I-Reg12 or Pf I-Reg23, respectively (Figure 2B). CR1 is composed
of two ORFs, ORF1 and ORF2 [53]. ORF1 encodes RNA binding protein and ORF2 encodes two-domain protein
which is composed of endonuclease (EN) and RT domains. The RT domain of CR1 consists of ten subdomains from
0 to IX and a carboxy-terminal conserved region (CTCR), which is known to be the scaffold of reverse-transcription
of CR1 LINE [54–56]. The fragments CR1 45 and CR1 12 ii contained four subdomains from III to VI and from IV
to VII of the RT domain, respectively. On the other hand, each of the fragments CR1 12 i, CR1 23 i, and CR1 23 ii

6 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 2. Comparison of the genome segments of P. flavoviridis and O. hannah containing SSPs

Comparison of the schematic configuration of (A) the array of OhSSPs, (B) the array of PfSSPs, and (C) the temporary array of

PfSSPs in the case where the chromosome inversion did not occur. White and black daggers represent the positions and the

directions of the nucleotide sequences of α and β, which are linked with dashed lines to each other. Harpoons represent the

positions and the directions of the transcription of the inserted fragments of CR1 LINE.

contained only the CTCR of the RT domain. Interestingly, the direction of the transcription of the fragments CR1 12 i,
CR1 12 ii, and CR1 23 i, was opposite to that of the transcription of the fragments CR 45 and CR 23 ii (Figure 2B).
Namely, these findings further showed that the inversion of the genome segment encompassing from the α sequence
with CR1 23 i to the β sequence at the 3′ terminal of PfSSP-1 had occurred. If the inversion had not occurred,
the direction of the transcription of all five CR1 fragments would be the same and the five CR1 fragments should
have been located 3′ downstream of all PfSSPs except for PfSSP-3 (Figure 2C). Ikeda et al. (2010) [57] also found
that the genes encoding P. flavoviridis venom PLA2 isozymes are linked to the fragments of CR1 LINE, named PLA2
gene-coupled RT fragment (PcRTF), in their 3′ downstream. Thus, CR1 LINE seems to be involved into the amplified
genes in P. flavoviridis genome.

Particular nucleotide sequences inserted in the genes classified PfSSPs
into two subgroups
Figure 3 showed the schematic configuration of the nucleotide sequences inserted into five PfSSPs. The nucleotide
sequences of the fragments of L1 and CR1 LINEs were inserted at the same sites of the first intron of all five PfSSPs
and those of two fragments of Gypsy, named Gypsy-i and Gypsy-ii, were also inserted at the same sites of the 3′

terminal of the third intron of all five PfSSPs. The nucleotide sequence of the fragment of Mariner, named Mariner-ii,
was inserted at the same sites in the middle portion of the third intron of the four PfSSPs except for PfSSP-1. The
identities of the nucleotide sequences of the five inserted fragments were considerably high (Table 2). They must have
already been inserted into the gene prior to the amplification of PfSSPs.

On the other hand, the types of the nucleotide sequences inserted in the second or third intron of the gene clas-
sified five PfSSPs into two subgroups. One subgroup consisted of three PfSSPs, PfSSP-1, PfSSP-2 and PfSSP-5, was
characterized by the nucleotide sequence of the fragment inserted into the third intron of the gene, which encoded
the RT domain of L2 LINE [56,58]. As the three SSPs belonging to this subgroup encoded the full-length proteins
[8], this subgroup was designated as the Long SSP subgroup. Interestingly, the inserted fragments were truncated
according to the order of the name of each gene. The lengths and the constructions of the three inserted fragments
were as follows. The fragment inserted into PfSSP-5 was 1011 bp, which encoded nine subdomains from 0 to VIII
of RT domain. The fragment inserted into PfSSP-2 was 431 bp, which encoded four subdomains from 0 to III of
RT domain. The fragment inserted into PfSSP-1 was 320 bp, which encoded three subdomains from 0 to II of RT

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 3. Schematic representation of the configurations of the fragments of LINEs and DNA transposons inserted into

PfSSPs

Gray bars represent exons. Half closed, hatched, open, and closed ellipses represent the fragments of LINEs, L1, CR1, L2, and

Gypsy. Open and closed stars represent the fragments of DNA transposons, Mariners and hAT. The positions of the corresponding

fragments are linked with dashed lines to each other. The inserted positions of the repetitive sequences of (TAAAA) and (AATAA)

are indicated by the carets and the numbers of repetitions of them are also shown as the subscribed suffixes.

domain. Though LINEs are known to be generally truncated from the 5′ terminal region and become inactive, the
fragments of L2 LINE inserted into PfSSP-1, PfSSP-2, and PfSSP-5 truncated from the 3′ terminal. The first PfSSP
in this subgroup should have been PfSSP-5 with the inserted L2 LINE fragment. As the amplifications occurred from
PfSSP-5 to PfSSP-2 and then from PfSSP-2 to PfSSP-1, the inserted L2 fragment became truncated every time at
each. The nucleotide sequence between L2 fragment and Mariner-ii in the third intron of PfSSP-2 and PfSSP-5 was
considered to be an irrelevant nucleotide sequence brought in from the genome site where L2 LINE had been retro-
transposed just before. In PfSSP-1, this ‘orphan’ nucleotide sequence is thought to have disappeared accompanying
the transposition of Mariner-ii.

The other subgroup consisted of PfSSP-3 and PfSSP-4 was characterized by three nucleotide sequences of the
fragments of DNA transposons inserted into the second and third introns of the gene. One was the fragment of
Mariner, named as Mariner-i, inserted into the same site of the second intron of the gene. The other two were the
fragments of hAT and another Mariner, named as Mariner-iii. Two juxtaposed fragments were inserted into the same
site between Mariner-ii and Gypsy-i in the third intron of the gene. In addition, the particular repetitive nucleotide
sequences were also found at the same site of the second intron of the gene (see the details in the next section). As
PfSSP-3 and PfSSP-4 encoded the truncated proteins [8], the subgroup was designated as the Short SSP subgroup.
The positions and the nucleotide sequences of the eight inserted fragments, L1 and CR1 fragments in the first intron,
Mariner-i in the second intron, Mariner-ii, hAT, Mariner-iii, Gypsy-i and Gypsy-ii in the third intron were almost the
same (Table 2). Namely, the insertion of them should have occurred before the branching of PfSSP-3 and PfSSP-4
and not much time must have passed since two genes were branched.

8 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 2 The identities of the nucleotide sequences between the fragments of transposable elements inserted into the
introns of PfSSPs

PfSSP-1 PfSSP-2 PfSSP-5 PfSSP-3 PfSSP-4

<The fragments of L1 LINE>

PfSSP-1 (125 bp) 100 66 65 65

PfSSP-2 (125 bp) 66 65 65

PfSSP-5 (142 bp) 63 63

PfSSP-3 (152 bp) 100

PfSSP-4 (152 bp)

<The fragments of CR1 LINE>

PfSSP-1 (42 bp) 97 83 81 81

PfSSP-2 (42 bp) 81 79 79

PfSSP-5 (43 bp) 93 93

PfSSP-3 (43 bp) 100

PfSSP-4 (43 bp)

<The fragments of L2 LINE>

PfSSP-1 (320 bp) 94 87

PfSSP-2 (431 bp) 86

PfSSP-5 (1010 bp)

<The fragments of
Mariner-i>

PfSSP-3 (54 bp) 100

PfSSP-4 (54 bp)

<The fragments of Mariner-ii>

PfSSP-2 (57 bp) 92 82 82

PfSSP-5 (56 bp) 85 85

PfSSP-3 (56 bp) 100

PfSSP-4 (56 bp)

<The fragments of Mariner-iii>

PfSSP-3 (55 bp) 94

PfSSP-4 (55 bp)

<The fragments of hAT>

PfSSP-3 (57 bp) 96

PfSSP-4 (57 bp)

<The fragments of Gypsy-i>

PfSSP-1 (72 bp) 100 76 81 80

PfSSP-2 (72 bp) 76 81 80

PfSSP-5 (72 bp) 67 68

PfSSP-3 (72 bp) 94

PfSSP-4 (72 bp)

<The fragments of Gypsy-ii>

PfSSP-1 (25 bp) 92 76 68 76

PfSSP-2 (25 bp) 68 60 68

PfSSP-5 (37 bp) 68 76

PfSSP-3 (38 bp) 92

PfSSP-4 (39 bp)

The lengths of the fragments, from which the indels (inserted or deleted fragments) are excluded, are described in the parentheses.

Different evolutionary path that PfSSPs of two subgroups followed
The evolutionary process of the Long SSP subgroup was not plain. The mathematical analysis showed that the branch-
ing between PfSSP-1 and PfSSP-2 of the Long SSP subgroup had occurred in an accelerated manner (Table 3) [8,33].
In addition, the fact that the rate of KN between the introns of PfSSP-1 and PfSSP-2 was 0.0649 also suggested that
the time passed after branching of PfSSP-1 and PfSSP-2 was very short (Table 4). On the other hand, the rate of
KA/KS between the ORFs of PfSSP-1 and PfSSP-5 or PfSSP-2 and PfSSP-5, which is the relative ratio of synonymous
substitution rate to nonsynonymous substitution rate, was 0.625 or 0.646 (Table 3) and the rate of KN between the
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Table 3 The rates of KA/KS estimated between the ORFs of PfSSPs

PfSSP-1 PfSSP-2 PfSSP-3 PfSSP-4 PfSSP-5

PfSSP-1 1.739 1.010 0.934 0.625

PfSSP-2 0.718 0.715 0.646

PfSSP-3 1.536 0.772

PfSSP-4 1.010

PfSSP-5

Table 4 The rates of KN estimated between the introns of PfSSPs

PfSSP-1 PfSSP-2 PfSSP-3 PfSSP-4 PfSSP-5

PfSSP-1 0.0649 0.361 0.379 0.328

PfSSP-2 0.338 0.356 0.312

PfSSP-3 0.0488 0.338

PfSSP-4 0.358

PfSSP-5

introns of PfSSP-1 and PfSSP-5 or PfSSP-2 and PfSSP-5 was 0.328 or 0.312, respectively (Table 4). These results sug-
gested that PfSSP-1 or PfSSP-2 and PfSSP-5 had been diverged in a ‘neutral manner’ long time ago and that PfSSP-1
and PfSSP-2 branched in a very short time long time later.

As concerning about the Short SSP subgroup, the nucleotide sequence between PfSSP-3 and PfSSP-4 including
the fragments of LINEs and DNA transposons was almost identical except for the number of repetition of the nu-
cleotide sequences in 2nd intron (Figure 3). The repetitive sequences were of two types. One was the repetition of
five nucleotides of TAAAA, which was repeated 32 times for PfSSP-3 and 36 times for PfSSP-4. The other was that of
five nucleotides of AATAA immediately next to the repeat of TAAAA, which was repeated 42 times only for PfSSP-4.
Without consideration of the repeats, the rates of KA/KS and KN between PfSSP-3 and PfSSP-4 were 1.54 (Table 3)
and 0.0488 (Table 4), respectively. These results showed that PfSSP-3 and PfSSP-4 has been branched very recently
in an accelerated manner.

Orthologs of SSPs from various snakes
Detailed tblastx analysis against the draft genome databases of four snakes P. bivittatus, T. sirtalis, O. hannah, P.
mucrosquamatus, in addition to that of P. flavoviridis has revealed the orthologs for PfSSPs and their chromoso-
mal configurations as follows (Figure 4). The genome of non-venomous Pythonidae snake, P. bivittatus, contained
three orthologs of PfSSP-5, named PbSSP-5α, PbSSP-5β, and PbSSP-5g(ψ), that of Colubridae snake, T. sirtalis,
contained the ortholog of PfSSP-4, named TsSSP-4, and two orthologs of PfSSP-5, named TsSSP-5a, and TsSSP-5β,
that of neurotoxic Elapidae snake, O. hannah, contained the orthologs of PfSSP-4, PfSSP-5, PfSSP-1, and PfSSP-2
on one chromosome in this order, named OhSSP-4(ψ), OhSSP-5(ψ), OhSSP-2, and OhSSP-1, respectively (see the
details in the first section of this chapter), that of Viperidae Taiwan Habu snake, P. mucrosquamatus, contained the
orthologs of PfSSP-5, PfSSP-1, PfSSP-2 and PfSSP-3 on one chromosome in this order, named PmSSP-5, PmSSP-1,
PmSSP-2, and PmSSP-3, respectively (in the present study). In addition, the ortholog of PfSSP-4, named PmSSP-4,
was also found in P. mucrosquamatus in another scaffold.

In the present study, the names of four orthologs were renamed. As a result of our detailed investigation based on
the deduced amino acid sequences, the nucleotide sequences which have been annotated as PbSSP-2 and TsSSP-2 in
the original databases should be renamed as PbSSP-5β and TsSSP-5β. In addition, the nucleotide sequence newly
found from the genome of P. bivittatus in the present study, which encoded the ortholog of PfSSP-5 but contained
the deletions of 34 nucleotides and 7 nucleotides causing frameshifts at the second and third exons, respectively. It
was named as PbSSP-5g(ψ). Therefore, those already annotated as PbSSP-5 and TsSSP-5 in the original databases
should be renamed as PbSSP-5α and TsSSP-5α, respectively. The relationship between PbSSP-5α, PbSSP-5β and
PbSSP-5g(ψ), or TsSSP-5α and TsSSP-5β was paralog. Furthermore, the nucleotide sequence, which was newly
found from the genome of T. sirtalis in the present study, encoded the ortholog of PfSSP-4 then was named as
TsSSP-4.
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License 4.0 (CC BY).



Bioscience Reports (2019) 39 BSR20190560
https://doi.org/10.1042/BSR20190560

Figure 4. The relationship between the phylogenetic clade of snakes and the schematic structure of the configuration of

the genes encoding SSPs

Gray bars represent exons. Open ellipses represent the fragments of the inserted L2 LINEs. Orthologous SSP-5 genes in each

snake genome were linked with dashed lines to each other. The genome segments encompassing from SSP-1 to SSP-2 of O.

hannah, P. mucrosquamatus, and P. flavoviridis were linked with dotted lines to each other. Abbreviations: Oh, O. hannah; Pb, P.

bivittatus; Pm, P. mucrosquamatus; Ts, T. sirtalis.

Evolutionary emerging order of SSPs analyzed from the constructions
and configurations of SSP genes
The configuration of the paralogs of SSPs in each snake genome (Figure 4) seemed to show their emerging order.
Before the branching of Colubridea and Booidea snakes, SSP-5 had already existed in advance. After the branching,
the genome of Colubridea snakes acquired SSP-4 derived from the paralog of SSP-5. On the other hand, the formation
of the paralog of SSP-5 occurred twice in P. bivittatus genome or once in T. sirtalis genome. They became PbSSP-5β
and PbSSP-5g(ψ) or TsSSP-5β, respectively. In the genome of Elapidae and Viperidae snakes, the derivation of the
paralogs of SSP-5 occurred twice at least and then they have become SSP-1 and SSP-2. The comparative analysis
of the construction of the L2 LINE fragment in the third intron of the gene has already showed that SSP-5, SSP-2,
and SSP-1 appeared in this order (see details in the fourth section of the present study). And then, in the genome of
Viperidae, the inversion of the genome segment encompassing from SSP-2 to SSP-1 occurred (see details in the third
section of the present study). Interestingly, the mathematical analysis between SSP-1 and SSP-2 showed that those of
Elapidae snake have been evolved in a neutral manner in contrast with those of Viperidae snakes have been evolved in
an accelerated manner. It is only speculation, the nucleotide substitutions dominant at the nonsynonymous sites only
occurred immediately after duplication and then random mutations accumulated over time and the selective pressure
to preserve the ‘neutral’ mutations at the synonymous sites have reduced the traces of the accelerated evolution.
But the inversion of Viperidae genome segment encompassing from PfSSP-1 to PfSSP-2 might have avoided the
accumulation of random mutations. The emerging process of the most newcomer, SSP-3, which is structurally highly
related to SSP-4, is an issue to be addressed in the next study. It is also interesting that the positions and the nucleotide
sequences of the fragments of LINEs and DNA transposons seem to be conserved rather than the nucleotide sequences
of the introns and the I-Regs in which those transposable elements are inserted. It is likely that such transposable
elements are involved in maintaining the construction of the host genome besides their transposition natures.
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