
Sulfuric Acid Derivatives Hot Paper

S6N2O15—A Nitrogen-Poor Sulfur Nitride Oxide, and the Anhydride of
Nitrido-tris-Sulfuric Acid
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Abstract: The reaction of hexachlorophosphazene, P3N3Cl6,
with SO3 leads to the new sulfur nitride oxide S6N2O15. The
compound displays an extraordinarily low nitrogen content
and exhibits a bicyclic cage structure according to the
formulation N{S(O)2O(O)2S}3N, with both nitrogen atoms in
trigonal planar coordination of sulfur atoms. Interestingly, the
new nitride oxide can be also seen as the anhydride of nitrido-
tris-sulfuric acid, N(SO3H)3.

Sulfur trioxide, SO3, is an interesting reagent in chemical
reactions. On one hand, it is a very strong oxidizer and on the
other hand, it can act as a typical Lewis base. We have used
the oxidation strength of SO3, especially under harsh con-
ditions, for the oxidation of noble metals and noble metal
compounds. The formation of two modifications of Pd(S2O7)
by the reaction of elemental palladium with SO3 is a nice
example of these efforts.[1,2] On the other hand, SO3 is a strong
Lewis acid and forms readily adducts with several Lewis
bases. Well known examples are the complexes with dioxane
and pyridine (py).[3, 4] Of the latter, SO3·py, is even a commer-
cial product that serves as a safe SO3 source for many
reactions. In fact, Lewis acid/base adducts with N-donor
molecules and SO3 have been studied quite extensively
starting already in the 1950s.[5] Actually, very spectacular
compounds have been prepared at that time, for example, the
adducts S4N4·x SO3 (x = 1–4), for which S4N4·SO3 was struc-
turally characterized later.[6] Another potential base that has
been considered for SO3 interaction was hexachlorophospha-
zene, P3N3Cl6.

[5] It has formally three available nitrogen atoms
bearing free electron pairs. Thus, the composition
P3N3Cl6·3 SO3 of the reported complex it is very reasonable,
even if structural information is still lacking. We came across
that compound for two reasons: On one hand, we are
interested in Lewis acid/base complexes of SO3 since we
discovered that the rarely known polysulfates [SnO3n+1]

2� can
be described as adducts according to [SnO3n+1]

2�·SO3, at least
for larger numbers of n.[7,8] In the hexasulfate Rb2[S6O19] (n =

6), the distance of the sulfur atom of SO3 to the next oxygen

atom is already as long as 231 pm.[8] For a detailed inves-
tigation of bond lengths within Lewis acid/base complexes
structure elucidations of complexes with different bases are
desirable. On the other hand, we have recently started
a research project aiming at a detailed understanding of
nitrogen-based derivatives of sulfuric acid. These are for
example the slightly acidic sulfimide, SO2(NH2)2,

[9] and its
cyclic condensation products S3O6(NH)3 and S4O8(NH)4,

[10,11]

for which a limited number of salts are known.[12–14] However,
the more prominent of these derivatives are amidosulfuric
acid, imido-bis-sulfuric acid, and nitrido-tris-sulfuric acid
(Figure 1). Even if all of these acids are textbook examples,
our knowledge is still quite limited. Only amidosulfuric acid,
in its zwitterionic ground state a Lewis acid/base complex of
SO3 and NH3, and amidosulfates have been frequently
reported.[15] For all of the other anions depicted in Figure 1
a very limited number of salts is known.[16] Especially for the
nitrido-tris-sulfuric acid, N(SO3H)3, which is not known in
a pure form, there is just one report of respective salt, namely
K3[N(SO3)3]·2H2O.[17] The acid and their salts are prone to
hydrolysis, what is certainly a drawback for synthesis,
especially from aqueous solution. In this case, hexachloro-
phosphazene might be a suitable nitrogen source for the
preparation of N-based sulfuric acids under anhydrous
conditions.

With respect to the two above-mentioned issues, that is,
hexachlorophosphazene as Lewis base and as starting mate-
rial for the synthesis of N-based sulfuric acid derivates, we
have investigated the reaction of SO3 and P3N3Cl6 under
various conditions in more detail. According to the findings of

Figure 1. Nitrogen-based sulfuric acid derivatives.
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Goehring et al. , at low temperature (ca. 40 8C) a reaction is
observed, however without gaining crystalline material. Only
if the temperature is raised to 80 8C a huge number of single
crystals grow from excess SO3 in a short time (Figure 2).
Structure elucidation revealed that the anhydride of nitrido-
tris-sulfuric acid had formed, namely S6N2O15. With respect to
the amount of the gained product, the reaction is almost
quantitative, so that the reaction could be written as
2P3N3Cl6 + 18 SO3!3 S6N2O15 + 4 POCl3 + 1=2 P4O10. We have
not identified the by-products unambiguously up to now,
however, we do not observe elemental chlorine, which is,
according to Ref. [5], a reaction product at higher temper-
ature. A very likely product is phosphoryl chloride, POCl3.
The presence of POCl3 would also explain that the sulfur
trioxide which is used in excess in the reaction stays liquid,
even if the ampoules are stored in a refrigerator. In similar
reactions, we usually observe the formation of asbestos type
sulphur trioxide (a-SO3) at lower temperature, visible by
large needle shaped crystals growing in the ampoule. Com-
pounds such as SO2Cl2 or POCl3 are well-known stabilizers
that are used to keep sulfur trioxide liquid below 30 8C by
supressing the polymerisation of SO3 molecules.[18, 19]

Attempts to separate the obtained by-product from SO3

failed up to now.
The molecular compound has a unique structure with two

three-coordinate nitrogen atoms connected by three [S2O5]
groups (Figure 3), as it would be emphasized by the more
descriptive formula N{S(O)2O(O)2S}3N. The distances S–N
fall is a narrow range between 170.6 and 171.6 pm, and the
surrounding of the nitrogen atoms is almost perfectly planar.
Thus, no activity of the lone electron pair is observable,
obviously due to significant p-bonding to the sulfur atoms.
The observation is in line with the reported findings for the
anion [N(SO3)3]

3�.[17] The nitrogen atoms are connected by
three nearly identical S-O-S bridges, displaying distances
161.8 and 163.8 pm and angles S-O-S of about 1258. These are
the typical values that are, for example, observed for the
disulfate ion, S2O7

2�. The distances and angles within the
S6N2O15 molecule are well reflected by quantum mechanical
calculations (cf. caption Figure 3 and Supporting Inforam-
tion). As expected, the calculations result in C3h symmetry for
the molecule, while in the solid state (space group C2/c) only
C1 symmetry is found.

The core cage of the S6N2O15 molecule (emphasized by
black bonds in Figure 3) has the shape of the bicyclic organic
molecule bicyclo[3.3.3]undecane. Such a cage has not been
observed before in the chemistry of sulfur nitride-oxides,
although a significant number of compounds has been
observed in the system S/N/O (Figure 4).[20] With respect to
the structural characterizations these compounds show chain
structures, such as S2(NSO)2

[21] or S3N2O2,
[22, 23] cyclic mole-

cules like S3N2O5,
[24, 25] S7N6O8,

[26] and S4N4O2,
[27] as well as

ionic species such as (NO)2[S4O13].[28] The most unusual
compound among the molecular sulfur nitride oxides is
probably the adduct S4N4·SO3 which has already been
mentioned in the introduction.[6] Another outstanding mole-
cule is sulfuryl azide, SO2(N3)2,

[29] which is the nitrogen richest
molecule in the S/N/O system. The new compound S6N2O15 is
up to now the sulfur nitride oxide with the highest oxygen and
the lowest nitrogen content.Figure 2. Single crystals of S6N2O15.

Figure 3. Structure and labelling of the S6N2O15 molecule viewed in different directions. The middle picture shows the molecule viewed along an
axis through the nitrogen atoms, emphasizing their almost perfect trigonal planar coordination by sulfur atom. At right, the molecule
bicyclo[3.3.3]undecane is depicted which represents the [S6O3N2] cage of S6N2O15 (emphasized by black bonds). Selected distances (in pm) and
the theoretical values (in italics): S(1-6)-Oterminal (O11, O12; O21, O22; O31, O32; O41, O42; O51, O52; O61, O62) ca. 140.5(2)/141.75, S1-O121
161.8(1)/164.12, S2-O121 163.8(2)/164.2, S3-O341 163.6(2)/164.14, S4-O341 162.3(2)/164.12, S5-O561 163.1(2)/164.13, S6-O561 162.8(2)/
164.13, N1-S1 170.6(2)/172.64; N1-S3 171.6(2)/172.67, N1-S5 171.6(2)/172.67, N2-S2 171.5(2)/172.67, N2-S4 171.6(2)/172.69, N2-S6 171.6(2)/
172.69.[31]
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The successful synthesis of S6N2O15 by the reaction of
P3N3Cl6 and SO3 leads to several new directions that are worth
pursuing. On one hand, the reaction might also be suitable for
the preparation of the rarely seen nitrido-tris-sulfates, if
suitable cations are added to the reaction mixture. On the
other hand, variation of the reaction conditions may lead to
other species is thinkable, for example the [N(SO3)2]

3� ion
mentioned in the introduction (cf. Figure 1). Moreover, even
anions with both, tri- and bi-coordinate nitrogen atoms come
into sight, for example, the hypothetical anion [S6N3O12]

3�.
Finally, it is worth remembering that there is no nitrido sulfate
ion, [SN4]

6�, known up to now, also not in the form of
condensed species. This finding for sulfur is in strong contrast
to the findings for the neighboring elements silicon and
phosphorous. Only in organic derivatives, such as the famous
[S(NtBu)4]

2� ion, is a complete nitrogen coordination possible
so far.[30]
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Figure 4. Molecular compounds in the system S/N/O according to the
atomic ratios.
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