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Abstract

Background: Indeed, intracerebral hemorrhage (ICH) account for only 15% of all strokes but it is one of the most
devastating subtype of stroke associated with behavioral, cognitive and neurological deficits. The primary cause of
neurological deficits in ICH is the hematoma growth, generation of free radicals, inflammatory cytokines and
exhausting endogenous anti-oxidant machinery. It has been found that neuroinflammation following ICH leads to
exaggeration of hallmarks of ICH. With this background, the study was aimed to evaluate the protective effect of
resveratrol (RSV) in intracerebroventricular (ICV) collagenase (COL) induced neurological deficits in rats.

Methods: The present study was designed to explore the protective effects of resveratrol (5, 10, 20 mg/kg) against
ICV-COL induced ICH. Animals were subjected to a battery of behavioral tests to access behavioral changes,
including neurological scoring tests (cylinder test, spontaneous motility, righting reflex, horizontal bar test, forelimb
flexion), actophotometer, rotarod, Randall Sellito and von Frey. Post stroke depression was estimated using forced
swim test (FST). Memory deficit was monitored using Morris water maze (MWM).

Results: Chronic treatment with RSV (20 mg/kg) for 21 days restored various behavioral changes, including
neurological scoring tests (cylinder test, spontaneous motility, righting reflex, horizontal bar test, forelimb flexion),
actophotometer, rotarod, Randall Sellito and Von Frey. RSV also restores increase in immobility time forced swim
test used to evaluate post stroke depression and impaired memory deficit in Morris water maze. RSV administration
also attenuated increased nitro-oxidative stress and TNF-α level. RSV being a potent antioxidant also restores
changes in endogenous anti-oxidant levels.

Conclusion: In conclusion, our research demonstrates that RSV has a protective effect against ICH by virtue of its
anti-inflammatory property and antioxidant and nitrosative stress restoring property.
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Background
Intracerebral hemorrhage (ICH) is an intracranial rup-
ture of small blood vessels in the brain parenchyma with
persistent increased blood pressure. Hypertension is the
most common cause of ICH [1]. Primary ICH, with no
underlying vasculopathy, is associated with about 10–
15% of all stroke cases, whereas in Oriental population,
the figures are as up to 30–50% [2–5]. Despite of the

previous understanding of the mechanisms associated
with ICH, there is no FDA approved treatment for ICH
till date. ICH injury occurs in two different steps. First
the leakage of blood in brain parenchyma elevates intra-
cranial pressure that causes mechanical shear and dam-
age to the neurons and glial cells [6]. Secondly, products
of erythrocyte lysis and damaged microglia trigger the
inflammatory cascade and oxidative stress, causing sec-
ondary damage associated with ICH [7]. Oxidative stress
and neuronal cell damage associated cognitive decline
are the most important implications in the pathogenesis
of ICH [8–10]. In the delayed phase of ICH, noxious
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proteases like matrix metalloproteinase (MMP-9) which
are released pathologically from neutrophils and acti-
vated microglia [11] cause structural damage to the
blood brain barrier [12] leading to the brain edema. Re-
lease of erythrocyte lysis product like iron, which cata-
lyzes the production of free radicals and reactive oxygen
species (ROS), is the key mediator of inflammatory cas-
cade leading to cell death and perihematomal edema
[13, 14]. An increase in oxidative stress saturates like re-
duced glutathione (GSH), which is the main antioxidant
molecule in brain, along with other endogenous antioxi-
dants like superoxide dismutase (SOD), catalase etc. Al-
though endogenous antioxidants can scavenge and
neutralize the free radicals. Hence, neuroprotection in
ICH needs a combined approach of decreasing different
byproducts of secondary brain damage and restoring the
antioxidant machinery in the brain. ICH leads to neuro-
inflammation and mitochondrial dysfunction, which are
key features of chronic neurodegenerative diseases.
These conditions leads to increased oxidative stress by
excessive release of harmful reactive oxygen and nitro-
gen species (ROS and RNS), which further promote
neuronal damage and subsequent inflammation resulting
in a feed-forward loop of neurodegeneration. The cyto-
kine tumor necrosis factor-α (TNF-α), a master regula-
tor of the immune system, plays an important role in the
propagation of inflammation due to the activation and
recruitment of immune cells via its receptor [15].
Animal model of ICH have been used to study the

pathophysiology and treatment of ICH, including the
microballoon model, the bacterial COL injection model
and the autologous blood injection model. In the COL
injection model, the hemorrhage size is controllable
which was induced by small vessel breakdown. This
model also can mimic the onset of spontaneous intra-
parenchymal bleeding and the expansion of continuous
bleeding in ICH patients. In the past several years, previ-
ous studies have proven that our modified COL IV injec-
tion model is a reliable and reproducible model of ICH
in rat [16].
Antioxidants and anti-inflammatory drugs have been

evaluated for potential pharmacotherapeutic activity in
different models of ischemic and subarachnoid
hemorrhage [17–19] but no effective treatment method
has been resolved out. So, agents that can strengthen en-
dogenous antioxidant machinery and have direct ROS
scavenging properties are the pressing need of the hour
against ICH associated oxidative damage. RSV, a natural
polyphenol found in grapes and red wine, could be a
phytochemical of choice for ICH related oxidative dam-
age. It has been shown to possess potent anti-oxidative,
anticancer, anti-inflammatory and antiapoptotic effects
in animal and clinical studies [20–22]. Moreover, recent
evidences indicate angiogenic and protective effects of

RSV in variety of in-vivo and in-vitro ischemic model
[23–25]. Furthermore, accumulating evidences indicates
potent neuroprotective and cardioprotective properties
of RSV [26–28]. With this background, the current
study was designed to explore pharmacotherapeutic po-
tential of RSV in experimental paradigm of ICH.

Methods
Animals
Adult female Wistar rats (200-230 g) bred in the Central
Animal House facility of Panjab University, Chandigarh,
India were used for the study. The animals had free ac-
cess to standard rodent food pellets (Ashirwad Indus-
tries, Mohali, India) and water. They were acclimatized
to the laboratory conditions before the experiment. All
the experiments were conducted between 9 am to 5 pm.
The experimental protocols were approved by the Insti-
tutional Animal Ethics Committee (IAEC) (PU/IAEC/S/
14/94) of Panjab University and conducted according to
Committee for the Purpose of Control and Supervision
on Experiments on Animals (CPCSEA) guidelines for
the use and care of experimental animals.

COL-induced ICH
Female Wistar rats (200–230 g) were anaesthetized
using thiopentone sodium (Neon Laboratories, India,
45 mg/kg, i.p.) and placed into stereotactic frame. The
head was shaved to expose the skull and a burr hole was
made to introduce a calibrated Hamilton syringe into
the center of the striatum (stereotactic coordinates from
bregma: 0.2 mm posterior, 3.0 mm lateral, 6.0 mm
underneath the dural surface) [29]. A solution contain-
ing 0.25 IU of COL, diluted in saline to an infusion vol-
ume of 1 μL was infused over 5 min. Burr hole was filled
with dental cement and fixative after completion of the
infusion. Daily application of Neosporin powder was
done to prevent any infection. Sham animals were ad-
ministered same volume of saline. Animals were fed with
oral glucose for 4 days following surgery and then re-
placed with normal water.

Drugs and treatment schedule
COL and RSV were purchased from Sigma-Aldrich (St.
Louis MO, USA). COL was dissolved in normal saline
(0.9% NaCl) and administered ICV. RSV was dissolved in
distilled water and administered by oral gavage from day 1
after COL administration till the end of the study i.e.
27 days (Fig. 1). Initially 40 animals were taken and sur-
gery was done on 30 animals. The mortality rate was
12.5%. Animals were distributed randomly into 7 treat-
ment groups consisting of 5 animals in each group. Group
1 & 2 were control and sham respectively given saline
only. Group 3 was per se group treated with RSV (40 mg/
kg, p.o.). Group 4 was ICH group treated with 0.25 IU
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COL-ICV. Group 4,5 & 6 were ICH-RSV group treated
with three different doses i.e. 5, 10 and 20 mg/kg [30].

Neurofunctional assessments
Spontaneous motility
The animal was tested for spontaneous motility and ex-
ploration of the surroundings, by putting it onto a clean
empty surface in familiar surroundings. If animal failed
to initiate motility after 10s, spontaneous motility score
was given as 0. If animal moved within 10s, it was scored
as 1 [31].

Horizontal bar test
Animal was suspended by its forelimbs on a bar having
solid platforms on both ends. The bar was placed about
40 cm above the surface having a foamed surface to
guarantee safe landing. The animal was expected to
grasp the bar and to hang for 3 s [31].
Method of scoring:
If animal hangs with one forelimb, then score: 1.
If it hangs with both then Score: 2.
If it hangs with both forelimbs + one hindlimb: 3.
If it hangs with both forelimbs + both hindlimbs: 4.
If it falls before 3 s then Score: 0.

Righting reflex
The animal was held in supine position in the hand. The
righting reflex is when animal return to its natural pos-
ition and was scored 1. If the animal failed to return to
normal position, it was scored 0 [31].

Forelimb flexion
The animal was suspended by its tail upside down to-
ward the ground. Animal was expected to extend its
forelimb toward the ground. A rat that had undergone
hemorrhage flexed the contralateral forelimb and twisted
its body towards the contralateral side of damage [31].

Score given was 1, if animal extended its forelimb to-
wards ground and 0 if animal flexed its limb toward
contralateral to the ictus.

Rotarod
The rotarod apparatus consists of a rod which rotates at
a constant speed (25 rpm). Animals with hemorrhagic
damage tend to fall earlier than animal with no
hemorrhagic insult.

Method of scoring
Fall-off time for 5 min was recorded.

Cylinder test
The test was used to evaluate the forelimb and vibrissae
proprioception deficits in rodent ICH model. The explora-
tory behavior in rat is seen as a neuronal basis of spatial
and motor behavior. A transparent plexiglass was used to
evaluate the forelimb deficits. Typically, an animal tries to
explore the vertical walls of the cylindrical plexiglass by
rearing upon their hind limbs and using its forelimbs and
vibrissae. Exploratory behavior was assessed; number of
independent wall placements for the right forelimb, left
forelimb and both fore limbs simultaneously is recorded.
Animals with unilateral damage will fail to show symmet-
rical vertical explorations. The test can detect even mild
neurological impairments [31, 32].
Total time for recording was 5 min and scored

accordingly.
Method of scoring:
If Right forelimb was placed on cylinder wall then Score: 1.
If Left forelimb was placed on cylinder wall then Score: 1.
If both forelimbs were placed on cylinder wall then Score: 2.
No rearing and exploration Score: 0.

Forced swim test
This test was used to evaluate post stroke depression in
rats. The animals were allowed to swim in a jar

Fig. 1 Diagrammatical representation of experimental design

Singh et al. Journal of Inflammation  (2017) 14:14 Page 3 of 15



(60×30×45 cm) filled with water upto a height of about
40 cm so that animal could not touch its tail to the bot-
tom to take support. The animal would try to escape the
aversive stimuli for first few minutes by vigorous swim-
ming but became passive later on by showing very little
mobility. An animal is considered to be immobile when-
ever it remained floating passively in the water in a
slightly hunched but upright position, its nose above the
water surface. The total immobility time was recorded
for last 4 minin the total test of 6 min on 14th day after
COL administration [33].

Assessment of mechanical hyperalgesia
Mechanical hyperalgesia was estimated using Randall-
Sellito (IITC Life Science, Woodland Hills, CA). Pres-
sure was increased gradually from 10 g/s, with the cut-
off of 250 g to avoid any injury. Measurements were
taken from the contralateral hindpaw and readings were
expressed in mass units (gram). Three tests separated by
at least 15 min were performed for each animal on day
21 after COL administration in caudate nucleus and the
mean value of these tests was calculated [34].

Assessment of allodynia
Quantitative assessment of allodynia was done in hind-
paws by stimulation with flexible von Frey filaments and
the withdrawl threshold was estimated. Rats were placed
in individual plexiglass boxes on a stainless-steel mesh
floor and were allowed to acclimatize for at least 30 min.
A series of calibrated von Frey filament (IITC Life Sci-
ence, Woodland Hills, CA) was applied perpendicularly
to the plantar surface of the hind paw with sufficient
force. Brisk withdrawal or paw flinching was considered
as a positive response. The test was repeated three to
four times and mean value was reported [34].

Morris water maze test
Morris water maze (MWM) test is a behavioral and
spatial learning test mostly used for rodents and involves
water navigation task. It is mostly used to assess the
spatial memory [35, 36]. The MWM consist of a large
circular pool (150 cm in diameter, 45 cm in height, filled
to a depth of 30 cm with water) maintained at
temperature 28 ± 1 °C where the rodent is supposed to
find an invisible or visible platform. The circular pool
was divided into four equal quadrants and a submerged
platform was placed 1 cm below the level of water un-
altered in the middle of the target quadrant. During the
test trial the individual rat was gently put into the water
in one of the four starting positions of the divided quad-
rant (which is to be selected randomly) and was allowed
to locate the submerged platform. Once the animal lo-
cates the platform it was allowed to stay there for the
next 20 s. The cut-off time for the animal to locate the

platform is 90 s. If the animal fails to achieve the plat-
form it was gently guided onto the platform and was
allowed to stay there for 20 s. The MWM task was car-
ried out for five consecutive days (23-27th day) where
the animals were subjected to training trials, each at an
interval of 30 min approximately for days and probe test
was done on 27th day. The latency time to escape and
locate the platform in water maze was noted as an index
of acquisition or learning using a computer tracking sys-
tem with Ethiovision software (Noldus Information
Technology, Wageningen, Netherlands).

Maze retention probe trial
To assess the extent of memory consolidation a probe
trial was performed wherein the animal was placed into
the pool for a total duration of 90 s as in the training
trial, without the availability of the hidden platform. The
probe trial was performed 24 h after the last training
period (on day 27st). Parameters like time spent in the
target quadrant and frequency of appearance in the tar-
get quadrant was calculated using computer tracking
system with Ethiovision software (Noldus Information
Technology, Wageningen, The Netherlands) which indi-
cated the degree of memory consolidation that has taken
place after learning [37].

Assessement of total locomotor activity
To assess the effect of locomotor activity, animals were
subjected to a period of 5 mins test using digital acto-
photometer [IMCORP, Ambala] which consist of a
square (30 × 30 cm) closed arena equipped with 12 in-
frared light sensitive photocells in two rows (six in each
row), at a distance of 3 and 9 cm respectively. Animals
were placed individually in the activity chamber for a 3-
min habituation, and after that the readings were calcu-
lated for another 5 mins. Locomotor activity was
expressed in terms of total photo beam counts for 5 mins
per mouse. It was ensured that the room is sound and
light attenuated to get accurate readings [38].

Biochemical estimation
Brain homogenate preparation
The whole brain samples were rinsed with ice cold saline
(0.9% sodium chloride) and homogenized in chilled
phosphate buffer (pH 7.4). The homogenate was centri-
fuged at 800 g for 5 min at 40 C to separate the nuclear
debris. The supernatant thus obtained was centrifuged at
10,500 g for 20 min at 4 °C to get the post mitochondrial
supernatant, which was used to assay lipid peroxidation,
nitrite, reduced glutathione, superoxide dismutase and
catalase activity.
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Lipid peroxidation
The extent of lipid peroxidation was determined quanti-
tatively in the form of thiobarbituric acid-reactive sub-
stances by the method described by the [39]. Briefly,
0.5 ml of Tris–HCl was added to 0.5 ml of post-
mitochondrial supernatant and was incubated at 37 °C
for 2 h. After incubation, 1 ml of 10% trichloroacetic
acid was added and centrifuged at 300gfor 10 min. Then,
1 ml of 0.67% thiobarbituric acid was added to the tubes
containing 1 ml of supernatant and the tubes were kept
in boiling waterfor 10 min. After cooling, 1 ml of double
distilled water wasadded, and absorbance was measured
at 532 nm (PERKIN ELMER UV/VIS Spectrophotom-
eter, Lamda 20). The amount of malondialdehyde was
calculated using molarextinction coefficient of
1.56 × 105 M−1 cm-1 and expressedas nanomole of mal-
ondialdehyde equivalents per milligramprotein.

Reduced glutathione
Reduced glutathione was assayed by the method de-
scribed by Jollow DJ, Mitchell JR, Zampaglione N and
Gillette JR [40]. 1.0 ml of postmitochondrial supernatant
(10%) was precipitated with 1.0 ml of sulfosalicylic acid
(4%). The samples were kept at 4 °C for at least 1 h and
then centrifuged at 1200 rpm for 15 min at same
temperature. The assay mixture contained 0.1 ml super-
natant, 2.7 ml phosphate buffer (0.1 M, pH 7.4), and
0.2 ml 5,5′-dithiobis-(2-nitrobenzoic acid) (Ellman’s re-
agent, 0.1 mM, pH 8.0) in a total volume of 3.0 ml. The
yellow colour developed was read at 412 nm (PERKIN
ELMER UV/VIS Spectrophotometer, Lamda 20) and re-
duced glutathione levels were calculated using molar ex-
tinction coefficient of 1.36 · 104 M−1 cm−1 and expressed
as micromole per milligram protein.

Catalase activity
Catalase activity was determined by the method of [41].
Briefly, the assay mixture consisted of 1.95 ml phosphate
buffer (0.05 M, pH 7.0), 1.0 ml hydrogen peroxide
(0.019 M), and 0.05 ml postmitochondrial supernatant
(10%) in a final volume of 3.0 ml. Changes in absorbance
were recorded at 240 nm (PERKIN ELMER UV/VIS
Spectrophotometer, Lamda 20) for 1 min. Catalase activ-
ity was quantified using the millimolar extinction coeffi-
cient of H2O2 (0.07 mM) and expressed as micromoles
of H2O2 decomposed per minute per milligram protein.

Superoxide dismutase (SOD)
SOD activity was assayed by the method described by
[42]. The assay system consists of EDTA 0.1 mM, so-
dium carbonate 50 mM and 96 mM of nitro blue tetra-
zolium (NBT). In the cuvette, 2 ml of the above mixture,
0.05 ml of hydroxylamine and 0.05 ml of the supernatant
were added and auto-oxidation of hydroxylamine was

measured for 2 min at 30 s intervals by measuring ab-
sorbance at 560 nm (PERKIN ELMER UV/VIS Spectro-
photometer, Lamda 20).

Protein estimation
Protein concentration of each sample was determined
using biuret method as described [43] by using bovine
serum albumin as standard.

Collection of blood samples
After the completion of behavioural parameters
(32th day), blood samples were taken from retro-orbital
plexus and animals were sacrificed by cervical disloca-
tion. Serum was separated from the clotted blood kept
at room temperature in the test tubes. Tubes were cen-
trifuged at 3000 rpm for 10 min to separate serum later
stored at −20 °C.

Molecular estimation
TNF-α estimation
The quantification of TNF-α was done by the help and
instructions provided by R&D Systems Quantikine rat
TNF-α immunoassay kit. The intensity of the color was
measured corresponds to the amount of rat TNF-α
bound in the initial step. The sample values were then
read off from the standard curve. Values were expressed
as mean ± SEM.

Statistical Analysis
Statistical analysis was done using Graphpad prism soft-
ware. One way ANOVA was used followed by Tukey’s
multiple comparison tests. The values were expressed as
mean ± SEM and p < 0.05 were considered statistically
significant.

Results
Neurological scoring
Effect of RSV on neurological scorings in cylinder test
The cylinder test was used to evaluate rodent’s spontan-
eous forelimb use. There was significant reduction in
scoring in cylinder test from 7th day onwards in COL
treated rats as compared to the control rats, with max-
imum reduction at 14th day [F(6,28) = 9.65 (p < 0.05)].
On 14th day RSV (10 mg/kg) showed improvement but
was not significant but on 21st day, RSV (10 and 20 mg/
kg) showed significant improvement in scoring as com-
pared to COL treated group. However, RSV (5 mg/kg)
did not produce any effect (Table 1).

Effect of RSV on scorings in horizontal bar test
Progressive reduction in neurological scoring was seen
from day 7th to 21st with maximum reduction on 21st
day [F(6,28) = 1.856 (p < 0.05)]. Oral administration of
RSV (10 & 20 mg/kg) significantly improved scoring as
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compared to the COL treated group although scoring
remain unchanged in RSV (5 mg/kg) group (Table 1).

Effect on RSV on spontaneous motility
Spontaneous motility was progressively deteriorated
after 7th day of COL administration, with maximum de-
terioration on 21st day [F(6,28) = 9.973 (p < 0.05)]. RSV
administration failed to show any effect on 7th and 14th
day. However, oral administration of RSV (5, 10 &
20 mg/kg) showed significant improvement in scoring
on 21st day (Table 1).

Effect of RSV on forelimb flexion
Forelimb flexion was significantly deteriorated in COL
treated rats as compared to control group [F(6,28) = 5.788
(p < 0.05)]. RSV (5 and 10 mg/kg) did not show any im-
provement in forelimb flexion as compared to COL
treated groups. However, RSV (20 mg/kg) showed signifi-
cant restoration of forelimb flexion from 14th day on-
wards as compared to ICV-COL treated group as well as
RSV (5 and 10 mg/kg) treated group (Table 1).

Effect of RSV on righting reflex
Righting reflex in animals was progressively lost from
7th day with maximum reduction on 14th day (Table 1).
There was statistically significant decrease in righting re-
flex in COL treated rats as compared to the control rats
[F(6,28) = 5.142 (p < 0.00)]. Oral administration of RSV
(20 mg/kg) showed significant improvement in righting
reflex as compared to COL treated rats. However, RSV
(5 & 10 mg/kg) did not show any improvement in the
righting reflex (Table 1).

Effect of RSV (5, 10 and 20 mg/kg) on behavioral
paradigms in ICV-COL injected rats
Effect of RSV on ICV-COL induced immobility
Porsolt forced swim test was used to evaluate post
stroke depression in animals. Depressive behavior is
positively correlated with the immobility time. COL ad-
ministration lead to significant increase in immobility
time (139.0 ± 22.05 s) as compared to the control group
(16.6 ± 6.2 s) [F(6,28) = 15.89 (p < 0.05)]. Compared to
ICV-COL group, RSV (20 mg/kg) showed significant re-
duction in immobility time (Fig. 2). However, there was
no effect with RSV (5 and 10 mg/kg). Furthermore, RSV

Table 1 Effect of resveratrol (5, 10 and 20 mg/kg) on different neurological scoring tests on 21st day

Behavioral test Horizontal
Bar test

Cylinder
Test

Spontaneous
motility

Forelimb
flexion

Righting
reflexGroup

Control 4.0 ± 0.0 43.4 ± 6.9 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

Sham 3.8 ± 0.4 42.8 ± 2.9 0.8 ± 0.2 1.0 ± 0.0 1.0 ± 0.0

Control +RSV (20 mg/kg) 3.8 ± 0.4 41.6 ± 2.8 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

ICV-collagenase (1 IU) 0.6 ± 0.4# 10.3 ± 3.0# 0.2 ± 0.2# 0.2 ± 0.2# 0.2 ± 0.0#

ICH+ RSV (5 mg/kg) 1.8 ± 0.4 23.8 ± 5.9 0.4 ± 0.2* 0.6 ± 0.2 0.0 ± 0.0

ICH + RSV (10 mg/kg) 2.8 ± 0.4* 34.2 ± 5.2* 0.8 ± 0.2* 0.6 ± 0.2 0.2 ± 0.2

ICH + RSV(20 mg/kg) 3.4 ± 0.4* 38.4 ± 6.2* 1.0 ± 0.0* 1.0 ± 0.0* 1.0 ± .00*,$

Values are expressed as mean ± SEM. ICH indicates ICV-collagenase treated rats; RSV, resveratrol. One way ANOVA followed by Tukey’s multiple comparison tests
was applied. #p < 0.05 as compared to naïve group. *p < 0.05 as compared to ICV-collagenase group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group

Fig. 2 Effect of RSV (5, 10 and 20 mg/kg) on immobility time in forced swim test in ICV-COL treated rats. Values are expressed as mean ± SEM.
ICH indicates ICV-COL treated rats. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to control
group. *p < 0.05 as compared to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group

Singh et al. Journal of Inflammation  (2017) 14:14 Page 6 of 15



(20 mg/kg) produced significantly more pronounced ef-
fect as compared to RSV (5 mg/kg).

Effect of RSV on COL-induced in-coordination in muscular
strength
Rota rod test was done to evaluate post-stroke impair-
ment in muscular activity on 21st day. As per a previous
study done in our lab, we found maximum reduction in
locomotor activity at 21st day after induction of stroke.
At 21st day, fall-off time was significantly lowered in
ICH group as compared to control [(F(6,28) = 8.33
(p < 0.05)]. Treatment with RSV (20 mg/kg) significantly
increased fall-off time as compared to COL treated rats
(Fig. 3). Per se administration of RSV (20 mg/kg) did not
show any difference from control group.

Effect of RSV on COL-induced locomotor dysfunction
Locomotor dysfunction related to post stroke neuro-
logical deficits was tested by a digital actophotometer.
As per previous study done in our lab, we found max-
imum change in locomotor activity on 21st day after
stroke induction. On day 21st, locomotor activity was

significantly decreased in ICV-COL group than control
group [(F(6,28) = 17.66) (p < 0.05)]. RSV (20 mg/kg)
showed significant increase in ambulatory activity than
ICV-COL group (Fig. 4), although RSV (5 and 10 mg/
kg) did not show any effect. Sham group did not pro-
duce any effect as compared to the control group. Fur-
thermore, per se treatment of RSV (20 mg/kg) did not
show any difference from control.

Effect of RSV on mechanical hyperalgesia and tactile
allodynia
Paw withdrawal threshold in the Randall-Sellito test was
reduced by 54% in COL treated rats as compared to
control rats [F(6,28) = 8.52 (p < 0.05)] (Fig. 10). Tactile
withdrawal threshold in response to light touch with
flexible von-Frey filaments was also reduced by 74% in
COL treated group as compared to control group
[F(6,28) = 21.13 (p < 0.05)] (Fig. 10) on 21st day after
COL administration. Oral administration of RSV (10
and 20 mg/kg) significantly restored paw withdrawal
threshold in Randall-Sellito test, but RSV (5 mg/kg) did
not show any effect (Fig. 5a). RSV (20 mg/kg) showed

Fig. 3 Effect of RSV (5, 10 and 20 mg/kg) on muscular strength in Rota rod test. Values are expressed as mean ± SEM. ICH indicates ICV-COL
treated rats. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to control group. *p < 0.05 as
compared to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group

Fig. 4 Effect of RSV (5, 10 and 20 mg/kg) on locomotor activity on 21th day after ICV-COL administration in rats. Values are expressed as
mean ± SEM. ICH indicates ICV-COL treated rats. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as
compared to naïve group. *p < 0.05 as compared to ICV-COL group
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statistically significant difference from RSV (5 mg/kg). In
von-Frey filament test, RSV (5, 10 & 20 mg/kg) showed
statistically significant increase in paw withdrawal
threshold (Fig. 5b).

Effect of RSV on different parameters in MWM test
Effect of RSV on escape latency time (sec)
The cognitive function and memory consolidation was
estimated using MWM test from 23rd to 27th day. There
was no difference in the mean escape latency in any of
the group on first and second day. However, from 25th
day onwards, there was a progressive decline in mean
escape latency time. COL treated rats showed significant
reduction [F(6,28) = 10.48 (p < 0.05)] in escape latency as
compared to the control group (Table 2). This poor

performance in memory was significantly mitigated
[F(6,28) = 10.48 (p < 0.05)] by treatment with RSV
(20 mg/kg) on 25th, 26th and 27th day of the training
and with RSV (10 mg/kg) on 27th day. However, RSV
(5 mg/kg) did not show any effect.

Effect of RSV on total distance travelled to reach the hidden
platform (path length in cm)
Progressive increase in path length to reach the hidden
platform on subsequent days in MWM test is associated
with memory disruption. There was no difference among
various groupsin total distance travelled on 23rdand
24thday. From 25th day onwards, there was a significant
difference in path length in COL treated group as com-
pared to the control group [F(6,28) = 10.48 (p < 0.05)]

Fig. 5 a Effect of RSV (5, 10 and 20 mg/kg) on mechanical hyperalgesia in ICV-COL treated rats. b Effect of RSV (5, 10 and 20 mg/kg) on tactile
allodynia in ICV-COL treated rats. Values are expressed as mean ± SEM. ICH indicates ICV-COL treated rats. One way ANOVA followed by Tukey’s
multiple comparison tests was applied. *p < 0.05 as compared to ICV-COL. #p < 0.05 as compared to control group. $p < 0.05 as compared to
ICH + RSV (5 mg/kg)

Table 2 Effect of RSV (5, 10 and 20 mg/kg) on escape latency (sec)

Groups Day 23 Day 24 Day 25 Day 26 Day 27

Control 85.6 ± 2.55 72.4 ± 7.99 41.2 ± 9.20 36.4 ± 4.74 13.2 ± 3.59

SHAM 83.2 ± 4.90 74.2 ± 5.87 44.2 ± 9.46 44.6 ± 11.29 21.8 ± 4.21

Control + RSV (40 mg/kg) 83.9 ± 2.97 65.4 ± 6.07 42.6 ± 9.23 25.4 ± 4.64 11.6 ± 4.4

ICV-Collagenase (1 IU) 87.4 ± 1.78 80.8 ± 4.37 75.2 ± 5.32# 69.4 ± 9.42# 65.6 ± 10.32#

ICH + RSV (5 mg/kg) 83.6 ± 4.23 80.4 ± 5.07 60.8 ± 8.08 48.2 ± 11.55 40.7 ± 12.4

ICH + RSV (10 mg/kg) 79.6 ± 8.77 72.4 ± 9.04 49.3 ± 11.63 35.8 ± 9.23 26.8 ± 5.26*

ICH + RSV (20 mg/kg) 81.6 ± 8.17 66 ± 6.56 32.6 ± 6.45* 22.8 ± 2.74* 16.4 ± 2.78*

Values are expressed as mean ± SEM. ICH indicates ICV-COL treated rats; RSV, resveratrol. One way ANOVA followed by Tukey’s multiple comparison tests was
applied. #p < 0.05 as compared to control group. *p < 0.05 as compared to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg)
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(Fig. 6). Treatment with RSV (10 and 20 mg/kg) signifi-
cantly decreased path length as compared to the COL
treated group, suggesting improvement in memory. How-
ever, no significant effect was shown by RSV (5 mg/kg).

Effect of RSVon time spent in target quadrant in MWM test
To assess how well the animals had learned and consoli-
dated the plateform location during the training, probe
trial was carried out by removing the platform and time
spent by the animal in target quadrant (one previously
containing platform) was recorded. The time spent in
target quadrant was significantly lowered in COL treated
rats as compared to control rat [F(6,28) = 22.70
(p < 0.05)]. Oral treatment with RSV (10 and 20 mg/kg)

significantly increased time spent in the target quadrant
as compared to COLtreated rats (Fig. 7). However, RSV
(5 mg/kg) did not show any effect.

Effect of RSV on different biochemical parameters
Effect of RSV on COL-induced changes in lipid peroxidation
levels
Thiobarbituric acid reactive substances (TBARS) levels
were significantly increased in the brain of COL treated
rats as compared to control [F(6,28) = 13.97 (p < 0.05)].
Treatment with RSV (10 & 20 mg/kg) significantly de-
creased TBARS levels as compared to COL treated rats.
However, sham and per se groups did not show any dif-
ference as compared to control group (Fig. 8).

Fig. 6 Effect of RSV (5, 10 and 20 mg/kg) on total distance travelled in Morris water maze test (path length in mean ± SEM cm). ICH indicates
ICV-COL treated rats; RSV, resveratrol. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to
control group. *p < 0.05 as compared to ICV-COL group. $p < 0.05 as compared to ICV + RSV (5 mg/kg) group

Fig. 7 Effect of RSV (5, 10, and 20 mg/kg) on time spent in target quadrant. Values are expressed as mean ± SEM. ICH indicates ICV-COL treated
rats; TSTQ, time spent in target quadrant. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to
naïve group. *p < 0.05 as compared to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group
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Effect of RSV on catalase, glutathione and superoxide
dismutase levels
The reduced glutathione levels and enzymatic activity
of catalase and superoxide dismutase were signifi-
cantly decreased in the brains of COL treated rats as
compared to control rats. This reduction was signifi-
cantly (p < 0.05) restored by oral administration of
RSV (10 and 20 mg/kg). However, RSV (5 mg/kg)
showed improvement in reduced glutathione level
only (Figs. 9, 10 and 11).

Effect of RSV on nitrite levels
Nitrite levels were significantly increased in ICV-COL
treated rats as compared to control [F(6,28) = 22.12
(p < 0.05)]. Oral administration of RSV (10 & 20 mg/
kg) significantly decreased nitrite levels as compared
to the COL treated rats, but RSV (5 mg/kg) did not
show any effect (Fig. 12). RSV (10 and 20 mg/kg)
showed significant decreased in nitrite level when
compared to RSV (5 mg/kg) group. However, sham
and per se groups did not show any difference as
compared to control animals.

Effect of RSV on TNF-α levels
Single ICV-COL administration (0.25 IU) significantly
increased pro-inflammatory cytokine, TNF-alpha, in the
rat brain as compared to control [F(6,28) = 25.50
(p < 0.05)]. RSV treatment (10 and 20 mg/kg) signifi-
cantly attenuated TNF-alpha level as compared to ICV-
COL group, but RSV (5 mg/kg) did not show any effect
(Fig. 13). However, RSV (10 and 20 mg/kg) showed sig-
nificant decreased as compared to RSV (5 mg/kg).

Discussion
ICV-COL model is a reliable and reproducible ICH
model. It has been previously studied that COL injection
in brain increases blood brain barrier permeability and
brain edema which further leads to cognitive and behav-
ioral deficits in animals [44, 45]. Furthermore, basal lam-
ina destruction and erythrocytic lysis induced by COL
leads to increased generation of free radicals, pro-
inflammatory cytokines, neuroinflammation, neuronal
cell death and oxidative stress as seen in secondary in-
jury during ICH.
Movement and functional disorders are seen in about

0.08% of the stroke patient causing temporary to

Fig. 8 Effect of RSV (5, 10 and 20 mg/kg) on lipid peroxidation levels in ICV-COL treated rats. Values are expressed as mean ± SEM. ICH indicates
ICV-COL treated rats; RSV, RSV. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to control
group. *p < 0.05 as compared to ICV-COL group. $ < 0.05 as compared to ICH + RSV (5 mg/kg) group

Fig. 9 Effect of RSV (5, 10 and 20 mg/kg) on catalase activity in ICV-COL treated rats. Values are expressed as mean ± SEM. ICH indicates ICV-COL
treated rats; RSV, RSV. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to control group.
*p < 0.05 as compared to ICV-COL group. $ < 0.05 as compared to ICH + RSV (5 mg/kg) group
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permanent disability [46]. The mechanism leading to
stroke related functional disorders is not clear, but prob-
ably it is the delayed phase hematoma expansion in-
duced damage to striatal neurons [47] and resulting
dopamine loss in the basal ganglia. Strial neurons act as
relay centre for neuronal connections in basal ganglia.
This hypothesis can be further corroborated by the fact
that levodopa treatment improves functional recovery
after experimental stroke [48]. Moreover, brain hernia-
tion and oxido-inflammation caused by delayed ischemia
in hemorrhagic stroke can cause focal damage and loss
of function in particular brain region. Hypokinetic
movement disorders are well reported in unilateral or bi-
lateral infarction in striatum and lentiform nucleus [49,
50]. In our study, we performed neurological scoring by
using a battery of tests like horizontal bar test, forelimb
flexion, righting reflex, cylinder test, spontaneous motil-
ity [31]. Actophotometer test and rotarod test were done
to assess motor impairments. We found that ICV
COL administration produced significant motor and

neurological defects, probably caused by acute caudate
vascular lesion and oxido-inflammatory cerebral injury.
Antioxidants have been shown to attenuate neuromotor
deficits associated with various neurodegenerative dis-
eases in different animal models [51–53]. RSV restored
these motor and neurological deficits owing to its inhibi-
tory effect on oxido-inflammatory cascade involved in
secondary brain injury after ICH.
Free radical generation and oxidative stress are the

two most important factors in the ICH related brain in-
jury. In the present study, an increase in oxidative stress
is indicated by increased malondialdehyde and nitrite
levels along with decreased endogenous antioxidants like
catalase, superoxide dismutase and reduced glutathi-
one levels. Vital organs like brain are more vulnerable
to ischemic damage and oxidative stress due to its
paucity of antioxidant defenses, uninterrupted oxygen
demand and high lipoic myelin and iron content.
Moreover, several compounds with antioxidant prop-
erties have been demonstrated to reduce stroke-

Fig. 10 Effect of RSV (5, 10 and 20 mg/kg) on reduced glutathione (GSH) levels in ICV-COL treated rats. Values are expressed as mean ± SEM. ICH
indicates ICV-COL treated rats; RSV, RSV. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to
control group. *p < 0.05 as compared to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group

Fig. 11 Effect of RSV (5, 10 and 20 mg/kg) on superoxide dismutase activity in ICV-COL treated rats. Values are expressed as mean ± SEM. ICH
indicates ICV-COL treated rats; RSV, RSV. One way ANOVA followed by Tukey’s multiple comparison tests was applied. . #p < 0.05 as compared to
control group. *p < 0.05 as compared to ICV-COL group. $ p < 0.05 as compared to ICH + RSV (5 mg/kg) group
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related brain damage in animal models. Furthermore,
delayed cerebral ischemia due to hematoma obstruc-
tion activates calcium dependent nitric oxide synthase
which leads to increase in nitric oxide and ROS gen-
eration, leading to blood brain barrier disruption. This
oxido-nitrosative stress leads to major neurological
deficits like dementia, pain and depression in COL
treated rats. In the present study, we found that RSV
attenuated oxidative stress in the brain of COL
treated rat by virtue of its strong antioxidant poten-
tial. RSV has been found to show antioxidant prop-
erty by virtue of its free radical scavenging activity to
protect hippocampal neuronal cells against toxicity in-
duced by nitric oxide [54]. Moreover, RSV up regu-
lates heme-oxygenase 1 (HO1), an endogenous anti-
oxidant protecting against neuronal cell death [55].
Microglia is activated within minutes after ICH to

clear hematoma and cell debris by phagocytosis. How-
ever, emerging evidences indicate that activated micro-
glia contribute to hemorrhage related cell damage by
releasing different inflammatory cytokines including
TNF-α. TNF-α has been shown to increase after ICH in

different in-vivo and in-vitro studies [56–58]. The evi-
dence is further strengthened by the fact that inhibition
of microglia decreases ICH related brain damage [59].
Plasma TNF-α level has been shown to have direct cor-
relation with brain edema in ICH patients [60]. In the
present study, inflammatory cytokine generation as evi-
dent by elevated levels of TNF-α, was inhibited by RSV
(10 & 20 mg/kg). Our observation is supported by the
study done by Bi XL in which RSV inhibits nitric oxide
and TNF-α production by lipopolysaccharide-activated
microglia has also been reported to inhibit TNF-α both
in-vivo and in-vitro [61].
Physical disability, cognitive impairment and social

isolation are the common factors leading to post stroke
depression, anhedonia, anxiety and mood disorders and
are seen in about one third of the stroke patients [62–
64]. In the present study, post stroke depression was
evaluated using forced swim test. COL-induced post
stroke depression is evident by increase in immobility
time in force swim test on 14th day after COL adminis-
tration in ICV-COL group. Increase oxidative stress and
inflammatory cytokines in COL-induced ICH leads of

Fig. 12 Effect of RSV on nitrite levels in ICV-COL treated rats. The values are expressed as mean ± SEM. ICH indicates ICV-COL treated rats; RSV,
RSV. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05 as compared to control group. *p < 0.05 as compared
to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group

Fig. 13 Effect of RSV (5, 10 and 20 mg/kg) on pro-inflammatory cytokine TNF-alpha level in ICV-COL treated rats. Values are expressed as
mean ± SEM. ICH indicates ICV-COL treated rats; RSV, RSV. One way ANOVA followed by Tukey’s multiple comparison tests was applied. #p < 0.05
as compared to control group. *p < 0.05 as compared to ICV-COL group. $p < 0.05 as compared to ICH + RSV (5 mg/kg) group
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depressive symptom. Antioxidant and anti-inflammatory
agents from natural resources have been tried success-
fully in the amelioration of depressive behavior in differ-
ent animal models [65–68]. Moreover, extensive data on
anti-depressant action of RSV has been reported [69–
71]. RSV has also been reported to inhibit monoamine
oxidase activity (MAO) in vitro [72] and to up regulate
serotonin, dopamine and nor-epinephrine in a mice
model of depression [73]. Moreover, RSV has been
shown to regulate HPA-axis and provide beneficial effect
in ischemic stroke associated depression [70]. In our
study RSV at highest dose (20 mg/kg) restores the in-
creased in immobility time in FST which is supported by
the study done by Xu et al., [73] where trans-RSV led to
a dose-dependent reduction in the immobility period.
As ICH leads to progressive memory deterioration and

cognitive decline, MWM test was used to assess memory
function. Increased escape latency (time spent to locate
hidden platform) in repeated trials demonstrated mem-
ory deficit. Mean distance travelled was significantly re-
duced in RSV treated group as compared to the COL
treated rats. Our observation is supported by the study
in which RSV improves cognition and reduces oxidative
stress in rats with vascular dementia [74]. Previous stud-
ies have potentiated the role of neuroinflammation and
microglial activation in memory deterioration and cogni-
tive decline. RSV improved memory and cognition in
ICV colchicine-induced cognitive impairment [75]. RSV
also inhibits LPS challenged microglial nitric oxide pro-
duction by inhibiting NF-κB as evident by an in-vitro
study [61, 76]. Moreover, RSV has shown potent anti-
inflammatory and neuroprotective effects in different
models of ischemic stroke [23, 77, 78].
Central post stroke pain (CPSP) is a pain syndrome

common among 2–8% of stroke patients [79]. Neuro-
pathic pain is mainly associated with brain lesion or dis-
ease of somatosensory system [80]. The mechanism of
CPSP is still ambiguous but thought to be involvement
of neuroinflammation induced activation of cell surface
purinergic receptors [81]. P2X7 receptor, a type of puri-
nergic receptors is widely involved in pro-inflammatory
receptors effects in central nervous system [82]. Subse-
quent release of inflammatory cytokines like IL-1β has
been proved to sensitize and destroy nerve terminals,
resulting in neuropathic pain [83]. ICV COL reduced
pain threshold in von Frey hair and Randall-Selitto by
releasing inflammatory cytokines like TNF-α and IL-1β.
There was a significant increase in paw withdrawal
threshold in RSV administered animals as compared to
the COL treated animals [84, 85].

Conclusion
In the present study, we found that RSV exerts anti-
oxidant and neuroprotective effects against COL-induced

oxidative-stress and neuronal deficits, possibly by strength-
ening endogenous anti-oxidant machinery. A significant
decrease in TNF-α levels and nitrosative stress corroborate
our findings related to protective effects against inflamma-
tory cytokine and nitrosative stress induced neuronal cell
death and post stroke complications.
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