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Rodrigues PinaID
4*

1 Botucatu Medical School, Clinics Hospital, Medical Physics and Radioprotection Nucleus, Botucatu, SP,

Brazil, 2 Institute of Bioscience, Sao Paulo State University Julio de Mesquita Filho, Botucatu, SP, Brazil,

3 Radiology and Medical Imaging, State University of Campinas, Campinas, SP, Brazil, 4 Medical School,

Sao Paulo State University Julio de Mesquita Filho, Botucatu, SP, Brazil

* diana.pina@unesp.br

Abstract

In this work, we aimed to develop an automatic algorithm for the quantification of total vol-

ume and lung impairments in four different diseases. The quantification was completely

automatic based upon high resolution computed tomography exams. The algorithm was

capable of measuring volume and differentiating pulmonary involvement including inflam-

matory process and fibrosis, emphysema, and ground-glass opacities. The algorithm classi-

fies the percentage of each pulmonary involvement when compared to the entire lung

volume. Our algorithm was applied to four different patients groups: no lung disease

patients, patients diagnosed with SARS-CoV-2, patients with chronic obstructive pulmonary

disease, and patients with paracoccidioidomycosis. The quantification results were com-

pared with a semi-automatic algorithm previously validated. Results confirmed that the auto-

matic approach has a good agreement with the semi-automatic. Bland-Altman (B&A)

demonstrated a low dispersion when comparing total lung volume, and also when compar-

ing each lung impairment individually. Linear regression adjustment achieved an R value of

0.81 when comparing total lung volume between both methods. Our approach provides a

reliable quantification process for physicians, thus impairments measurements contributes

to support prognostic decisions in important lung diseases including the infection of

SARS-CoV-2.

Introduction

Computed tomography has been used as a standard procedure in the diagnosis of many lung

diseases: acute pulmonary embolism, chronic pulmonary hypertension, interstitial lung

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251783 June 10, 2021 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Alves AFF, Miranda JRA, Reis F, Oliveira

AA, Souza SAS, Fortaleza CMCB, et al. (2021)

Automatic algorithm for quantifying lung

involvement in patients with chronic obstructive

pulmonary disease, infection with SARS-CoV-2,

paracoccidioidomycosis and no lung disease

patients. PLoS ONE 16(6): e0251783. https://doi.

org/10.1371/journal.pone.0251783

Editor: Gayle E. Woloschak, Northwestern

University Feinberg School of Medicine, UNITED

STATES

Received: June 30, 2020

Accepted: May 3, 2021

Published: June 10, 2021

Copyright: © 2021 Alves et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data cannot be

shared due to potentially identifying or sensitive

information. Future researchers will be able to

request the data used in this study through the

contact of the local ethics committee of São Paulo

State University: Chácara Butignolli, s / n, botucatu,

são paulo - Brazil. Zip code: 18618970. telephone:

3880-1609. e-mail: cep.fmb@unesp.br.

Additionally, the study ethics approval may be

https://orcid.org/0000-0003-1967-1990
https://doi.org/10.1371/journal.pone.0251783
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251783&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251783&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251783&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251783&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251783&domain=pdf&date_stamp=2021-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251783&domain=pdf&date_stamp=2021-06-10
https://doi.org/10.1371/journal.pone.0251783
https://doi.org/10.1371/journal.pone.0251783
http://creativecommons.org/licenses/by/4.0/
mailto:cep.fmb@unesp.br


disease, lung infection, bronchial carcinoma, and emphysema [1]. More recently, CT imaging

has been recommended as the main method for the diagnosis of SARS-CoV-2 [2], which can

affect more than 50% of the lung. Knowing the impact of lung diseases worldwide, the search

for more effective and less invasive methods to characterize the extent of lung involvement is

essential [3–7].

In the last two decades, CT scanners increased their spatial and temporal resolution. Multi-

detector scanners can acquire up to hundreds of 1-mm slices simultaneously [8]. It allowed the

characterization and quantification of anatomic structures with more confidence [9]. The

advantage of CT examination compared to other modalities is that it is a fast exam, it provides

lung anatomy in sectional slices, allows the 3D volumetric reconstruction and it provides the

early detection of abnormalities.

The identification of pulmonary structure is often done subjectively by radiologists.

Changes in the pulmonary structures represent progress or not of obstructive and restrictive

respiratory diseases. Therefore, its response corresponds to different therapeutic alternatives.

Quantification measurements are difficult to obtain and relies on subjective estimations of

lung volume and the size of the compromised area within the lung. Radiological evidence is

generally classified based on the experience of each radiologist. Such analyzes are subject to

intra and interobserver variations [10].

Image processing has been used to aid the diagnosis of radiologists. The precise and detailed

quantification of lung volume through image processing is an important part of the construc-

tion of the diagnosis of lung diseases. In this context, the objective quantification of pulmonary

structures through CT is an important and indispensable tool for diagnosis and therapeutic

evaluation in clinical practice [11–17].

Quantification is important in the assessment of diseases, such as Chronic Obstructive Pul-

monary Diseases (COPD), which lead to an increase in the residual lung volume [4, 18], para-

coccidioidomycosis (PCM) [17], and SARS-CoV-2 [2], demonstrating abnormal patterns as

an inflammatory process, fibrosis, emphysema, ground-glass, and others. And also, of great

importance when a reduction in lung volume occurs due to diseases that cause pulmonary

focal obstruction of a given airway.

In this work, we aimed to develop a practical tool for the quantification of total lung volume

and lung impairments in different diseases. We developed an automatic algorithm for those

quantifications using high resolution computed tomography (HRCT) exams. The algorithm

was capable of measuring volume and differentiating pulmonary involvement including

inflammatory process and fibrosis, emphysema, and ground-glass opacities. The algorithm

classified the percentage of each pulmonary involvement when compared to the entire

lung volume. Our algorithm was applied to four different patients groups: no lung disease

patients, patients diagnosed with SARS-CoV-2, patients with COPD, and patients with PCM.

The quantification results were compared with a semi-automatic algorithm previously vali-

dated [17].

Methods

Patient selection

The study was developed with ethical approval from São Paulo State University Ethics Comitee

and CONEP—National Commission on Ethics in Research (Protocol Number 8773 / Certifi-
cado de Apresentação de Apreciação Ética CAAE 83901617.3.0000.5411). All data were fully

anonymized before access thus informed consent was dismissed. All HRCT examinations

were performed at the Diagnostic Imaging Service of Botucatu Medical School, Sao Paulo

State University and Campinas Medical School, University of Campinas, Brazil.
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The research involved a set of 172 retrospective HRCT exams pre-classified with defined

diagnosis distributed among: no lung disease patients, patients with coronavirus disease

(SARS-CoV-2 infection), chronic obstructive pulmonary disease (COPD), and paracoccidioi-

domycosis (PCM). The description of each group and the inclusion and exclusion criteria is

presented below.

No lung disease patients. We included 62 HRCT scans of No lung disease patients (45

men and 25 women). The mean age of the patients was 52.2 ± 13.9, selected by an experienced

radiologist with over 20 years of experience.

Inclusion criteria. No lung disease patients without significant changes in lung that could

compromise normal lung volume from the radiological point of view. Adult individuals who

underwent chest CT scans for the most diverse indications, in the suspicion of thoracic alter-

ations or as a complement to the assessment of extrathoracic diseases.

Exclusion criteria. Patients with pulmonary parenchymal diseases, atelectasis, pulmonary

hyperinflation or hypertransparence, lung masses, pleural diseases or mediastinal masses,

deformities of the thoracic bone framework, any retractable or expansive process of the wall,

pleural, pulmonary or mediastinal. These data were acquired in our archive of images (all of

them obtained before December 2019).

SARS-CoV-2 infection patients. We included 31 retrospective HRCT scans for patients

with SARS-CoV-2 (18 men and 13 women), without any previous pulmonary pathology. The

mean age of the patients was 59.8 ±17.3 and there were no specific days of symptoms to per-

form CT exams.

Inclusion criteria. Adult patients with confirmation of SARS-CoV-2 through real-time Poly-

merase Chain Reaction (RT-PCR), 3 to 6 days after hospitalization.

Exclusion criteria. Patients with immunosuppression (transplantation, chemotherapy) and

HIV-positive and previous diseases with lung involvement.

Patients with chronic obstructive pulmonary disease (COPD). We included 37 patients

with COPD (20 men and 17 women). The mean age of the patients was 68.7 ± 13.9.

Inclusion criteria. Patients with COPD who experienced desaturation on exertion during

sleep, accompanied by physicians. The diagnosis of COPD was assessed utilizing a post-bron-

chodilator spirometry exam with a Forced Expiratory Volume in the first second (FEV1) /

Forced Vital Capacity (FVC) <0.70, according to criteria of national and international guide-

lines [19].

Exclusion criteria. Patients with severe hypoxemia (PaO2�55mmHg), polycythemia, cancer

on any site, active smokers, and those who had an exacerbation in the last three months before

the initial assessment were identified. These data were acquired in our archive of images (all of

them obtained before December 2019).

Patients with paracoccidioidomycosis (PCM). We included 42 patients with PCM (39

men and 3 women). The mean age of the patients was 49.8 ± 12.3.

Inclusion criteria. Patients with PCM confirmed by the identification of P. brasiliensis, and

/ or, only with the presence of serum anti-P. brasiliensis antibodies determined by the double

immunodiffusion reaction on agar gel, which present paracoccidioid pulmonary involvement.

We included patients who presented the chronic form of PCM with pulmonary involvement

characterized by respiratory complaints and chest radiography with interstitial and / or alveo-

lar lesions.

Exclusion criteria. Patients with the presence of any other disease that could compromise

the lungs, other systemic diseases, and aggravating factors, except smoking and alcoholism.

These data were acquired in our archive of images (all of them obtained before December

2019).
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Image acquisition

Chest CT exams without contrast were evaluated in the study. Images were acquired as retro-

spective HRCT scans on a multislice CT scanner Toshiba Activision 16 (Toshiba America

Medical Systems, Tustin, CA) with the following parameters: the pixel size ranged from

0.59mm x 0.59 mm to 0.80 mm x 0.80 mm, 515 x 512 pixel matrix size, 5.0 mm increment

between slices. 5.0 mm slice with a tube voltage of 120 kV. Axial sections (1-mm thickness)

were obtained at 10-mm interval throughout the entire chest, with around 300 slices acquired

for each patient. All analyzed images were acquired in the inspiration phase.

Pulmonary quantification

All patients in our database passed through algorithms for segmentation and quantification of

different regions in the lung. In this work, two different algorithms were utilized. The first

algorithm uses a completely automatic approach for segmentation, which means that it does

not require any steps commanded by users. The second algorithm uses a semi-automatic

approach with a radiologist as an operator. The semi-automatic was validated in a previous

study by Alvarez, de Pina et al. 2014 [17]. The main difference between the two algorithms

relies on the segmentation steps. After segmentation, both algorithms follow the same scheme

of quantification procedures better described in the following sections.

Automatic algorithm

The automatic algorithm was developed using Matlab R2017a (Mathworks, Natick, MA, USA)

for the quantification of pulmonary involvement on CT exams. For all data processing, we

used a personal computer with a Quad-Core CPU with 3.4 GHz, 16 GB of RAM, Windows 10

operating system, and 2 TB Hard Drive. The algorithm follows a segmentation process based

on thresholding and morphological operators. The main steps are described below.

1. All images in the CT scan sequence are read. Fig 1 exemplifies a single slice of each patient

group included in the study, No lung disease, B- COPD, C- PCM and D- SARS-COV-2.

2. Fig 2 shows sequences performed by the algorithm in the middle of a patient’s lung. It can

be seen in Fig 2A (as an example a slice of a No lung disease patient). A first threshold is

performed to select the range of pixels including all tissues, as can be seen in Fig 2B. Then,

the largest area is selected, which comprises the patient’s body, and thus air, bed, and other

external structures are excluded, depicted in Fig 2C.

3. A second threshold is applied to highlight regions with Hounsfield units close related to

lung tissues, as can be seen in Fig 2D.

4. In the sequence, two morphological operators and a filter are applied to the image (fill,

median filter, and dilation) to confirm the selected regions filled with air, while softening

surrounding tissues.

5. The two largest areas are selected, composed by the lungs, thus excluding the trachea and

other adjacent soft tissues demonstrated in Fig 2E.

6. A second dilation performs an expansion of the pulmonary region, in cases where periph-

eral fibrosis occurs.

7. Then different thresholds are applied for each type of tissue of interest: emphysema, inflam-

matory process and fibrosis and ground-glass opacities, resulting in the image seen in

Fig 2F.
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8. For each tissue, its areas within each slice are estimated, based on the number and area of

the pixels.

9. In the sequence, the same operations are applied to all slices that compose the image

sequence of that patient.

Total lung volumes, emphysema volume, inflammatory process/fibrosis volume, and

ground-glass volume are then computed. Regarding the application of both algorithms, the

thresholds for quantification were as follows: emphysema: -1500 to -920 Hounsfield Units

(HU); Ground-glass Opacities: -595 to-5 HU; and fibrosis and inflammatory process -5 to 450

HU. All volumes were measured in mm3. The inflammatory process and fibrosis were quanti-

fied as the same impairment. This occurs since both impairments average pixel values (Houns-

field Units) are similar [17].

The same examinations were analyzed through the semi-automatic algorithm. The process

is called semi-automatic since the segmentation steps are performed manually by an experi-

enced radiologist [17]. Fig 3 exemplifies the application of the semi-automatic algorithm. In

Fig 1. Different slices of CT scans representing each patients group. A–No lung disease, B–COPD, C–PCM and D—

SARS-CoV-2.

https://doi.org/10.1371/journal.pone.0251783.g001
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Fig 2. Sequence of images that demonstrate the algorithm steps. A–Original image; B–First thresholding; C–Body segmentation; D–Second Threshold; E–Lung

Segmentation and F–Final segmentation.

https://doi.org/10.1371/journal.pone.0251783.g002

Fig 3. Sequence of images that demonstrate the semi-automatic algorithm steps. A–Original image; B–Segmentation performed by an experienced

radiologist. All blue lines and dots represent the manual segmentation of lung boundaries. C–Final segmentation.

https://doi.org/10.1371/journal.pone.0251783.g003
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this step, the operator (experienced radiologist) manually determines the lung boundaries with

the mouse cursor. All patients were analyzed by the same operator to prevent possible interob-

server variability. All the data were measured in mm3, thus defining a volumetric region of

interest. The operator performs the segmentation with a step of five slices. Similar to the auto-

matic algorithm, total lung volumes, emphysema volume, inflammatory process/fibrosis vol-

ume, and ground-glass volume are then counted through the same thresholds.

The validation of this methodology was previously described by Alvarez, de Pina et al. 2014

[17]. In that paper, virtual phantoms were constructed for algorithm validation. Different

amounts of emphysema and inflammatory process tissues were introduced on a normal lung

tissue background. The involved regions were filled with a pseudorandom gray level deter-

mined by a Gaussian distribution. The error was determined from the difference between the

exact value implemented in the phantom and computational value generated through the algo-

rithm. In that validation process, the greatest error encountered was 3.4% among all virtual

phantoms [17].

Statistical analysis

Comparison between volumes of the total lung, inflammatory process and fibrosis, emphy-

sema, and ground-glass opacities were performed using Bland-Altman statistics to assess

agreement between the automatic and semi-automatic method. To demonstrate the agreement

in volume between automatic and semi-automatic approaches we utilized linear regression

and the Bland-Altman (B&A) method. B&A describes the agreement between two quantitative

measurements, with well-established limits of agreement. Limits are estimated from the mean

and standard deviation of the differences between the two quantities. In an XY scatter plot, the

difference between the two quantities is plotted against the mean. A good result occurs when

95% of the data points lie within ± 2 standard deviations [20].

Results

The selection of patients according to our criteria of inclusion and exclusion resulted in 172

HRCT scans. As described in the automatic algorithm steps, each stage contributes to the seg-

mentation of the lung in each CT slice. Table 1 depicts the results for the 172 patients’ exami-

nations with all quantification results from both algorithms. Each column demonstrates the

estimations of the lung volume, percentage of inflammatory process and fibrosis in relation to

the total volume of the patient, percentage of emphysema in relation to the total volume of the

patient, and ground-glass opacities in relation to the total volume of the patient. Ground-glass

Table 1. Quantification values for semi-automatic (S-A) and automatic (A) algorithms, with mean and standard-deviation for lung volume, inflammatory process

and fibrosis volume, emphysema volume, and ground-glass opacities volume.

Group S-A Volume

(105 mm3)

A Volume

(105 mm3)

S-A Inflammatory Process

and Fibrosis (%)

A Inflammatory Process

and Fibrosis (%)

S-A

Emphysema

A

Emphysema

S-A

Ground-

glass

A Ground-

glass

COPD 1.11 ±0.19 1.06 ±0.21 3.37± 0.55 5.64 ±3.26 44.4 ±21.54 49.38 ±22.59 0 0

No lung

disease

1.01 ±0.18 0.93 ±0.2 3.54 ±0.92 6.52 ±3.87 11.44 ±9.36 13.57 ±10.39 0 0

SARS-CoV-2 1.86 ±0.31 1.81 ±0.49 12.5± 8.3 9.80± 2.9 11.73 ±10.48 10.4 ±8.48 41.44 ±16.77 43.74

±11.77

PCM 1.87 ±0.24 2.34 ±0.46 4.70± 3.5 8.50 ±4.2 7.82 ±6.05 7.16 ±5.3 13.59 ±5.66 21.63 ±5.5

Total Mean

+/- SD

1.4625 ±0.4 1.53 ±0.54 6.03 ±3.24 7.62±1.54 18.85 ±12.78 20.12 ±14.62 27.52

±13.93

32.69

±11.06

https://doi.org/10.1371/journal.pone.0251783.t001
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opacities were not found in COPD and No lung disease patients. All other impairments are

demonstrated with their mean value and standard deviation.

In Fig 4 the Bland–Altman plots demonstrate the score of difference between the semi-

automatic and automatic evaluations. The limits of agreement between automatic and semi-

automatic algorithms for all patients involved in the study are shown in Fig 4A–4D. In this Fig-

ure, we compare the total pulmonary volume (Fig 4A), and the percentage of pulmonary vol-

ume compromised by emphysema (Fig 4B), inflammatory process and fibrosis (Fig 4C) and

ground-glass opacities (Fig 4D). The relationship between the total volumes of all patients

quantified is demonstrated in Fig 5 as a linear regression adjustment with an R value of 0.81.

Discussion

In this work, we developed an automatic algorithm to quantify lung volume and other lung

impairments (emphysema, inflammatory process and fibrosis and ground-glass opacities).

This algorithm can provide the total lung volume and the volume of each impairment with

great precision compared to the semi-automatic algorithm [17]. This algorithm is completely

automatic. That means it does not rely on operator interventions. In the semi-automatic algo-

rithm, the selection of the region of interest (ROI) was performed manually and required a

radiologist with experience to define the pulmonary region. This process can take up to two

Fig 4. Bland–Altman plots comparing the difference the semi-automatic and the automatic algorithms. A—Lung volume, B—Emphysema, C—

Inflammatory process and fibrosis, and D—Ground-glass opacities. Short dashed lines indicate the interval of 2 standard deviations, indicating an

excellent level of statistical agreement between the results.

https://doi.org/10.1371/journal.pone.0251783.g004
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hours to segment and then quantify a CT sequence with 60 slices. The automatic algorithm is

capable of performing the same task in less than 1 minute with a standard performance per-

sonal computer as described in the methodology. However, it is possible to quantify a sequence

with more than 300 slices in approximately 5 minutes. With a higher performance computer,

this time can be reduced significantly. Those running times vary depending on the number of

slices per patient.

The great difference between both algorithms occurs in the segmentation of the pulmonary

area and volume, as the first is automatic and the second is manual in this step. This pulmo-

nary delimitation directly influences the quantification process of the dilation and erosion

operators that were applied in the algorithm, which contributes to different quantifications

results of the impairments.

The algorithm makes no distinction between fibrosis and inflammatory process. The dis-

tinction between the two processes depends on the stage of the disease associated with clinical

analyzes. In our results, they appear as a single impairment named inflammatory process and

fibrosis, since they have similar Hounsfield Unit numbers.

In Fig 4A, the biases of Bland-Altman plots for the volume of all patients are considerably

low (1.3% concerning the mean of the volumes) and the data has small dispersion. Fig 5 shows

a good correlation between the methods (0.81) for volume estimation, with slope of 0.7. That

indicates consistency between the results generated with the automatic and semi-automatic

algorithm, the latter being validated previously [17], the difference being mainly attributed to a

pixel-pixel count analysis for the automatic method, which generates a greater quantification

than involving manual procedure. An accurate and automatic quantification of the pulmonary

volume is important because this parameter is reflected in several clinical analyzes [12].

Fig 4B–4D shows the comparisons between methods of quantifying pulmonary involve-

ment. Low dispersion for quantified impairments (inflammatory process and fibrosis, emphy-

sema, and ground-glass) is observed. In addition, the biases are small (-2.3% for emphysema,

-5.24% for inflammatory process / fibrosis and -5.4% for ground glass). These results represent

the agreement between the automatic method and the already validated (semi-automatic)

method for quantifying pulmonary structures. The differences found are mainly associated

with the operator’s selection of regions (segmentation). Despite their experience, human

Fig 5. Linear regression comparing the automatic and semi-automatic algorithm regarding total lung volume

among all patients.

https://doi.org/10.1371/journal.pone.0251783.g005
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operators select fewer points within their ROI to segment the lung region when compared to

the automatic process performed through thresholds. That difference in each lung area may

reflect in a larger difference when accounting for the entire sequence. We consider the auto-

matic process more accurate as it does not depend on the subjective evaluation of the operator

and evaluates the quantification process pixel by pixel.

With our study, it was possible to determine the percentage of impairments associated with

different lung diseases. According to subjective reports [2], ground-glass opacities were the

impairment found with the highest percentage in patients with SARS-CoV-2 (44%—Table 1).

The quantification of ground-glass can support not only diagnosis but also clinical procedures

to be conducted on the patient. These patients presented about 65% of pulmonary impairment

(emphysema, inflammatory process and ground glass).

PCM causes pulmonary sequelae, destroying the lung parenchyma, which can be replaced

by areas of fibrosis, emphysema, or a combination of both [21]. Our results show that in this

group the lung is involved in about 39% of all cases (Table 1), confirm findings reported by

[17] in addition to emphysema and fibrosis. Also, in this study, it was possible to quantify

ground-glass opacities (22%) in PCM patients, quite high values. These values demonstrate the

importance of their quantification and potentially require more attention in future clinical

investigations.

The recognition of CT patterns described in pulmonary PCM could aid in the early diagno-

sis of PCM and the institution of a specific treatment [12]. CT scans may reveal alterations that

are suggestive of the mycosis, while the disease is in an early stage. The most frequent CT find-

ings consistent with the diagnosis include interlobular septal thickening, ground-glass opaci-

ties, a focal round area of ground-glass attenuation surrounded by a crescent or ring of

consolidation (reversed halo sign) and irregular air–space enlargement [22].

In Marchiori et al. [23] series, the ground-glass pattern corresponded histologically to

inflammatory infiltrate in alveolar septa, or, less commonly, to alveolar septal fibrosis.

The presence of fibrosis was characterized in this series by the findings of architectural dis-

tortion, bronchiectasis, and honeycombing, besides alveolar and interlobular septal thicken-

ing. The extent of the fibrotic phenomena is determined by the changes caused by the

introduction of specific therapy and by the typical slow, chronic progression of the disease.

Chronic obstructive pulmonary disease (COPD) causes an inflammatory process producing

changes in the lung parenchyma (pulmonary emphysema). Our result shows a great occur-

rence of emphysema (49% of the lung volume), which enables quantitative characterization of

this disease. We emphasize that the measurement of lung volume is an important parameter to

support other studies in COPD [24].

Although our exclusion criteria for no lung disease patients were strict, this group presented

a reasonable percentage of emphysema (14%), which is related to the average age of the group

and possible inherent and morbidities not included in the criteria for exclusion, demonstrating

a good performance of the method to evaluate other classes of patients.

Therefore, the objective of the algorithm was to quantify lung involvement objectively and

quickly, bringing information of affected areas and volumes with greater precision, also saving

time of the radiologists. In future studies it could be used to follow disease progression in some

patients as a prospective evaluation.

Conclusion

The great contribution of this work was to demonstrate a tool capable of performing automatic

quantifications of total lung volume and lung impairments. The algorithm is capable of quanti-

fying the total lung volume as well as other lung impairments such as inflammatory process
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and fibrosis, emphysema, and ground-glass opacities in four groups of patients: no lung dis-

ease, SAR-COV-2, COPD and PCM. This automatic algorithm has an excellent performance

of running time, and an great level of agreement when compared to a previously validated

semi-automatic algorithm. We applied our algorithm in different diseases and with a high

number of patients demonstrating that it is possible to quantify lung volume and impairments

with low dispersion and high correlation in relation to the previous semi-automatic algorithm.

Our approach provides a reliable quantification process for physicians, thus, impairments

measurements contributes to support prognostic decisions. Our tool could be used in prospec-

tive serial studies, contributing to the patient’s clinical evaluation and treatment conduct.
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