
����������
�������

Citation: Musalov, M.V.; Potapov,

V.A.; Maylyan, A.A.; Khabibulina,

A.G.; Zinchenko, S.V.; Amosova, S.V.

Selenium Dihalides Click Chemistry:

Highly Efficient Stereoselective

Addition to Alkynes and Evaluation

of Glutathione Peroxidase-Like

Activity of Bis(E-2-halovinyl)

Selenides. Molecules 2022, 27, 1050.

https://doi.org/10.3390/

molecules27031050

Academic Editor: Alejandro

Baeza Carratalá

Received: 31 December 2021

Accepted: 31 January 2022

Published: 3 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Selenium Dihalides Click Chemistry: Highly Efficient
Stereoselective Addition to Alkynes and Evaluation of
Glutathione Peroxidase-Like Activity of
Bis(E-2-halovinyl) Selenides
Maxim V. Musalov , Vladimir A. Potapov * , Arkady A. Maylyan, Alfiya G. Khabibulina, Sergey V. Zinchenko
and Svetlana V. Amosova

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky
Str., 664033 Irkutsk, Russia; musalov_maxim@irioch.irk.ru (M.V.M.); maylyan@irioch.irk.ru (A.A.M.);
almah@irioch.irk.ru (A.G.K.); svz@irioch.irk.ru (S.V.Z.); amosova@irioch.irk.ru (S.V.A.)
* Correspondence: v.a.potapov@mail.ru or v_a_potapov@irioch.irk.ru

Abstract: Highly efficient stereoselective syntheses of novel bis(E-2-chlorovinyl) selenides and
bis(E-2-bromovinyl) selenides in quantitative yields by reactions of selenium dichloride and di-
bromide with alkynes were developed. The reactions proceeded at room temperature as anti-addition
giving products exclusively with (E)-stereochemistry. The glutathione peroxidase-like activity of the
obtained products was estimated and compounds with high activity were found. The influence of
substituents in the products on their glutathione peroxidase-like activity was discussed.

Keywords: alkynes; bis(2-bromovinyl) selenides; bis(2-chlorovinyl) selenides; selenium dibromide;
selenium dichloride; stereoselective synthesis

1. Introduction

The term “click chemistry” was coined by K. Barry Sharpless, in 1998 and was first
fully described by Sharpless, Kolb, and Finn in 2001 [1]. They believe that click chemistry
reactions must be wide in scope, give very high yields, and generate only inoffensive
byproducts. The required process characteristics include simple reaction conditions, readily
available starting materials and reagents, high selectivity and atom economy, and simple
product isolation by non-chromatographic methods. The authors also included sulfenyl
halides addition reactions to carbon–carbon multiple bonds to the click chemistry [1].
Although selenenyl halides additions were not mentioned, the chemical properties of these
reagents are very similar to those of sulfenyl halides, but addition reactions of selenenyl
halides often proceed with higher selectivity [2–6].

Organylselenenyl halides are widely used in modern organic synthesis [2–6]. In 2003,
we first applied selenium dihalides in the synthesis of organoselenium compounds [7–10].
It is known that selenium dichloride and dibromide in solutions undergo disproportion-
ation [11,12]. However, freshly prepared in situ from elemental selenium and sulfuryl
chloride or bromine, these reagents can be successfully involved in further reactions [7–10].
Since then, the application of selenium dihalides in organic synthesis is intensively de-
veloping and makes it possible to obtain new classes of organoselenium compounds and
selenium-containing heterocycles [13–26].

The main methods for preparation of vinyl selenides are based on electrophilic addi-
tion of organylselenenyl halides to the triple bond as well as on nucleophilic addition of
selenolate or selenide anions to acetylenes. Previously convenient methods for preparation
of divinyl selenide and alkyl vinyl selenides from elemental selenium and acetylene were
developed at this institute [27–29]. Unsubstituted divinyl selenide (1) was obtained in
80% yield from elemental selenium and acetylene in an aqueous solution of potassium
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hydroxide using tin dichloride as a reducing agent at 105–115 ◦C for 15 h (3 days, 5 h
heating every day) under acetylene pressure (14 atm) in an autoclave (Scheme 1) [27,28].
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Scheme 1. The synthesis of divinyl selenide (1) in 80% yield from elemental selenium and acety-
lene at 105–115 °C for 15 h (3 days, 5 h heating every day) under acetylene pressure in an auto-
clave. 

Vinyl selenides are versatile intermediates and synthons for organic synthesis. A 
series of valuable products, including functionalized alkenes, ketones, (Z)-allyl alcohols, 
unsaturated aldehydes, and enyne derivatives, were obtained based on vinyl selenides 
[30–38]. 

The synthesis of resveratrol and its derivatives was realized in several stages from 
vinyl selenides [30]. Resveratrol and its methoxylated analogues are well known com-
pounds due to the fact of their anti-inflammatory, anticancer, antibacterial and neuro-
protective activity [30]. In addition, the cross-coupling reaction of vinyl selenides with 
terminal alkynes in the presence of a nickel/CuI catalyst at room temperature leading to 
(Z)- and (E)-enyne derivatives in good yields with retention of stereochemical configu-
ration is very important [31]. Vinyl selenides, which exhibit antinociceptive [39], hepa-
toprotective [40], and antioxidant [41] activity, were found. 

Previously, we developed efficient synthesis of bis(E-2-chlorovinyl) selenide (2) and 
bis(E-2-bromovinyl) selenide (3) by electrophilic addition of selenium dihalides to acet-
ylene [42] (Scheme 2). Some acetylene derivatives were also involved in this reaction 
[43–46]. 
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Scheme 2. The synthesis of bis(E-2-chlorovinyl) selenide (2) and bis(E-2-bromovinyl) selenide (3) 
by electrophilic addition of selenium dihalides to acetylene. 

A number of functionalized organoselenium compounds, including selenium het-
erocycles, exhibit high glutathione peroxidase-like activity [14,47–57]. Glutathione pe-
roxidase, which contains selenocysteine with the selenol function, is a seleni-
um-containing enzyme that protects human cells by the catalytic reduction of peroxides 
with the thiol glutathione (the catalytic cycle is shown in Scheme 3) [55–57]. The selenol 
(EnzSeH) is oxidized by peroxides to the corresponding selenenic acid (EnzSeOH), 
which reacts with thiol glutathione (GSH) to form a selenenyl sulfide intermediate 
(EnzSeSG). The glutathione then regenerates the active form of the enzyme by the reac-
tion with EnzSeSG to produce the oxidized glutathione GSSG. It was found that a num-
ber of organoselenium compounds can act as mimetics of glutathione peroxidase and 
play the role of catalysts in the reduction of peroxides with the thiols [14,47–57]. 

Scheme 1. The synthesis of divinyl selenide (1) in 80% yield from elemental selenium and acetylene
at 105–115 ◦C for 15 h (3 days, 5 h heating every day) under acetylene pressure in an autoclave.

Vinyl selenides are versatile intermediates and synthons for organic synthesis. A series
of valuable products, including functionalized alkenes, ketones, (Z)-allyl alcohols, unsatu-
rated aldehydes, and enyne derivatives, were obtained based on vinyl selenides [30–38].

The synthesis of resveratrol and its derivatives was realized in several stages from vinyl
selenides [30]. Resveratrol and its methoxylated analogues are well known compounds
due to the fact of their anti-inflammatory, anticancer, antibacterial and neuroprotective
activity [30]. In addition, the cross-coupling reaction of vinyl selenides with terminal
alkynes in the presence of a nickel/CuI catalyst at room temperature leading to (Z)- and
(E)-enyne derivatives in good yields with retention of stereochemical configuration is very
important [31]. Vinyl selenides, which exhibit antinociceptive [39], hepatoprotective [40],
and antioxidant [41] activity, were found.

Previously, we developed efficient synthesis of bis(E-2-chlorovinyl) selenide (2) and
bis(E-2-bromovinyl) selenide (3) by electrophilic addition of selenium dihalides to acety-
lene [42] (Scheme 2). Some acetylene derivatives were also involved in this reaction [43–46].
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Scheme 2. The synthesis of bis(E-2-chlorovinyl) selenide (2) and bis(E-2-bromovinyl) selenide (3) by
electrophilic addition of selenium dihalides to acetylene.

A number of functionalized organoselenium compounds, including selenium hetero-
cycles, exhibit high glutathione peroxidase-like activity [14,47–57]. Glutathione peroxidase,
which contains selenocysteine with the selenol function, is a selenium-containing enzyme
that protects human cells by the catalytic reduction of peroxides with the thiol glutathione
(the catalytic cycle is shown in Scheme 3) [55–57]. The selenol (EnzSeH) is oxidized by
peroxides to the corresponding selenenic acid (EnzSeOH), which reacts with thiol glu-
tathione (GSH) to form a selenenyl sulfide intermediate (EnzSeSG). The glutathione then
regenerates the active form of the enzyme by the reaction with EnzSeSG to produce the
oxidized glutathione GSSG. It was found that a number of organoselenium compounds
can act as mimetics of glutathione peroxidase and play the role of catalysts in the reduction
of peroxides with the thiols [14,47–57].

The organoselenium heterocyclic compound, ebselen, shows neuroprotective, anti-
inflammatory, cytoprotective, and glutathione peroxidase-like properties [58–63]. Ebselen is
used medicinally as an anti-inflammatory agent as well as for prevention of cardiovascular
diseases and ischemic stroke. Furthermore, preliminary studies demonstrate that ebselen
shows promising inhibitory activity against COVID-19 in cell-based assays [59]. The effect
was attributed to irreversible inhibition of the main protease via a covalent bond formation
with the thiol group of the active center’s cysteine (Cys-145).
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Recently we developed the efficient regio- and stereoselective synthesis of the novel
class of divinyl selenides, (Z,Z)-3,3′-selanediylbis(2-propenamides), based on the reaction
of sodium selenide with 3-trimethylsilyl-2-propynamides [64]. Like ebselen, these products
contain the amide function. The compounds with high glutathione peroxidase-like activity
were found among (Z,Z)-3,3′-selanediylbis(2-propenamides) [64].

2. Results and Discussion

The goal of the present work was to develop efficient stereoselective syntheses of bis(2-
chloroethyl) selenides and bis(2-bromoethyl) selenides by electrophilic addition of selenium
dihalides to dialkylacetylenes (i.e., 2-butyne, 3-hexyne, 4-octyne, and 5-decyne) and the
assessment of glutathione peroxidase-like activity of the obtained bis(2-halovinyl) selenides.
Evaluation of the glutathione peroxidase-like activity of unsubstituted divinyl selenide 1,
bis(E-2-chlorovinyl) selenide 2, and bis(E-2-bromovinyl) selenide 3 was planned, and their
activity compared with that of the obtained bis(2-halovinyl) selenides. In addition, synthesis
of bis(2-halovinyl) selenoxides by oxidation of corresponding bis(2-halovinyl) selenides
was scheduled. The bis(2-halovinyl) selenoxides were supposed to be intermediates in
the process of oxidation of dithiothreitol by tert-butyl hydroperoxide on the assessment of
glutathione peroxidase-like activity of the obtained bis(2-halovinyl) selenides.

The efficient stereoselective synthesis of bis(E-2-chlorovinyl) selenides (4–7) in quan-
titative yields was developed by electrophilic addition of selenium dichloride to dialky-
lacetylenes (i.e., 2-butyne, 3-hexyne, 4-octyne, and 5-decyne). The reaction proceeded
in methylene chloride or chloroform at room temperature in a stereoselective fashion as
anti-addition producing products exclusively with (E)-stereochemistry (Scheme 4).
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Selenium dichloride was freshly prepared in situ from elemental selenium and sulfuryl
chloride and immediately involved in further reactions (Scheme 4). Removing the solvent
from the reaction mixture followed by drying in vacuum led to pure products 4–7 in
quantitative yields.

The reaction of selenium dibromide with 2-butyne, 3-hexyne, 4-octyne, and 5-decyne
was realized in a similar manner. Selenium dibromide was produced by mixing elemental
selenium and a solution of bromine in methylene chloride or chloroform. After dissolution
of the selenium, the obtained solution of selenium dibromide was added dropwise to a
solution of dialkylacetylene in methylene chloride or chloroform, and the reaction mixture
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was stirred for 1–3 h at room temperature. After removing the solvent from the reaction
mixture by a rotary evaporator, the residue was dried in vacuum giving bis(E-2-bromovinyl)
selenides 8–11 (quantitative yields), which did not require additional purification. The
reaction proceeded in a stereoselective mode as anti-addition affording products only with
(E)-configuration (Scheme 5).
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Divinyl selenide 1 was obtained by a modified procedure in 91% yield from elemental
selenium and acetylene in an aqueous solution of potassium hydroxide and hydrazine
hydrate at 70–80 ◦C for 5 h under acetylene pressure in an autoclave (Scheme 6).
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Scheme 6. The synthesis of divinyl selenide 1 in 91% yield from elemental selenium and acetylene at
70–80 ◦C for 5 h under acetylene pressure in an autoclave.

The isolation of the target product did not require organic solvents for extraction: the
organic phase was simply separated from the reaction mixture by a separatory funnel.
This method of carrying out the reaction in water without using organic solvents can
be considered as a “green chemistry method”. This procedure is superior to the earlier
method [27,28] in the yield of the target product, the duration (5 h instead of 15 h, 3 days)
and the temperature of the process (70–80 ◦C instead of 105–115 ◦C).

Selenide 1 was used for the glutathione peroxidase-like activity studies, and its activity
was compared with that of bis(2-halovinyl) selenides 4–11.

The glutathione peroxidase-like activity of the obtained products was estimated using
the model reaction of dithiothreitol oxidation by tert-butyl hydroperoxide (Scheme 7) in the
presence of a catalytic number of synthesized compounds as a catalysts (10 mol%) [14,47–51].
The progress of this reaction was monitored by 1H NMR spectroscopy at room temperature
(dithiothreitol, 0.07 mmol; tert-butyl hydroperoxide, 0.07 mmol; tested product, 0.007 mmol;
deuterochloroform/CD3CD = 95/5, 0.5 mL). The control experiment was conducted under
the same reaction conditions but in the absence of the catalyst.
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Figure 1. The assessment of glutathione peroxidase-like activity of divinyl selenide 1 and 
bis(2-bromovinyl) selenides 3, 8–11 by 1H-NMR monitoring. 
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It was found that unsubstituted divinyl selenide 1 showed the best activity among
the tested selenides (Figure 1). The activity of bis(2-bromovinyl) selenides, in general,
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exceeds the activity of bis(2-chlorovinyl) selenides (Figures 1 and 2). This trend can be
explained in terms of electron density on the selenium atom in divinyl selenide, bis(2-
chlorovinyl) selenides, and bis(2-bromovinyl) selenides. We suppose that the electron
density on the selenium atom and the presence of electron-withdrawing groups, which
are in conjugation with double bonds and an unshared electron pair of the selenium atom,
can affect redox processes and manifestation of the glutathione peroxidase-like activity.
Since bromine and especially chlorine are electronegative atoms, they can decrease the
electron density on the selenium atom in bis(2-chlorovinyl) selenides and bis(2-bromovinyl)
selenides. The chlorine atom was superior to the bromine atom in electronegativity and the
glutathione peroxidase-like activity of bis(2-bromovinyl) selenides exceeded the activity of
chloro-containing selenides (Figures 1 and 2). Unsubstituted divinyl selenide does not have
electronegative heteroatoms, and it showed the best activity among the tested selenides.
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Another trend, which can be seen based on the obtained data (Figures 1 and 2),
was the increase in glutathione peroxidase-like activity with the increasing length of the
carbon skeleton in tested molecules. However, in the case of 5-decyne derivatives 7 and 11,
XC(Bu) = C(Bu)SeC(Bu) = C(Bu)X, the activity decreased and was lower than the activity
of 4-octyne derivatives 6 and 10, XC(Pr) = C(Pr)SeC(Pr) = C(Pr)X (Figures 1 and 2). We
assume that the steric factor begins to manifest itself in the latter case, and the selenium
atom in the 5-decyne derivative becomes sterically less accessible for redox processes.

It is worth noting that this is the first example of glutathione peroxidase-like activ-
ity assessment of divinyl selenide and bis(2-halovinyl) selenides, which do not contain
additional heteroatoms.

Bis(2-chlorovinyl) and bis(2-bromovinyl) selenoxides were supposed to be intermedi-
ates in the catalytic process of oxidation of dithiothreitol by tert-butyl hydroperoxide on
the assessment of glutathione peroxidase-like activity of the corresponding selenides.

The efficient syntheses of novel families of bis(2-chlorovinyl) selenoxides 12–15 (Scheme 8)
and bis(2-bromovinyl) selenoxides 16–19 (Scheme 9) in 95–99% yields by oxidation of corre-
sponding selenides with sodium metaperiodate or tert-butyl hydroperoxide were developed.
The application of sodium metaperiodate for the oxidation of the selenides made it possible to
obtain cleaner products in comparison with the use of tert-butyl hydroperoxide.
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Scheme 9. The synthesis of bis(2-bromovinyl) selenoxides 16–19 by oxidation of selenides 8–11.

As a rule, compounds with a sulfur−selenium bond are considered as intermedi-
ates in the oxidation reactions of thiols by peroxides catalyzed by organoselenium com-
pounds [14,47–51]. In our case, the following scheme can be proposed to explain the cat-
alytic effect of the obtained compounds (Scheme 10). The reaction of the formed selenoxides
with dithiothreitol is assumed to lead to the heterocyclic intermediate, which undergoes
conversion to the oxidized form of dithiothreitol with regeneration of the catalyst.

Thus, stereoselective syntheses of novel bis(E-2-chlorovinyl)selenides and bis(E-2-
bromovinyl)selenides in quantitative yields by electrophilic addition reactions of selenium
dichloride and selenium dibromide to dialkylacetylenes were developed. The glutathione
peroxidase-like activity of the obtained products was estimated and compounds with high
activity were found.
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3. Experimental Section
3.1. General Information

The 1H (400.1 MHz) and 13C (100.6 MHz) NMR spectra (see Supplementary Materials)
were recorded on a Bruker DPX-400 spectrometer (Bruker BioSpin GmbH, Rheinstetten,
Germany) in CDCl3 solutions and referred to the residual solvent peaks of CDCl3 (δ = 7.27
and 77.16 ppm in 1H- and 13C-NMR, respectively). Elemental analysis was performed on
a Thermo Scientific Flash 2000 Elemental Analyzer (Thermo Fisher Scientific Inc., Milan,
Italy). The organic solvents were dried and distilled according to standard procedures.

3.2. Synthesis of Selenides

Divinyl selenide (1). Hydrazine hydrate (7 mL) and a cold solution of KOH (85%, 9 g,
0.136 mol) in water (40 mL) were added to selenium powder (7.9 g, 0.1 mol) and the mixture
was stirred overnight. The next day, the resulting mixture was heated (70–80 ◦C) in a 1 L
rotating autoclave under the pressure of acetylene (10–12 atm) for 5 h. The lower organic
phase was separated from the reaction mixture by a separatory funnel, dried over Na2SO4
and distilled at reduced pressure (85–95 mm Hg) giving divinyl selenide [27,28] (12.1 g,
91% yield), bp 45–47 ◦C (90–92 mm Hg).

Bis(E-2-chloro-1-methyl-1-propenyl) selenide (4). A solution of selenium dichloride
(1 mmol) in methylene chloride (2 mL) was added dropwise to a solution of 2-butyne
(108 mg, 2 mmol) in methylene chloride (18 mL). The mixture was stirred for 1 h at room
temperature. The solvent was removed by a rotary evaporator and the residue was dried
in vacuum giving compound 4 (258 mg) as a light yellow oil in quantitative yield.

1H-NMR (400 MHz): 2.49 (s, 6H, CH3), 2.54 (s, 6H, CH3). 13C-NMR (100 MHz): 23.7
(CH3), 26.3 (CH3), 121.8 (CSe, JC-Se 106.4 Hz), 130.7 (CCl). IR (KBr): λ = 2950, 2916, 2848,
1621 (C=C), 1435 cm−1.

Anal. calcd. for C8H12Cl2Se (258.05): C 37.24, H 4.69, Cl 27.48, Se 30.60%. Found: C
37.51, H 4.78, Cl 27.23, Se 30.38%.

Bis(E-2-chloro-1-ethyl-1-butenyl) selenide (5) was obtained under the same conditions as
compound 4 from selenium dichloride and 3-hexyne as a light yellow oil in quantitative yield.

1H-NMR (400 MHz): 1.16 (t, 6H, CH3), 1.23 (t, 6H, CH3), 2,48 (q, 4H, CH2), 2.84 (q, 4H,
CH2). 13C-NMR (100 MHz): 12.7 (CH3), 13.3 (CH3), 30.0 (CH2), 33.1 (CH2), 128.6 (CSe, JC-Se
106.8 Hz), 137.4 (CCl). IR (KBr): λ = 2971, 2932, 2873, 1606 (C=C), 1458 cm−1.

Anal. calcd for C12H20Cl2Se (314.15): C 45.88, H 6.42, Cl 22.57, Se 25.13%. Found: C
46.13, H 6.56, Cl 22.45, Se 24.80%.
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Bis(E-2-chloro-1-propyl-1-pentenyl) selenide (6) was obtained under the same conditions
as compound 4 but during 2 h from selenium dichloride and 4-octyne as a light yellow oil
in quantitative yield.

1H-NMR (400 MHz): 1.00 (t, 6H, CH3), 1.02 (t, 6H, CH3), 1.58–1.73 (m, 8H, CH2CH2CSe,
CH2CH2CCl) 2.38–2.45 (m, 4H, CH2), 2.76–2.81 (m, 4H, CH2). 13C-NMR (100 MHz): 13.2
(CH3), 13.7 (CH3), 21.3 (CH2), 21.4 (CH2), 37.8 (CH2), 40.8 (CH2), 128.3 (CSe, JC-Se 106.4 Hz),
135.9 (CCl). IR (KBr): λ = 2961, 2931, 2871, 1606 (C=C), 1461 cm−1.

Anal. calcd. for C16H28Cl2Se (370.26): C 51.90, H 7.62, Cl 19.15, Se 21.33%. Found: C
51.79, H 7.71, Cl 18.86, Se 21.50%.

Bis(E-2-chloro-1-butyl-1-hexenyl) selenide (7) was obtained under the same conditions
as compound 4 but for 2 h from selenium dichloride and 5-decyne as a light yellow oil in
quantitative yield.

1H-NMR (400 MHz): 0.91 (t, 6H, CH3), 0.94 (t, 6H, CH3), 1.28–1.40 (m, 8H, CH3CH2),
1.44–1.59 (m, 8H, CH2CH2CSe, CH2CH2CCl) 2.34–2,40 (m, 4H, CH2), 2.70–2.76 (m, 4H,
CH2). 13C-NMR (100 MHz): 14.2 (CH3), 22.1 (CH2), 22.5 (CH2), 30.1 (CH2), 30.4 (CH2), 35.8
(CH2), 39.0 (CH2), 128.1 (CSe, JC-Se 107.0 Hz), 135.9 (CCl). IR (KBr): λ = 2957, 2928, 2860,
1607 (C=C), 1463 cm−1.

Anal. calcd. for C20H36Cl2Se (426.36): C 56.34, H 8.51, Cl 16.63, Se 18.52%. Found: C
56.06, H 8.75, Cl 16.42, Se 18.86%.

Bis(E-2-bromo-1-methyl-1-propenyl) selenide (8). A solution of selenium dibromide
(1 mmol) in methylene chloride (2 mL) was added dropwise to a solution of 2-butyne
(108 mg, 2 mmol) in methylene chloride (18 mL). The mixture was stirred for 1 h at room
temperature. The solvent was removed by a rotary evaporator and the residue was dried
in vacuum giving compound 8 (347 mg) as a light yellow oil in quantitative yield.

1H-NMR (400 MHz): 2.19 (s, 6H, CH3), 2.54 (s, 6H, CH3). 13C-NMR (100 MHz): 27.1
(CH3), 29.2 (CH3), 121.9 (CBr), 123.7 (CSe, JC-Se 107.5 Hz). IR (KBr): λ = 2949, 2914, 2847,
1621 (C=C), 1433 cm−1.

Anal. calcd. for C8H12Br2Se (346.95): C 27.69, H 3.49, Br 46.06, Se 22.76%. Found: C
27.91, H 3.30, Br 45.83, Se 23.02%.

Bis(E-2-bromo-1-ethyl-1-butenyl) selenide (9) was obtained under the same conditions
as compound 8 but for 2 h from selenium dibromide and 3-hexyne as a light yellow oil in
quantitative yield.

1H-NMR (400 MHz): 1.05 (t, 6H, CH3), 1.10 (t, 6H, CH3), 2,39 (q, 4H, CH2), 2.83 (q,
4H, CH2). 13C-NMR (100 MHz): 11.8 (CH3), 13.2 (CH3), 32.4 (CH2), 34.9 (CH2), 129.3 CBr),
129.7 (CSe, JC-Se 108 Hz). IR (KBr): λ = 2970, 2932, 2873, 1607 (C=C), 1456 cm−1.

Anal. calcd. for C16H28Br2SeO (403.06): C 35.76, H 5.00, Br 39.65, Se 19.59%. Found: C
36.03, H 5.17, Br 39.38, Se 19.34%.

Bis(E-2-bromo-1-propyl-1-pentenyl) selenide (10) was obtained under the same conditions
as compound 8 but for 2 h from selenium dibromide and 4-octyne as a light yellow oil in
quantitative yield.

1H-NMR (400 MHz): 0.83–0.91 (m, 12H, CH3), 1.37–1.68 (m, 8H, CH2CH2CSe, CH2CH2CBr)
2.46–2.58 (m, 8H, CH2CSe, CH2CBr). 13C-NMR (100 MHz): 13.6 (CH3), 14.2 (CH3), 21.6 (CH2),
22.4 (CH2), 41.3 (CH2), 43.5 (CH2), 128.8 (CSe JC-Se 108 Hz), 130.2 (CCl). IR (KBr): λ = 2960, 2930,
2871, 1604 (C=C), 1460 cm−1.

Anal. calcd. for C16H28Br2SeO (459.16): C 41.85, H 6.15, Br 34.80, Se 17.20%. Found: C
42.03, H 6.27, Br 35.05, Se 16.99%.

Bis(E-2-bromo-1-butyl-1-hexenyl) selenide (11) was obtained under the same conditions
as compound 8 but for 3 h from selenium dibromide and 5-decyne as a light yellow oil in
quantitative yield.

1H-NMR (400 MHz): 0.92 (t, 6H, CH3), 0.95 (t, 6H, CH3), 1.30–1.39 (m, 8H, CH3CH2),
1.48–1.56 (m, 8H, CH2CH2CSe, CH2CH2CBr) 2.35–2,42 (m, 4H, CH2), 2.80–2.87 (m, 4H,
CH2). 13C-NMR (100 MHz): 14.1 (CH3), 14.1 (CH3), 21.9 (CH2), 22.4 (CH2), 30.0 (CH2), 31.0
(CH2), 38.9 (CH2), 41.3 (CH2), 128.5 (CBr), 129.7 (CSe, JC-Se 108.0 Hz). IR (KBr): λ = 2956,
2926, 2859, 1606 (C=C), 1462 cm−1.
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Anal. calcd. for C20H36Br2Se (515.27): C 46.62, H 7.04, Br 31.01, Se 15.32%. Found: C
46.34, H 7.00, Br 30.89, Se 15.45%.

3.3. Synthesis of Selenoxides

Bis(E-2-chloro-1-methyl-1-propenyl) selenoxide (12). Sodium metaperiodate (257 mg,
1.2 mmol) was added to a solution of selenide 4 (258 mg, 1 mmol) in absolute methanol
(15 mL). The mixture was stirred overnight (16 h) at room temperature. The mixture was
filtered. The solvent was removed by a rotary evaporator from the filtrate and the residue
was dried in vacuum giving compound 12 (266 mg) as a light yellow oil in 97% yield.

1H-NMR (400 MHz): 1.99 (s, 3H, CH3), 2.00 (s, 3H, CH3), 2.31 (s, 3H, CH3), 2.32 (s, 3H,
CH3). 13C-NMR (100 MHz): 12.7 (CH3) 24.4 (CH3), 135.1 (CSe, JC-Se 106.4 Hz), 135.6 (CCl).
IR (KBr): λ = 2958, 2919, 2852, 1640 (C=C), 1441, 918, 840 (Se=O) cm−1.

Anal. calcd. for C8H12Cl2SeO (274.05): C 35.06, H 4.41, Cl 25.87, Se 28.81%. Found: C
35.34, H 4.57, Cl 25.58, Se 28.61%.

Bis(E-2-chloro-1-ethyl-1-butenyl) selenoxide (13) was obtained under the same conditions
as compound 12 by oxidation of selenide 5 as a light yellow oil in 95% yield.

1H-NMR (400 MHz): 1.09 (t, 6H, CH3), 1.19 (t, 6H, CH3), 251–2.75 (m, 8H, CH2CSe,
CH2CCl). 13C-NMR (100 MHz): 12.4 (CH3), 13.2 (CH3), 21.1 (CH2), 30.1 (CH2), 140.1
(CSe, JC-Se 119.4 Hz), 142.2 (CCl). IR (KBr): λ = 2975, 2937, 2877, 1623 (C=C), 1458, 913,
842 (Se=O) cm−1.

Anal. calcd. for C12H20Cl2SeO (330.15): C 43.66, H 6.11, Cl 21.48, Se 23.92%. Found: C
43.44, H 5.98, Cl 21.22, Se 24.18%.

Bis(E-2-chloro-1-propyl-1-pentenyl) selenoxide (14) was obtained under the same condi-
tions as compound 12 by oxidation of selenide 6 as a light yellow oil in 96% yield.

1H-NMR (400 MHz): 0.81–0.87 (m, 12H, CH3), 1.33–1.65 (m, 8H, CH2CH2CSe, CH2CH2CCl)
234–2.56 (m, 8H, CH2CSe, CH2CCl). 13C-NMR (100 MHz): 13.0 (CH3), 14.0 (CH3), 20.9 (CH2),
22.0 (CH2), 29.7 (CH2), 39.0 (CH2), 139.8 (CSe, JC-Se 118.6 Hz), 140.8 (CCl). IR (KBr): λ = 2963,
2932, 2873, 1621 (C=C), 1461, 911, 841 (Se=O) cm−1.

Anal. calcd. for C16H28Cl2SeO (386.26): C 49.75, H 7.31, Cl 18.36, Se 20.44%. Found: C
50.03, H 7.45, Cl 18.50, Se 20.26%.

Bis(E-2-chloro-1-butyl-1-hexenyl) selenoxide (15) was obtained under the same conditions
as compound 12 by oxidation of selenide 7 as a light yellow oil in 99% yield.

1H-NMR (400 MHz): 0.76–0.82 (m, 12H, CH3), 1.19−1.58 (m, 16H, CH3CH2, CH2CH2CSe,
CH2CH2CCl) 2.34–2,52 (m, 8H, CH2CSe, CH2CCl). 13C-NMR (100 MHz): 13.5 (CH3), 13.6
(CH3), 21.8 (CH2), 22.7 (CH2), 27.5 (CH2), 29.7 (CH2), 30.6 (CH2), 37.0 (CH2), 139.8 (CSe, JC-Se
120.8 Hz), 140.6 (CCl). IR (KBr): λ = 2959, 2931, 2872, 1620 (C=C), 1464, 909, 837 (Se=O) cm−1.

Anal. calcd. for C20H36Cl2SeO (442.36): C 54.30, H 8.20, Cl 16.03, Se 17.85%. Found: C
54.07, H 8.31, Cl 15.92, Se 18.09%.

Bis(E-2-bromo-1-methyl-1-propenyl) selenoxide (16) was obtained under the same condi-
tions as compound 12 by oxidation of selenide 8 as a light yellow oil in 95% yield.

1H-NMR (400 MHz): 2.02 (s, 3H, CH3), 2.03 (s, 3H, CH3), 2.51 (s, 3H, CH3), 2.51 (s, 3H,
CH3). 13C-NMR (100 MHz): 15.77 (CH3), 27.0 (CH3), 126.4 (CBr), 137.4 (CSe, JC-Se 107.5 Hz).
IR (KBr): λ = 2957, 2918, 2852, 1639 (C=C), 1440, 916, 840 (Se=O) cm−1.

Anal. calcd. for C8H12Br2SeO (362.95): C 26.47, H 3.33, Br 44.03, Se 21.76%. Found: C
26.71, H 3.48, Br 43.88, Se 21.96%.

Bis(E-2-bromo-1-ethyl-1-butenyl) selenoxide (17) was obtained under the same conditions
as compound 12 by oxidation of selenide 9 as a light yellow oil in 96% yield.

1H-NMR (400 MHz): 1.09 (t, 6H, CH3), 1.19 (t, 6H, CH3), 2.53–2.72 (m, 8H, CH2CSe,
CH2CBr). 13C-NMR (100 MHz): 12.9 (CH3), 13.2 (CH3), 23.5 (CH2), 37.8 (CH2), 134.7
(CBr), 141.7 (CSe, JC-Se 120.6 Hz). IR (KBr): λ = 2974, 2935, 2876, 1621 (C=C), 1457, 915,
843 (Se=O) cm−1.

Anal. calcd. for C12H20Br2SeO (419.05): C 34.39, H 4.81, Br 38.14, Se 18.84%. Found: C
34.15, H 4.84, Br 37.88, Se 19.12%.
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Bis(E-2-bromo-1-propyl-1-pentenyl) selenoxide (18) was obtained under the same condi-
tions as compound 12 by oxidation of selenide 10 as a light yellow oil in 97% yield.

1H-NMR (400 MHz): 0.94–1.00 (m, 12H, CH3), 1.45–1.79 (m, 8H, CH2CH2CSe, CH2CH2CBr)
2.46–2.55 (m, 4H, CH2CSe, CH2CBr). 13C-NMR (100 MHz): 12.9 (CH3), 14.0 (CH3), 21.8 (CH2),
21.9 (CH2), 32.1 (CH2), 40.9 (CH2), 133.3 (CBr), 141.8 (CSe, JC-Se 122.0 Hz). IR (KBr): λ = 2962,
2931, 2872, 1620 (C=C), 1460, 912, 840 (Se=O) cm−1.

Anal. calcd. for C16H28Br2SeO (475.16): C 40.44, H 5.94, Br 33.63, Se 16.62%. Found: C
40.21, H 6.13, Br 33.47, Se 16.88%.

Bis(E-2-chloro-1-butyl-1-hexenyl) selenoxide (19) was obtained under the same conditions
as compound 12 by oxidation of selenide 11 as a light yellow oil in 98% yield.

1H-NMR (400 MHz): 0.81–0.90 (m, 12H, CH3), 1.22–1.55 (m, 16H, CH3CH2, CH2CH2CSe,
CH2CH2CBr) 2.34–2.71 (m, 8H, CH2CSe, CH2CBr). 13C-NMR (100 MHz): 13.6 (CH3), 13.8
(CH3), 21.9 (CH2), 22.8 (CH2), 30.3 (CH2), 30.6 (CH2), 30.7 (CH2), 39.3 (CH2), 134.1 (CBr), 141.0
(CSe, JC-Se 121.7 Hz). IR (KBr): λ = 2959, 2930, 2872, 1618 (C=C), 1463, 909, 837 (Se=O) cm−1.

Anal. calcd. for C20H36Br2SeO (531.27): C 45.22, H 6.83, Br 30.08, Se 14.86%. Found: C
44.87, H 6.93, Br 29.84, Se 15.12%.

4. Conclusions

The stereoselective syntheses of novel bis(E-2-chlorovinyl) and bis(E-2-bromovinyl)
selenides in quantitative yields by electrophilic addition reactions of selenium dichloride
and selenium dibromide to dialkylacetylenes were developed. The reactions proceeded
as anti-addition producing products exclusively with (E)-stereochemistry. The reactions
can be regarded as selenium dihalides click chemistry due to the quantitative yields and
100% stereoselectivity.

The glutathione peroxidase-like activity of the obtained products was estimated and
compounds with high activity were found. It was revealed that unsubstituted divinyl se-
lenide showed the best activity among the tested selenides. The activity of bis(2-bromovinyl)
selenides, in general, exceeds the activity of bis(2-chlorovinyl) selenides. This trend was ex-
plained in terms of electron density on the selenium atom in divinyl selenides. The chlorine
atom was superior to the bromine atom in electronegativity, and the glutathione peroxidase-
like activity of bis(2-bromovinyl) selenides exceeded the activity of chloro-containing se-
lenides. Unsubstituted divinyl selenide does not have electronegative heteroatoms, and it
showed the best activity among the tested selenides.

Another observed trend was the increase in the glutathione peroxidase-like activity with the
increasing length of the carbon skeleton in the tested molecules from XCH = CHSeCH = CHX
to XC(Pr) = C(Pr)SeC(Pr) = C(Pr)X (X = Cl, Br). However, in the case of 5-decyne derivatives 7
and 11, the activity decreased and was lower than the activity of 4-octyne derivatives 6 and 10.
The steric factor was assumed to manifest itself in the latter case, and the selenium atom in the
5-decyne derivatives became sterically less accessible for redox processes.

The synthesis of novel families of bis(2-chlorovinyl) selenoxides and bis(2-bromovinyl)
selenoxides in 95–99% yields by oxidation of corresponding bis(2-halorovinyl) selenides
with sodium metaperiodate was developed. The selenoxides were supposed to be interme-
diates in the catalytic process of oxidation of dithiothreitol by tert-butyl hydroperoxide.

Supplementary Materials: The following are available online, the NMR spectra of the obtained compounds.
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