
ARTICLE

Asymmetry underlies stability in power grids
Ferenc Molnar1,3, Takashi Nishikawa 1,2✉ & Adilson E. Motter 1,2

Behavioral homogeneity is often critical for the functioning of network systems of interacting

entities. In power grids, whose stable operation requires generator frequencies to be syn-

chronized—and thus homogeneous—across the network, previous work suggests that the

stability of synchronous states can be improved by making the generators homogeneous.

Here, we show that a substantial additional improvement is possible by instead making the

generators suitably heterogeneous. We develop a general method for attributing this coun-

terintuitive effect to converse symmetry breaking, a recently established phenomenon in which

the system must be asymmetric to maintain a stable symmetric state. These findings con-

stitute the first demonstration of converse symmetry breaking in real-world systems, and our

method promises to enable identification of this phenomenon in other networks whose

functions rely on behavioral homogeneity.
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In an alternating current power grid, the generators provide
electrical power that oscillates in time as sinusoidal waves. As
these waves are superimposed before reaching the consumers,

they need to be synchronized to the same frequency; otherwise,
time-dependent cancellation between these waves would cause
the delivered power to fluctuate, which can lead to equipment
malfunction and damage1. Maintaining frequency synchroniza-
tion is challenging because the system is complex in various ways,
with every generator responding differently to the continual
influence of disturbances and varying conditions2. Adding to the
challenge is the increase in perturbations resulting from the
ongoing integration of energy from intermittent sources3, the
emergence of grid-connected microgrids4, and the expansion of
an increasingly open electricity market5. Furthermore, the
inherent heterogeneities in the parameters of system components
and in the structure of the interaction network are perceived as
obstacles to achieving synchronization. Consistent with the view
that heterogeneities may generally inhibit frequency homo-
geneity, an earlier study showed that homogenizing the (other-
wise heterogeneous) values of generator parameters can lead to
stronger stability of synchronous states than in the original sys-
tem6. An outstanding question remains, however, as to whether
there is a heterogeneous parameter assignment (different from
the nominal one) that would enable even stronger stability for
synchronous states than the best homogeneous parameter
assignment. Though motivated by its significance for power grids,
this question is broadly relevant for improving the stability of
homogeneous dynamics in complex network systems in general,
including consensus dynamics in networks of human or robotic
agents7,8, coordinated spiking of neurons in the brain9,10, and
synchronization in communication networks11,12.

To gain insights into the potential role of heterogeneity in
enhancing stability, it is instructive to first consider the case of
damped harmonic oscillators. For a single oscillator, the opti-
mal stability corresponds to the fastest convergence to the
stable equilibrium and is achieved when the oscillator is criti-
cally damped: underdamping would lead to lingering oscilla-
tions around the equilibrium, and overdamping would lead to
slowed convergence due to excess dragging. This optimization
is exploited in door closers (devices that passively close doors in
a controlled manner), which are designed to be critically
damped for the door to close fast without slamming. When
multiple damped oscillators are coupled, the damping giving
rise to optimal stability will be influenced by the network
interactions. More important, we can show that the optimal
stability in such a network requires different oscillators to have
different damping (even when their other parameters are all
identical and they are positioned identically in the network), as
illustrated in Fig. 1.

In this paper, we first demonstrate that an analogous effect
occurs in power-grid networks: heterogeneity in generator
parameters can robustly enhance both the linear and the non-
linear stability of synchronous states in power grids from North
America and Europe. Since these systems have heterogeneity in
the network structure in addition to the tunable generator
parameters, one possibility is that the effect arises entirely from
compensation: stability reduction due to one heterogeneity is
compensated by another heterogeneity, leading to a
stability enhancement when the latter heterogeneity is added.
An alternative, which we validate here, involves the recently
established phenomenon of converse symmetry breaking
(CSB)13, in which the stability of a symmetric state requires the
system’s symmetry to be broken. Owing to its counterintuitive
nature, this phenomenon had not been recognized until it was
recently predicted and experimentally confirmed13,14 for syn-
chronization in oscillator networks (a class of network

dynamics widely studied in the literature15–17). Despite its
conceptual generality and potential to underlie symmetric states
of many systems, this phenomenon has not yet been observed
outside laboratory settings. The symmetry relevant here is
node-permutation symmetry, since in a synchronized state the
states of different nodes are equal and can be permuted without
altering the state of the system. For power grids, CSB would
translate to a stability enhancement mechanism in which
maintaining the stability of synchronous (and thus symmetric)
states requires the generator parameters to be heterogeneous
(thus making the system asymmetric). By systematically
removing all the other system heterogeneities and isolating the
effect of the generator heterogeneity, we establish that CSB is
responsible for a significant portion of the stability improve-
ment observed in the power grids we consider. This offers
insights into mechanisms underlying the parameter hetero-
geneity that arises when the generators are tuned to damp
oscillations18,19 (e.g., by adjusting devices called power system
stabilizers). Our results are of particular relevance given that
CSB has thus far not been observed in any real-world system
outside controlled laboratory conditions, let alone power-grid
networks.

Results
Power-grid dynamics and stability. To describe the dynamics of
n generators in a power-grid network, we represent each gen-
erator node as a constant voltage source behind a reactance (the
so-called classical model) and their interactions through
intermediate non-generator nodes as effective impedances (a
process known as Kron reduction)20. We assume that the sys-
tem is operating near a synchronous state in which the voltage
frequencies of the n generators are all equal to a constant
reference frequency ωs , and we examine whether the homo-
geneous state is stable against dynamical perturbations. Such
perturbations, whether they are small or large, may come for
instance from sudden changes in generation and/or demand
due to shifting weather condition at wind or solar farms, var-
iations in power consumption, switching on/off connections to
microgrids, etc. The short-term dynamics (of the order of one
second or less) are then governed by the so-called swing

Fig. 1 Stabilizing effect of heterogeneity in a mass-spring system.
a System consisting of a linear chain of three unit masses connected by two
identical springs. The masses are constrained to move horizontally, and
their dynamics are governed by the equation shown, where xi is the
displacement of mass i relative to its equilibrium and bi is its damping
coefficient. b Total potential energy of the springs vs. time for three
different damping scenarios. The optimal damping (red), corresponding to
the fastest energy decay, is achieved for b1= 2.5, b2= 3.2, and b3= 1.5 (or,
equivalently, b1= 1.5, b2= 3.2, and b3= 2.5), despite the fact that masses 1
and 3 are otherwise identical and identically coupled. Overdamping leads
to a slower monotonic decay, while underdamping results in a slower
oscillatory decay, as shown in blue by varying b1 and b3 by a factor of 5. In
all cases, the initial conditions are (x1, x2, x3)= (1, 0,−1) and
ð _x1; _x2; _x3Þ ¼ ð0;0;0Þ.
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equation20,21:

€δi þ βi
_δi ¼ ai �

X

k≠i

cik sin δi � δk � γik
� �

; ð1Þ

where δi is the phase angle variable for generator i (representing
the generator’s internal electrical angle, relative to a reference
frame rotating at the reference frequency ωs); βi � Di=ð2HiÞ is
an effective damping parameter (corresponding to bi in the
mass-spring system of Fig. 1), with constant Di capturing both
mechanical and electrical damping and constant Hi represent-
ing the generator’s inertia; ai is a parameter representing the net
power driving the generator (i.e., the mechanical power pro-
vided to the generator, minus the power demanded by the
network, including loss due to damping); and cik and γik
are respectively the coupling strength and phase shift char-
acterizing the electrical interactions between the generators.
The parameters in Eq. (1) for a given system are determined by
computing the active and reactive power flows between network
nodes from system data and using them to calculate the
complex-valued effective interaction (and thus its magnitude cik
and angle γik) between every pair of generators. In real power
grids, stable system operation is ensured by a hierarchy of
controllers that adjust generator power outputs and thus the
parameters in Eq. (1). Here, however, these parameters can be
regarded as constants, since the lowest level of control (known
as the primary control) is modeled as a damping-like effect
captured by the βi term in Eq. (1), while the upper-level con-
trols (known as the secondary and tertiary controls) act on time
scales much longer than that of the short-term generator
dynamics described by the model. In addition, fluctuations in
power generation and demand on the time scales of minutes or
longer (which can come, e.g., from renewable energy sources)
do not affect the short-term dynamics. Equation (1) has
recently been studied extensively in the network dynamics
community3,6,22–25.

We first analyze the stability of the synchronous state against
small perturbations. The synchronous state corresponds to a fixed
point of Eq. (1) given by δi ¼ δ�i and _δi ¼ 0, which represents
frequency synchronization because _δi is the frequency relative to

the reference ωs. The Jacobian matrix of Eq. (1) at this point can
be written as

J ¼ O I

�P �B

� �
; ð2Þ

where O and I denote the n × n null and identity matrices,
respectively; P= (Pik) is the n × n matrix defined by

Pik ¼
�cik cosðδ�i � δ�k � γikÞ; i≠ k;

�P
k0≠iPik0 ; i ¼ k;

�
ð3Þ

which expresses the effective interactions between the generators;
and B is the n × n diagonal matrix with βi as its diagonal
elements. We note that, while the form of the Jacobian matrix for
coupled damped harmonic oscillators is the same as in Eq. (2),
power grids are different in that they can have P ≠ PT because
cik ≠ cki in general and because γik appears in Eq. (3). The stability
under noiseless conditions is determined by the Lyapunov
exponent defined as λmax � maxi≥ 2ReðλiÞ, where λi are the
eigenvalues of J. The identically zero eigenvalue, which comes
from the zero row-sum property of P and is denoted here by λ1, is
excluded because it is associated with the invariance of the
equation under uniform shift of phases. If λmax < 0, then the
synchronous state is asymptotically stable, and smaller λmax

implies stronger stability (this is known as small-signal stability
analysis in power system engineering). Since real power-grid
dynamics are noisy due to power generation/demand fluctuations
and various other disturbances occurring on short time scales,
λmax needs to be sufficiently negative to keep the system close to
the synchronous state. Indeed, a previous study14 showed that, for
broad classes of noise dynamics, there is a (negative) threshold
value of λmax for such stability: the system is stable if and only if
λmax is below the threshold. This stability threshold depends on
the noise intensity level. For impulse-like disturbances, the
intensity level corresponds to the maximum deviation of δi that
can be induced by a single disturbance, such as a sudden loss of a
generator or a spike in power demand. For continual dis-
turbances, the intensity level can be quantified by the variances of
the fluctuating power generation and demand, which can be
modeled by adding a randomly varying term to the parameter ai.

Fig. 2 Enhancing the stability of the 3-generator system along curved paths. a Examples of curved paths (red, green, and blue) in the β-space from β= to
β≠ along which the Lyapunov exponent λmax decreases monotonically. The numerically generated curves confirm our theoretical prediction that these
paths are all tangent to the plane L at the point β=. The droplines indicate that these curves are outside L. The contour levels of λmax are shown on L. Also
shown is the planeM, which is defined as the plane perpendicular to L that contains β= and β≠. b Contour levels of λmax on the planeM, which contains the
green path from a. The orange lines in a and b indicate the intersection between planes L and M. The red dashed curves (and the green path) trace cusp
surfaces associated with degeneracies of the real parts of the eigenvalues of J that determine λmax. Three types of degeneracy are indicated: a real
eigenvalue equal to the real parts of a pair of complex conjugate eigenvalues (a, a ± bi), two different complex conjugate eigenvalues with equal real parts
(a ± b1i, a ± b2i), and two equal real eigenvalues (a, a). For details on the system, see “Methods”.
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Since the stability threshold is generally lower for higher noise
levels, the lower the value of λmax for a given power grid, the more
intense disturbances and fluctuations the system can endure
without losing stability. Incidentally, the optimal damping in the
mass-spring system of Fig. 1 is given precisely by minimizing λmax

for that system.

Enhancing stability with generator heterogeneity. We now
study λmax ¼ λmaxðβÞ as a function of β � ðβ1; ¼ ; βnÞ for a
selection of power grids whose dynamics can be described by Eq.
(1) with the parameter values based on data. Using the same
model, it was previously shown6 that, under the constraint that all
βi’s have the same value, λmax is minimized when β= β=, where
β¼ � ðβ¼; ¼ ; β¼Þ and β¼ � 2

ffiffiffiffiffi
α2

p
, with α2 denoting the smal-

lest nonidentically zero eigenvalue of matrix P. The eigenvalue α2
is associated with the least stable eigenmode, and we assume that
it is real and positive (as confirmed in all systems we consider).
It was further shown that, at this homogeneous optimal point
β=, the function λmaxðβÞ is non-differentiable (which precludes
the use of a standard derivative test), but its one-sided derivative
along any given straight-line direction is positive, i.e., the direc-
tional derivative Dβ0λ

maxðβ¼Þ is positive in the direction of any n-
dimensional vector β0. Thus, moving away from β= along any
straight line would necessarily increase λmax from the local
minimum value λmaxðβ¼Þ ¼ � ffiffiffiffiffi

α2
p

and hence only reduce the
stability of the synchronous state.

Despite the apparent impossibility of improving on λmaxðβ¼Þ
locally, we first show that there can be curved paths starting at β=
along which λmax can be further minimized with heterogeneous
βi. Indeed, Fig. 2a illustrates using a 3-generator system that such
curved paths exist and can connect β= to the (unique) global
minimum, which we denote by β≠ as its components are all
different. The corresponding optimal λmaxðβ≠Þ � �9:41 repre-
sents more than 8% improvement over λmaxðβ¼Þ � �8:69. In

general, if a curved path starts at β=, and if λmax decreases
monotonically along that path, then it cannot be oriented in an
arbitrary direction in the β-space. We show that it needs to be
tangent to a system-specific plane (or hyperplane of co-dimension
one for n > 3), denoted here by L and defined by the equationPn

i¼1 uiviβi ¼ 0, where ui and vi are the ith component of the left
and right eigenvectors, respectively, associated with the eigenva-
lue α2. This result, illustrated by the three example paths in
Fig. 2a, follows from the derivation of a formula for λmax and the
full analytical characterization of the stability landscape near β=
(both presented in Supplementary Note 1).

The curved paths of decreasing λmax are part of the complex
structure of the stability landscape. These paths generally lie on a
cusp surface, defined by the property that, at any point on the
surface, λmax is non-differentiable and locally minimum along any
direction transverse to the surface. The three paths shown in
Fig. 2a all lie on the same cusp surface, which contains both β=
and β≠. The intersection between this cusp surface and the plane
M (the one perpendicular to L) is the green path of monotonically
decreasing λmax shown in Fig. 2. In fact, there are infinitely many
different paths of decreasing λmax on this cusp surface. Of these
paths, the red and blue paths shown in Fig. 2a share the
additional property of being an intersection between pairs of cusp
surfaces. Each of these paths consists of at least two parts that are
intersections between different pairs of cusp surfaces, which
explains the kinks observed in Fig. 2 as points at which the curve
switches from one intersecting surface to another. In larger
systems, we find that their higher-dimensional β-spaces are
sectioned by many entangled cusp hypersurfaces associated with
spectral degeneracies (as illustrated in Supplementary Fig. 2 using
the four larger systems we will introduce below). Their
intersections, which themselves form cusp hypersurfaces of lower
dimensions, are expected to contain curved paths of mono-
tonically decreasing λmax. The existence of kinks and cusp
surfaces in the stability landscape, which makes numerical search

Fig. 3 Heterogeneity of optimized generator parameters βi for two power grids. a Portion of the North American power grid corresponding to the former
Northeast Power Coordinating Council (NPCC) region. b German portion of the European power grid. In both panels, a color-coded circle represents a generator
or an aggregate of generators (see “Methods” for the aggregation procedure used), with the color indicating the corresponding optimal βi in the vector β≠.
The arrows above the color bars indicate β=, the optimal uniform value of βi. The λmax values for the uniform and non-uniform optimal βi (in the vectors
β= and β≠, respectively) are indicated at the bottom of each panel. The radius of the circle is proportional to the real power output of the generator in
megawatts (MW). Small green dots indicate non-generator nodes. Details on these systems, including data sources, can be found in “Methods”.
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for global optima challenging, is not unique to power grids nor
phase oscillator networks. It is a consequence of a much more
general mathematical observation that the largest real part of the
eigenvalues of a matrix (known as the spectral abscissa), such as
λmax we consider here, is a non-smooth, non-convex, and non-
Lipschitz function of the matrix elements26.

Stabilizing heterogeneity in real power grids. Having estab-
lished that heterogeneous β≠ can improve stability over the
homogeneous β= for a small example system, we now show that
this result extends to much larger, real-world power grids. Spe-
cifically, we study the 48-generator NPCC portion of the North
American power grid and the 69-generator German portion of
the European power grid. Assessing the stability against small
perturbations based on Eqs. (1)–(3) has the advantage of reducing
the complexity of these systems to a single matrix P and its
eigenvalues. For each system, we identify a local minimum β≠ that
has heterogeneous βi (and thus is distinct from β=) and achieves
the lowest λmax over 200 independent runs of simulated anneal-
ing. We find simulated annealing to be more effective than other
methods in locating a minimum on a non-differentiable land-
scape27. The resulting stability improvement over β= is sub-
stantial: λmaxðβ¼Þ � λmaxðβ≠Þ ¼ 0:66 for the NPCC network and
λmaxðβ¼Þ � λmaxðβ≠Þ ¼ 0:42 for the German network. The opti-
mized βi assignment in β≠ exhibits substantial heterogeneity

across each network and also across the corresponding geo-
graphical area (Fig. 3).

To validate the prevalence of such stability-enhancing hetero-
geneity, we also analyze λmax as a function of system stress level (to
be precisely defined below) for four different systems, including
the two used in Fig. 3 (see “Methods” for detailed descriptions of
the systems and data sources). To increase or decrease the level of
stress in a given system, we scale the power output of all
generators and the power demand at all nodes by a common
constant factor. We then re-compute the power flows across the
entire network and the parameters of Eq. (1). The system stress
level is then defined to be the common scaling factor used in this
procedure. Thus, a stress level of 1 for a given system corresponds
to the original demand level in the corresponding dataset. For
each stress level, we estimate λmax at β= β≠ from 200
independent simulated annealing runs. Over the entire range of
stress levels considered, we consistently observe a smaller λmax for
β≠ compared to β=, the optimal homogeneous βi assignment, and
to β0, the original βi assignment in the dataset (Fig. 4a).

To test the robustness of the identified optimal λmax against
uncertainties in the βi values, we study how λmax changes under
perturbations along random directions in the β-space in the
vicinity of β≠ and (for comparison) in the vicinity of β=. For the
stress level of 1 and for each random direction, we compute λmax

as a function of the perturbation size ε, measured in 2-norm. The
resulting statistics from 1000 random directions indicate that, for

Fig. 4 Improving the stability of power grids with heterogeneity in β. The columns correspond to the four systems we consider. a Improved
Lyapunov exponent λmax as functions of the system stress level for the heterogeneous optimum β≠ (blue), the homogeneous optimum β= (red), and the
original parameter β0 (black). The cases shown in Fig. 3 are indicated in the second and the last plot. b Change of λmax under perturbations of size ε applied
to β≠ (blue). We show λmax as a function of ε, where solid and dashed curves indicate the average and the maximum, respectively, over perturbations
in 1000 random directions. Note that the maximum corresponds to the worst case scenario. For comparison, we also show the average of λmax

when β= is perturbed (red). c Fraction f of trajectories that converge to synchronous states before a given cutoff time tc for β≠ (blue), β= (red), and
β0 (black). Note that f for β0 remains zero for all tc < 10 seconds in all cases.
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each system, there is a sizable neighborhood of the optimum β≠ in
which λmax is significantly lower than at β=, representing a
stability improvement against small perturbations (Fig. 4b).

To show that the improvement is also observed for stability
against large perturbations, we define a generalized notion of
attraction basin as a set of initial conditions whose corresponding
trajectories satisfy a criterion for convergence to synchronous
states (a variation of the so-called basin stability28). Here, the
convergence criterion we use is that the instantaneous frequency
enters into a narrow band around ωs (within ± 0.3 Hz) and
remains inside the band until tmax ¼ 10 seconds. This criterion is
similar to what is typically used for transient stability analysis in
power system engineering. It also captures a variety of
synchronous states, including not only those corresponding to
fixed points of Eq. (1) (with constant phase angle differences), but
also those corresponding to time-dependent solutions of Eq. (1).
To account for large perturbations, we consider initial conditions
with arbitrary phase angles and frequencies within 1 Hz of the
nominal frequency (60 Hz for the New England and NPCC
systems; 50 Hz for the U.K. and German systems). Each initial
condition can be regarded as resulting from a large impulse-like
disturbance, such as a disconnection of a significant portion of
the grid or a system-wide demand surge. The size of the basin can
then be quantified using the fraction f of the corresponding
trajectories that converge before a given cutoff time tc , i.e., the
fraction of those that satisfy j _δiðtÞj=ð2πÞ≤ 0:3 Hz for all
t 2 ½tc; tmax�. For each tc , the fraction f is estimated using 1000
initial conditions sampled randomly and uniformly from all states
satisfying the criteria described above. As shown in Fig. 4c, we
find that the estimated f is significantly larger for β≠ than for β=
(which in turn is much larger than for β0). This indicates that the
likelihood for the system to return to stable operation after a large
disturbance is higher for the heterogeneous optimal βi than for
the homogeneous optimal ones. We also observe that larger
systems tend to exhibit larger increase in the size of the
asymptotic basins (i.e., in the value of f for tc→∞).

Isolating converse symmetry breaking. Since real power systems
generally have heterogeneity in ai, cik, and γik, the stability
improvement enabled by the βi heterogeneity (and the associated

system asymmetry) could in principle be a compensation for
heterogeneity in the network structure, power demand and gen-
eration, or other component parameters (and the associated
system asymmetries). To illustrate that no such compensation is
needed and that CSB can be responsible for stability improve-
ment, we use an example system consisting of four generators
connected to each other and to one load (see Supplementary Fig.
1 for a system diagram). This system is symmetric with respect to
the permutation of generators 2 and 3 if β2= β3, and this sym-
metry is reflected in the property that P2j= P3j for all j in the
corresponding interaction matrix P (Fig. 5a). The minimum λmax

possible for this symmetric system is λmax � �2:40, which can be
decreased further by >20% to λmax � �2:97 if the β2= β3 con-
straint is lifted (Fig. 5b–d). This demonstrates CSB for this system
under a range of noise levels: breaking the system’s symmetry
under the permutation of generators 2 and 3 is required for λmax

to cross the stability threshold and make the (symmetric) syn-
chronous state stable. We note that the observation of CSB
depends on the system’s symmetry. While CSB is observed in this
4-generator system (with a two-generator permutation sym-
metry), we do not observe CSB in a variant of the system with the
four-generator permutation symmetry. We also note that, while
the optimal βi assignment does not share the two-generator
permutation of the system, the two-dimensional stability land-
scape does, and it features a pair of equally optimal assignments
related to each other through the symmetry (Fig. 5b). It is
instructive to compare this result with the mass-spring system in
Fig. 1, where similar breaking of a permutation symmetry
(between masses 1 and 3) for a symmetric landscape (where
optimal b1 and b3 are necessarily different but can be swapped) is
shown to underlie optimal damping.

Having established that βi heterogeneity alone can enhance
stability through CSB, we now introduce a systematic method to
separate CSB from other mechanisms that involve interplays
between multiple heterogeneities. For this purpose, we transform
matrix P for each system used in Fig. 4, which does not have a
pairwise node permutation symmetry, to a slightly different
matrix P0 that does have the symmetry. More precisely, for a
given pair of nodes i1 and i2, we define this symmetrized matrix
P0 by P0

i1j
¼ P0

i2j
� ðPi1j

þ Pi2j
Þ=2 for all j ≠ i1 nor i2, making it

symmetric under the permutation of nodes i1 and i2. To elucidate

Fig. 5 Illustrating CSB in a 4-generator example system. a Effective interaction network connecting the generators and given by matrix P. Both the
thickness and color of the arrow connecting node j to node i represent the interaction strength ∣Pij∣, with the thickness proportional to ∣Pij∣ and the
color encoding ∣Pij∣ normalized by its maximum over all i and j with i≠ j. b–d Dependence of λmax on β2 and β3, with the values of β1 and β4 set to the
values indicated in a. In b, λmax is color-coded to visualize the full 2D landscape. In c, λmax is shown as a function of β2 along the white dashed line in
b, corresponding to β2= β3. It attains its minimum value≈−2.40 at β2= β3≈ 4.80 (red circle). In d, λmax as a function of β2 along the black dashed line in
b attains its minimum value≈−2.97 at (β2, β3)≈ (4.27, 5.17) (white circle). Thus, the substantially improved optimal λmax is possible only when the
permutation symmetry between generators 2 and 3 is broken. For details on the system, see “Methods”.
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CSB for each system, we choose a node pair that simultaneously
minimizes the difference between P and P0 and maximizes the
amount of stability improvement observed for P0. For the four
systems in Fig. 4, the stability of the symmetrized system can
clearly be enhanced by allowing βi1≠ βi2 , and much of the
enhancement is maintained as one interpolates from the
symmetrized system back to the original system (Fig. 6). This
indicates that a significant portion of the stability enhancement
for the original system can be attributed to CSB.

Discussion
Our demonstration that heterogeneity of generators can enhance
the stability of synchronous states in a range of power grids suggests
that there is large previously under-explored potential for tuning
and upgrading current systems for better stability. Since larger
conventional generators have larger inertia and thus larger impact
on the stability of other generators, tuning of their parameters may
be particularly beneficial. While we focused on the heterogeneity of
a specific generator parameter here, further stability enhancement is
likely to be possible by exploiting heterogeneity in other generator
parameters and in the parameters of other network components as
well as in the network topology. We suggest that such stability
enhancement opportunities exist beyond power systems and may

extend to any network whose function benefits from homogeneous
dynamics and whose stability depends on tunable system para-
meters. For example, the results presented here suggest that CSB
can potentially be observed for coupled oscillatory flows in
microfluidic networks and for networks of coupled chemical reac-
tors whose oscillatory node dynamics is close to a Hopf bifurcation.
It is known13 that such systems can be parameterized so that their
Jacobian matrices take a form that generalizes Eq. (2) and thus is
conducive to the emergence of CSB. The approach we developed
here to isolate CSB is versatile and can be applied broadly to sys-
tems for which different heterogeneities co-occur. Determining how
prevalent CSB is and how it depends on the properties of the system
(e.g., the network size, link distribution, and node dynamics) are
important questions for future research.

It is instructive to interpret our results and contrast them with
past approaches in network optimization. In seeking the best
approach, one may form two complementary hypotheses. One
hypothesis, invoked in the past, was that the stability of the
desired homogeneous states would be optimal when the system is
homogeneous; the approach would thus be to limit the optimi-
zation search to the low-dimensional parameter subspace corre-
sponding to networks with identical parameter values for all
nodes. The other hypothesis, validated here, is that optimal sta-
bility of the desired homogeneous states is generally obtained

Fig. 6 Isolating the CSB effect in power grids. Each column synthesizes results for the system indicated at the top. a 2D stability landscape λmaxðβi1 ; βi2 Þ,
where i1 and i2 are the nodes whose permutation holds the symmetrized matrix P0 invariant. In each panel, the red circle marks the optimal ðβi1 ; βi2 Þ on
the diagonal βi1 ¼ βi2 (white dashed line), while the white circle marks the optimal when βi1≠ βi2 is allowed. The other βi are fixed at the values in β≠
identified for a stress level of 1 in Fig. 4. b Stability λmax as a function of βi1 along the black dashed line connecting the red and white circles in a, respectively.
c Input strength patterns of the nodes i1 and i2 for the original matrix P. The color of each arrow indicates ∣Pij∣, normalized by the largest value of ∣Pij∣ shown.
For nodes i1 and i2, we show incoming links from the top six common neighbors in terms of the input strength. Also shown is the distance d from
the original matrix P to its symmetrized version P0 , in which the two nodes receive identical incoming (weighted) links, defined as d≡ k P� P0k2=k Pk2,
where ∥ ⋅ ∥2 denotes the matrix 2-norm. d Change in the optimal λmax with (red) and without (blue) the constraint βi1 ¼ βi2 , as we interpolate
between the original matrix P and its symmetrized version P0. Node indexing for all four systems are described in “Methods”.
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with heterogeneous parameter assignment, which implies that the
search for this optimum requires exploring the high-dimensional
parameter space without making a priori assumptions on how the
parameters of different nodes are related. Recognizing this can
lead to new control approaches designed to manipulate these
parameters for further optimization of stability. We suggest that
the fresh opportunities for network optimization and control
revealed in this study apply to network systems in general and
thus have the potential to inspire new discoveries in many dif-
ferent disciplines.

Methods
Power-grid datasets. Here, we describe the sources of data for the six power-grid
networks considered (the 3-generator system in Fig. 2; the New England, NPCC,
U.K., and German systems in Figs. 3, 4, and 6; and the 4-generator system in
Fig. 5). For each system, the data provide the net injected real power at all gen-
erator nodes, the power demand at all non-generator nodes, and the parameters of
all power lines and transformers. These parameters are sufficient to determine all
active and reactive power flows in the system using a standard power flow cal-
culation. The data also provide the generators’ dynamic parameters Hi , Di , and
xint,i used in our stability calculations. The parameters Hi and Di are the inertia and
damping constants, respectively, that define the effective damping parameter
through the relation βi=Di/(2Hi). The parameter xint,i represents the internal
reactance of generator i and is used in the calculation of the parameters ai , cij , and
γij. In each system, nodes are indexed as in the original data source (except for the
German power grid; see below).

● 3-generator test system (3-gen). For this IEEE 3-generator, 9-node test
system, which appeared in ref. 20, we used the data file (data3m9b.m) available
in the PST toolbox29. This system represents the Western System Coordinat-
ing Council (WSCC), which was part of the region now called the Western
Electricity Coordinating Council (WECC) in the North American power grid.
The data file provides all necessary dynamical parameters for each generator.

● New England test system (10-gen). For the IEEE 10-generator, 39-node test
system, as described in refs. 30 and 31, we used the data file (case39.m)
available in the MATPOWER toolbox32, with dynamic parameters added
manually from ref. 30. This is a reduced model representing the New England
portion of the Eastern Interconnection in the North American power grid,
with one generator representing the connection to the rest of the grid.

● NPCC power grid (48-gen). For the 48-generator, 140-node NPCC power
grid33, we used the data file (data48em.m) available in the PST toolbox29. The
system represents the former NPCC region of the Eastern Interconnection in
the North American power grid and includes an equivalent generator/load
node representing the rest of the Interconnection. The data file provides Hi

and xint,i for all generators (while it assumes Di= 0). We generated Di

randomly by sampling from the uniform distribution on the interval [1, 3] (in
per unit on the system base, as specified by the data file). The geographic
coordinates of the nodes used in Fig. 3a were extracted from ref. 34, and the
coastline and boundary data used to draw the map were obtained from
Natural Earth35.

● U.K. power grid (66-gen). For the 66-generator, 29-node U.K. power grid, we
used the data file (GBreducednetwork.m) available from ref. 36. The system
represents a reduced model for the power grid of Great Britain. The dynamical
parameters, Hi , Di , and xint,i , were generated randomly by sampling from the
uniform distribution on the intervals, [1, 5], [1, 3], and [0.001, 0.101],
respectively. The generated parameters values for each generator are in per
unit on its own machine base, i.e., normalized by the reference values
computed from the power base for the generator (chosen to be 1.5 times the
maximum real power generation provided in the data file). For stability
calculations, we converted these values to the corresponding values in per unit
on a common system base.

● German power grid (69-gen). For the 69-generator, 228-node German power
grid, we created the data from the ENTSO-E 2009 Winter model37. The ENTSO-
E model is a DC power flow model of the continental Europe and contains 1,486
nodes and 565 generators. We first created a dynamical model for the entire
ENTSO-E network by solving the DC power flow and converting it to an AC
power flow solution (assuming a 0.95 power factor at each node), and then
generating dynamical parameters using the same method as for the U.K. grid.
For any node with multiple generators attached, the net reactive power injection
was distributed among these generators in proportion to their real power
generation. From this full ENTSO-E model, we extracted the German portion by
eliminating (using Kron reduction) all the nodes outside Germany (identified
using the country label “D” representing Germany in the dataset). We re-indexed
the extracted nodes consecutively, preserving the original ordering. The
geographic coordinates of the nodes used in Fig. 3b were extracted from the
PowerWorld data files available from ref. 37, and the coastline and boundary data
used to draw the map were obtained from Natural Earth35.

● 4-generator example system. For the 4-generator, 5-node example system used
in Fig. 5, we show a full system diagram in Supplementary Fig. 1, indicating the
main parameters of the components. When the damping parameters of
generators 2 and 3 are equal (i.e., β2= β3), the system is symmetric under the
permutation of these generators. MATLAB code for running simulations on this
system, which includes the full set of parameters and uses the MATPOWER
toolbox32, is available from our GitHub repository38.

Aggregation of generators and effective damping parameter βi. If a subset of
generators are synchronized in the sense that δi− δj is constant in time for any two
generators i and j in the subset, then they can be represented by a single equivalent
generator using a Zhukov-based aggregation method similar to that described in
ref. 33. In this method, the equivalent generator has inertia constant ∑iHi and
damping constant ∑iDi, where the sums are taken over the generators i in the
subset. The effective damping parameter of the equivalent generator is thenP

iDi=ð2
P

iHiÞ ¼ �D=ð2�HÞ, where �D and �H are respectively the average of the
inertia and damping constants of the generators in the subset. Thus, the aggre-
gation does not introduce any artifactual heterogeneity.

Data availability
Data on all six systems we consider (described in “Methods”) and detailed data of the
core results presented in the figures are available from our GitHub repository38.

Code availability
Essential code for reproducing the core results in all figures, as well as scripts for
generating plain versions of the figures, is available from the GitHub repository38.
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