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Abstract

Objectives To compare standard-resolution balanced steady-state free precession (bSSFP) cine images with cine
images acquired at low resolution but reconstructed with a deep learning (DL) super-resolution algorithm.

Materials and methods Cine cardiovascular magnetic resonance (CMR) datasets (short-axis and 4-chamber views) were
prospectively acquired in healthy volunteers and patients at normal (cineNR: 1.89 × 1.96mm2, reconstructed at
1.04 × 1.04mm2) and at a low-resolution (2.98 × 3.00mm2, reconstructed at 1.04 × 1.04mm2). Low-resolution images were
reconstructed using compressed sensing DL denoising and resolution upscaling (cineDL). Left ventricular ejection fraction
(LVEF), end-diastolic volume index (LVEDVi), and strain were assessed. Apparent signal-to-noise (aSNR) and contrast-to-
noise ratios (aCNR) were calculated. Subjective image quality was assessed on a 5-point Likert scale. Student’s paired t-test,
Wilcoxon matched-pairs signed-rank-test, and intraclass correlation coefficient (ICC) were used for statistical analysis.

Results Thirty participants were analyzed (37 ± 16 years; 20 healthy volunteers and 10 patients). Short-axis views whole-
stack acquisition duration of cineDL was shorter than cineNR (57.5 ± 8.7 vs 98.7 ± 12.4 s; p < 0.0001). No differences were
noted for: LVEF (59 ± 7 vs 59 ± 7%; ICC: 0.95 [95% confidence interval: 0.94, 0.99]; p= 0.17), LVEDVi (85.0 ± 13.5 vs
84.4 ± 13.7 mL/m2; ICC: 0.99 [0.98, 0.99]; p= 0.12), longitudinal strain (−19.5 ± 4.3 vs −19.8 ± 3.9%; ICC: 0.94 [0.88, 0.97];
p= 0.52), short-axis aSNR (81 ± 49 vs 69 ± 38; p= 0.32), aCNR (53 ± 31 vs 45 ± 27; p= 0.33), or subjective image quality
(5.0 [IQR 4.9, 5.0] vs 5.0 [IQR 4.7, 5.0]; p= 0.99).

Conclusion Deep-learning reconstruction of cine images acquired at a lower spatial resolution led to a decrease in
acquisition times of 42% with shorter breath-holds without affecting volumetric results or image quality.

Key Points
Question Cine CMR acquisitions are time-intensive and vulnerable to artifacts.
Findings Low-resolution upscaled reconstructions using DL super-resolution decreased acquisition times by 35–42% without a
significant difference in volumetric results or subjective image quality.
Clinical relevance DL super-resolution reconstructions of bSSFP cine images acquired at a lower spatial resolution reduce
acquisition times while preserving diagnostic accuracy, improving the clinical feasibility of cine imaging by decreasing breath
hold duration.

Keywords Cardiovascular, Magnetic resonance imaging (cine), Artificial intelligence (AI)
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Graphical Abstract

Introduction
Cardiovascular magnetic resonance (CMR) is employed
for the diagnosis of various cardiac pathologies such as
acute myocarditis, myocardial infarction, or cardiomyo-
pathies. Cine CMR is, in particular, the backbone of most
CMR investigations, providing dynamic information per-
taining to cardiac anatomy and function [1]. Unfortu-
nately, CMR examinations have relatively long acquisition
times due to the high volume of data required for ade-
quate temporal and spatial resolution reconstructions,
contributing to patient discomfort and having negative
economic implications [2]. Under ideal settings, a stan-
dard CMR examination for the exclusion of myocarditis
or myocardial infarction takes around 45min, with many
instances of breath holds required for image acquisition.
Alone, short-axis cine CMR acquisitions consist of 12–15
breath holds, and can each take up to 15 s to acquire with
an additional 10 s for recovery after each breath hold, for a
total of up to 5 min per stack [3–5]. Limited breath-
holding capacity, for example in multimorbid patients
with heart failure, sedated patients, or in children with
congenital heart disease, often leads to difficult exam-
ination conditions and artifact-prone acquisitions [6–9].
Cardiovascular imagers are tasked with balancing the
need for shorter breath holds to avoid respiratory motion

and the required time to acquire images with sufficient
spatial and temporal resolution needed for cardiac
assessment. Some techniques, such as free breathing allow
for stable image acquisitions but tend to take longer than
routinely used breath hold methods [3, 10]. The optimi-
zation of already routinely used CMR sequences and the
development of novel imaging techniques offer two
approaches to address the issue of CMR scan times.
Recent advancements in imaging techniques such as the
application of compressed sensing [11, 12] in CMR cine
acquisitions and deep learning (DL) algorithm recon-
structions of under-sampled, low-resolution acquisitions
have already demonstrated some potential clinical appli-
cations in other fields such as MR prostate imaging
[7, 13, 14]. However, currently, there is a paucity of data
comparing existing standard cine acquisitions to DL-
assisted reconstructions.
The aim of this study was to compare standard balanced

steady-state free precession (bSSFP) cine images with low-
resolution bSSFP cine images reconstructed with a DL
super-resolution (SR) algorithm.

Materials and methods
This cross-sectional, single-center study with a pro-
spectively acquired study cohort was performed in
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concordance with the Declaration of Helsinki and the
International Conference on Harmonization of Good
Clinical Practice. Study design, information processing, and
implementation were approved by the institutional review
board. All participants (healthy volunteers and patients)
gave written consent before inclusion in the study.

Study participants
Prospective random enrollment of patients with clinical
indications for contrast-enhanced CMR occurred between
November 2022 and February 2023. Additionally, healthy
volunteers over the age of 18 years old without any known
cardiac diseases were prospectively recruited. Inclusion
criteria were: age over 18 years old, able to give consent.
Exclusion criteria were: pregnancy, implementation of
cardiac pacemakers, or other contraindications for
examinations on 3.0-T MRI scanners.

CMR protocol and normal resolution reconstructions
All sequences were acquired using a 3.0-T scanner (Philips
Ingenia 3.0-T; Philips Healthcare) using a 16-channel torso
coil with a digital interface. Patients underwent a routine
CMR protocol comprised of electrocardiogram-triggered
bSSFP cine imaging acquired at normal resolution (cineNR)
in short-axis views (field of view: 250 × 250mm2, repetition
time: 3.1ms, echo time: 1.54ms, flip angle: 45°, in-plane
resolution: 1.89 × 1.96mm2 [reconstructed: 1.04 × 1.04mm2],
slice thickness: 8mm, temporal resolution: 45ms, com-
pressed sensitivity encoding (Compressed SENSE) factor: 2.5),
4-chamber views, 2-chamber views, and 3-chamber views.
Additionally, patients received a standard of care protocol
consisting of T2 short-tau inversion recovery sequences, T1
and T2 mapping, and segmented inversion-recovery gradient-
echo sequences for late gadolinium enhancement (LGE) using
the Look-Locker method [15] after intravenous contrast
injection (0.2mmol/kg of body weight bolus of gadoterate
meglumine [Clariscan; GE Healthcare]). For study purposes,
healthy volunteers and patients (in addition to the standard of
care imaging after contrast injection), underwent an
electrocardiogram-triggered low-resolution bSSFP cine was
acquisition (cineDL) in short-axis views (field of view:
250 × 250mm2, repetition time: 2.9ms, echo time: 1.34ms,
flip angle: 45°, in-plane resolution: 2.98 × 3.00mm2 [recon-
structed: 1.04 × 1.04mm2], slice thickness: 8mm, temporal
resolution: 45ms, Compressed SENSE factor: 2.5) and
4-chamber views, which were acquired after the cineNR
sequences and reconstructed with an SR DL algorithm.

DL image reconstruction
Images were reconstructed using a vendor-provided
prototype (Philips NGSA patch). Only non-industry per-
sonnel had full access to all acquired study data. A series
of convolutional neural networks (CNNs) were applied to

the raw low-resolution k-space acquisitions as previously
described [14]. The Aadaptive-CS-Net facilitated sparsity-
constrained reconstruction of acquired images with
Compressed SENSE-based variable density under-
sampling patterns [16–18] and was applied during coil
combination, removing noise and under-sampling arti-
facts [19]. Adaptive-CS-Net integrated multiscale sparsi-
fication with a CNN-based sparsifying approach with
image reconstruction of Compressed SENSE, ensuring
data consistency. Domain-specific knowledge such as
image background location and coil sensitivity distribu-
tion was also incorporated to replace the usual process of
wavelet transformation. A multilayer approach outputs
each scale transformation consisting of 2D convolutional
rectifier layers and a maximum pooling layer for down-
scaling or a bilinear interpolation for upscaling to down-
or upscale transforms via direct and skip connections.
Regularization optimization was performed by trained
threshold levels for each connection. The Adaptive-
CS-Net was pretrained on about 740,000 pairs of images
of various contrasts and subsampling levels with applied
supervised learning. The final output is a de-aliased,
denoised MR image with preserved magnitude and phase.
Subsequently, a second CNN, Precise Image Net, was
applied to remove ringing artifacts and to replace the
traditional zero-filling strategy to increase the matrix size
and therewith the sharpness of the images [20, 21]. The
combination of these CNNs made up the SR network
[22, 23]. The network was trained on over six million pairs
of low- and high-resolution data with k-space crops to
induce ringing. This was achieved by repeatedly cascading
a pair of 2D convolutional and rectifier layers ending
with a data consistency check. Supervised learning was
performed: for each image, a high-resolution version was
downscaled to a lower-resolution image with truncation
artifacts. Data consistency checks were implemented to
match the resulting k-space with the measured k-space
data. This study utilized a moderate level of noise
reduction. Reconstructions were performed on
scanner hardware equipped with an Nvidia Quadro
RTX5000 GPU.

Objective image analysis
Objective image analysis was performed by two board-
certified cardiovascular radiologists (J.A.L. with 12 years
of experience in CMR and D.Kr. with 5 years of experi-
ence in CMR) using dedicated software (IntelliSpace
Portal, version 12.1.4; Philips Medical Systems). Left
ventricular ejection fraction (LVEF), left ventricular end-
diastolic volume index (LVEDVi), and interventricular
septum thickness at diastole (IVSD) were measured in
both groups. Apparent signal-to-noise ratios (aSNR) and
apparent contrast-to-noise ratios (aCNR) were calculated
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as previously described [14]. Myocardial global systolic
longitudinal, circumferential, and radial strain were cal-
culated by using automatic feature tracking strain analysis
software (Medis Suite MR, version 4.0.62.4, Medis Med-
ical Imaging Systems) with manual corrections when
necessary. Since cineDL was only applied to 4-chamber
and short-axis views, the global longitudinal strain was
calculated from 4-chamber views for both cineNR and
cineDL.

Subjective image analysis
Subjective image quality analysis was performed by two
board-certified cardiovascular radiologists (D.Kr. with
5 years and A.I. with 6 years of experience in CMR).
Subjective image quality was rated for cineNR and cineDL
short-axis and 4-chamber views on a 5-point Likert scale
regarding three image criteria: blood-pool to myocardium
contrast, endocardial edge definition, and artifacts, as
previously described [3, 24]. Raters were blinded and
sequences were presented in random order. A total score
was determined by the equal weight average of all three
criteria:
1. Non-diagnostic: poor contrast between blood pool and
myocardium, endocardial edge poorly defined, and
artifacts render the images non-diagnostic.

2. Poor: blood pool barely discernable from the myocar-
dium, washed-out endocardial edge, and blurring of
trabeculae and numerous artifacts.

3. Adequate: blood pool discernable from myocardium
but features lots of noticeable variation throughout the
cardiac cycle, barely distinguishable endocardial edge
definition, and some artifacts are present.

4. Good: the blood pool is mostly brighter and discernable
from the myocardium, papillary and endocardial
trabeculae are discernable but blurred in some images

during the cardiac cycle, few artifacts are present but do
not hinder image quality.

5. Excellent: the blood pool is hyperintense and clearly
discernable from the myocardium in all images, and
papillary and endocardial trabeculae are clearly visible
with no blurring, and almost no artifacts.

Statistical analysis
Statistical analysis was performed using Prism (version
10.1.0; GraphPad Software) and SPSS (version 29; IBM).
Continuous variables for quantitative measurements are
reported as means ± standard deviation (SD) and nominal
data as percent to absolute frequency. The Shapiro–Wilk
test was used to check for normality. Pearson’s correlation
was used to compare the correlation between cineNR and
cineDL volumetry results, aSNR, and aCNR. Median and
interquartile range (IQR) are provided for nonparametric
data or when normality cannot be assumed. Volumetric
findings and acquisition times were compared using the
paired Student’s t-test. The chi-squared test was used for
nominal data comparisons. Subjective image scores were
compared using the Wilcoxon matched-pairs signed rank
test. Inter-rater agreement for subjective image quality,
aSNR, aCNR, strain, and volumetry was compared using a
two-way mixed effects intraclass correlation coefficient
(ICC) model for absolute agreement. ICC was rated as
poor (less than 0.5), moderate (0.5–0.75), good (0.75–0.9),
and excellent (greater than 0.90) [25]. The level of sta-
tistical significance was set to p < 0.05.

Results
Participant characteristics
Overall, 20 healthy volunteers and 10 patients were
included in the final analysis. In total, three participants
had to be excluded (see study flow chart in Fig. 1).

Fig. 1 Flowchart depicting participant recruitment for the study

Kravchenko et al. European Radiology (2025) 35:2877–2887 2880



Participant characteristics are summarized in Table 1.
Indications for CMR in the patient group were: suspicion
of acute myocarditis (n= 1, 10%), aortic valve and sub-
clavian artery stenosis (n= 1, 10%), heart failure of
unknown cause (n= 1, 10%), Becker muscular dystrophy
(n= 2, 20%), hypertrophic cardiomyopathy (n= 2, 20%),
dilated cardiomyopathy (n= 1, 10%), and ischemic car-
diomyopathy (n= 2, 20%).

A significant 35% reduction in acquisition times was
observed for cineDL 4-chamber views (5.6 ± 1.1 s vs
8.6 ± 0.5 s; p < 0.0001) and 42% for short-axis views (whole
stacks 57.5 ± 8.7 s vs 98.7 ± 12.4 s; p < 0.0001). A direct
comparison of cineNR and cineDL 4-chamber and short-axis
images with acquisition times is demonstrated in Fig. 2.
Figure 3 visualizes the statistical differences between
acquisition times regarding cineNR and cineDL sequences.

Table 1 Clinical characteristics of participants

Groups/clinical parameters All participants, (n= 30) Healthy volunteers, (n= 20) Patients, (n= 10) p value

Age, (years) 37 ± 16 29 ± 3 53 ± 19 < 0.001

Sex, (males) 21 (70%) 14 (70%) 7 (70%) 0.99

Weight, (kg) 79 ± 18 77 ± 16 83 ± 20 0.22

Height, (cm) 174 ± 10 176 ± 8 171 ± 12 0.19

Body mass index, (kg/m2) 26 ± 5 25 ± 4 28 ± 6 0.24

Body surface area, (m2) 1.9 ± 0.2 1.9 ± 0.2 2.0 ± 0.3 0.29

Heart rate, (beats/min) 64 ± 11 65 ± 9 63 ± 14 0.03

Fig. 2 Four-chamber and short-axis views of a 31-year-old healthy male volunteer. Normal-resolution (cineNR) 4-chamber views (a) as well as the short-
axis cineNR (d) took longer to acquire than their low-resolution counterparts (b, e). The DL reconstructions (cineDL, c, f) from the low-resolution
acquisitions resulted in a comparable image quality to the cineNR images. The low-resolution acquisitions are noticeably blurrier compared to the cineNR
images. Notice the reduction in the pulsation artifact on the 4-chamber views going from the cineNR to the low-resolution and cineDL images (arrow)
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Objective image analysis results
Volumetric analysis yielded no statistically significant
differences between the cineNR and cineDL reconstruc-
tions (e.g. LVEF (59 ± 7 vs 59 ± 7%; p= 0.17). In addition,
there was a high level of correlation and excellent agree-
ment for all parameters (e.g. LVEF: r: 0.96; mean bias:
−0.5; limits of agreement: −4.6, 3.5; ICC: 0.98
[95% confidence interval (CI): 0.94, 0.99]). Volumetry and
strain results are summarized in Fig. 4 and Table 2.

Subjective image analysis results
Edge definition was observed to be slightly better on
4-chamber cineDL views compared to cineNR (median 4.5
[4.0, 5.0] vs 4.0 [3.9, 4.1]; p= 0.03, respectively), and fewer
artifacts were noted on cineNR 4-chamber views com-
pared to cineDL (median 4.5 [4.0, 5.0] vs 4.0 [4.0, 4.5];
p= 0.01, respectively). Otherwise, no significant differ-
ences regarding subjective image quality were noted
between the sequences. Results are summarized in
Table 3. Figure 5 demonstrates differences such as
aggressive smoothing/blurring and artifact reduction in
short-axis views for the cineNR and cineDL reconstruc-
tions. Figure 6 shows the subjective image scores.

Inter-rater agreement
Inter-rater agreement for subjective image quality was
excellent for 4-chamber cineNR (ICC: 0.94 [95% CI: 0.85,
0.97]), 4-chamber cineDL (ICC: 0.90 [95% CI: 0.77, 0.95]),
and short-axis cineNR views (ICC: 0.98 [95% CI: 0.96,
0.99]). A good agreement was observed for short-axis
cineDL views (ICC: 0.87 [95% CI: 0.74, 0.94]).

Subgroup analysis
A subgroup analysis was carried out by splitting the study
population into a volunteer group (n= 20) and a patient

group (n= 10). No differences between cineNR and cineDL
were observed for all volumetric and strain data except
IVSD in the patient group (cineNR: 10.9 ± 4.2 mm, cineDL:
11.1 ± 4.2 mm, p= 0.04). All other parameters (LVEF,
LVEDVi, global longitudinal strain, global circumferential
strain, and global radial strain) demonstrated p values
above 0.05 with ICC ranging from 0.81 to 0.99 and 0.91 to
0.99 for the volunteer and patient groups respectively. A
summary of these results can be found in the Supplement
Table S1. A comparison of subjective image quality is
found in Table S2. Similar tendencies as the overall
comparison was noted for the subgroup analysis regarding
subjective image quality, with significant differences
observed only regarding edge definition in the patient
group on 4-chamber views (cineNR: 4.0 [3.4, 4.3]; cineDL:
4.8 [4.0, 5.0]; p= 0.047) and the volunteer group for
artifacts on short-axis views (cineNR: 4.5 [4.0, 5.0]; cineDL:
4.0 [4.0, 4.0]; p= 0.02).

Discussion
This prospective CMR study evaluated the utility of a DL
SR algorithm for the reconstruction of low-resolution
bSSFP cine acquisitions and compared them to cineNR

acquisitions. CineDL images were faster to acquire leading
to shorter breath holds and did not demonstrate differ-
ences regarding image quality, volumetry, or myocardial
strain compared to cineNR.
CMR combines the increased objectivity and reprodu-

cibility of CT with the non-ionizing nature of echo-
cardiography but is constrained by high costs and long
examination times, leading to long wait times for patients.
Advances in DL technology have the potential to speed up
CMR examinations by decreasing acquisition and recon-
struction times leading to shorter wait times for patients
and allowing a higher throughput of patients per machine.
The CMR imaging workflow consists of two processes:
planning and acquisition. Both processes require time and
are potential targets for scan time reduction. Previous
publications have explored possibilities of artificial
intelligence-assisted planning and shimming leading to an
overall reduction in scan times of approximately 5–13%
[26, 27]. Most of the examination time, though, consists of
image acquisition and reconstruction. Mathematical
equations have traditionally been applied to perform MR
image reconstructions with techniques such as SENSE
(SENSitivity Encoding), a vendor-specific technique for
parallel imaging, and the more recent Compressed SENSE
to further accelerate this process by measuring fewer
Fourier coefficients. Recently, CNNs have been developed
to accelerate MRI reconstructions even further [18].
Acquiring low-resolution images and upscaling them
using a DL SR algorithm led to a reduction in overall scan
times by an average of 42% and thus shortened breath

Fig. 3 Scatter plots with mean and standard deviation depicting the
acquisition times for the normal resolution (cineNR) and the low-resolution
DL reconstruction (cineDL) for short-axis (a) and 4-chamber views (b)
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Fig. 4 Pearson’s correlation (a, c, and e) and Bland–Altman plots (b, d, and f) comparing LVEF (a, b), left ventricular LVEDVi (c, d), and IVSD (e, f). There
was a strong correlation and agreement between normal resolution (cineNR) and DL upscaled (cineDL) reconstructions
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holds (for short-axis views), in line with other studies
using machine learning for accelerated image acquisition
achieving reductions in scan times of 45% for brain ima-
ging [28]. Shorter scan times can have a positive psy-
chological effect on patients, increasing compliance and
the likelihood of undergoing follow-up examinations.
Additionally, a decrease in breath-hold durations required
for cine acquisition can have a beneficial effect on image
quality, especially in patients with difficulty performing
longer breath holds [3]. Lastly, a reduction in acquisition
times leads to increased patient throughput, allowing
more patients to receive important MRI scans than would

otherwise be possible with the limited number of scanners
available [29]. Data validating prospectively acquired DL
reconstructions comparing them to conventional recon-
struction methods is scarce, with a recent meta-analysis
calling for the clinical evaluation of subjective image
quality and measurement of clinical metrics [30]. This
study demonstrates that image quality and volumetric
data in complex cine CMR imaging are handled robustly
by the DL SR reconstructions. Our use of DL CNNs led to
comparable subjective image quality, aSNR, and aCNR
without significant differences between cineNR and cineDL,
in line with other current publications [31, 32]. Bischoff
et al [14] were even able to demonstrate better image
quality compared to conventional reconstruction meth-
ods. Manually derived cardiac function parameters such
as LVEF or IVSD measurements showed slightly larger
values on cineDL compared to cineNR acquisitions but
were not significant and well within their respective
standard deviations. Similarly, automated feature tracking
software for myocardial strain, a sensitive parameter for
cardiac dysfunction, did not measure any significant dif-
ferences between the volunteer and patient groups in the
subgroup analysis. Global circumferential and radial
strain demonstrated wider ICC 95% CIs than longitudinal
strain, an expected finding as longitudinal strain has been
documented to be the most reproducible and robust
strain metric. More interestingly, global circumferential
and radial strain 95% confidence ranges were wider in the
volunteer group than in the patient group. The ability of
DL SR to consistently produce results in line with the
reference standard in volunteers and even in patients with
cardiovascular pathologies, highlights the general applic-
ability of this technique, although larger studies are nee-
ded to confirm consistency in patient cohorts. No
instances of information loss or confabulation were
noticed on assessment, although that was not the main
objective of this study. In the past, single-shot CMR
acquisitions have been used for the reduction of motion

Table 2 Cardiac volumetry and strain CMR cine normal resolution compared to DL SR reconstructions

Variables CineNR CineDL p valuea rb Mean Biasc LoAc ICCd

LVEF, (%) 58.8 ± 6.6 59.3 ± 7.2 0.17 0.96 −0.5 −4.6, 3.5 0.98 (0.94, 0.99)

LVEDVi, (mL/m2) 85.0 ± 13.5 84.4 ± 13.7 0.12 0.99 0.6 −3.2, 4.4 0.99 (0.98, 0.99)

IVSD, (mm) 9.3 ± 2.9 9.5 ± 2.9 0.07 0.99 −0.2 −1.2, 0.8 0.99 (0.98, 0.99)

GLS, (%) −19.5 ± 4.3 −19.8 ± 3.9 0.52 0.89 0.2 −3.5, 4.0 0.94 (0.88, 0.97)

GCS, (%) −23.2 ± 4.1 −22.6 ± 4.1 0.22 0.78 −0.6 −5.9, 4.7 0.88 (0.74, 0.94)

GRS, (%) 75.5 ± 18.1 71.9 ± 15.3 0.74 0.82 0.6 −19.6, 20.9 0.90 (0.78, 0.95)

CineNR normal-resolution cine sequence, CineDL DL-reconstructed cine sequence, LVEF left ventricular ejection fraction, LVEDVi left ventricular end-diastolic volume
index, IVSD interventricular septum thickness at diastole, GLS global longitudinal strain, GCS global circumferential strain, GRS global radial strain
a Paired Student’s t-test
b Pearson’s r
c Bland–Altmann means bias and limits of agreement (LoA)
d ICC with 95% confidence intervals in brackets

Table 3 Objective and subjective image quality findings

Variables CineNR CineDL p value

Objective image quality

4-chamber view

aSNR 31 [26, 57] 29 [22, 48] 0.26

aCNR 21 [15, 38] 20 [13, 32] 0.14

Short-axis view

aSNR 72 [48, 103] 62 [42, 89] 0.26

aCNR 46 [31, 69] 41 [26, 54] 0.28

Subjective image quality

4-chamber view

Contrast 5.0 [4.0–5.0] 4.8 [4.0–5.0] 0.72

Edge definition 4.0 [3.9–4.1] 4.5 [4.0–5.0] 0.03

Artifacts 4.5 [4.0–5.0] 4.0 [4.0–4.5] 0.01

Total 4.4 [4.0–4.7] 4.5 [4.1–4.7] 0.89

Short-axis view

Contrast 5.0 [5.0–5.0] 5.0 [5.0–5.0] 0.99

Edge definition 5.0 [5.0–5.0] 5.0 [5.0–5.0] 0.65

Artifacts 5.0 [5.0–5.0] 5.0 [5.0–5.0] 0.53

Total 5.0 [4.9–5.0] 5.0 [4.7–5.0] 0.97

All values are given as median with IQR. Wilcoxon matched-pairs signed rank
test unless otherwise noted
aSNR apparent signal-to-noise ratio, aCNR apparent contrast to noise ratio,
CineNR normal-resolution cine sequence, CineDL DL-reconstructed cine sequence
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artifacts but are limited by their spatial and temporal
resolution. DL algorithms, such as the one employed in
this paper provide a fully retrospectively gated alternative
with a high spatial and temporal resolution with the
ability to shorten acquisition times in order to remove
motion artifacts in patients with reduced breath-hold
capacities. Kim et al demonstrated that the removal of

banding artifacts from bSSFP sequences was possible in
an animal model using neural networks [33] while other
DL algorithms were successful in removing streaking
artifacts [34]. Future applications of artificial intelligence
may even provide retrospective motion correction as
demonstrated by a generative adversarial network by
Kuestner et al [35].
Our study is limited by the small study cohort. For the

subjective image quality analysis, raters were blinded to
the sequence and sequences were presented in a random
order, but due to the nature of the reconstructions,
readers were able to distinguish the cineNR from the
cineDL reconstructions in most cases. The quality of DL
neural networks is highly dependent on the training data
they receive and may play a central role in image output
quality [36]. Currently, available networks must be
trained on specific patterns and anatomical variances for
each disease for it to be effective. While we did not
observe any loss of data or blurring in our study, we also
did not specifically look at this as would be the case in
clinical studies, for example looking to detect small
brain tumors. Furthermore, low-resolution acquisitions
for DL reconstruction were acquired after cineNR

acquisitions which consisted of up to 14 breath-holds,
leading to a nonequal starting condition of the low-
resolution acquisitions compared to the cineNR

acquisitions.
In conclusion, SR DL reconstruction of CMR cine

sequences acquired with a lower spatial resolution led to a
significant reduction in acquisition times of 35–42% on

Fig. 5 Short-axis view of a 19-year-old male with suspected myocarditis acquired using standard bSSFP normal-resolution (cineNR) acquisitions (a), low-
resolution acquisitions (b), and DL SR reconstructions (cineDL) (c). CineDL successfully removed the horizontal banding artifact from the cineNR acquisition
(star). The left ventricular midventricular antero-/inferolateral epicardial edge (arrow) is more defined in the cineNR acquisition with discernable vessels
compared to the low-resolution acquisition, possibly due to the reconstruction algorithm or alternatively due to a small change in slice positioning
between the cineNR and low-resolution acquisitions. Additionally, note the more defined sharpening of the lateral wall of the right ventricle (arrowhead)
in the cineDL reconstruction

Fig. 6 Stacked bar charts showing the distribution of Likert scale scores
for subjective image quality for 4-chamber and short-axis normal
resolution (cineNR) and DL SR (cineDL) reconstructions
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average and shorter breath hold durations without a sig-
nificant difference in volumetric results or subjective
image quality in healthy volunteer as well as patients.
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SR Super-resolution

Supplementary information
The online version contains supplementary material available at https://doi.
org/10.1007/s00330-024-11145-0.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Compliance with ethical standards

Guarantor
The scientific guarantor of this publication is J.A.L.

Conflict of interest
The authors of this manuscript declare relationships with the following
companies: Philips. C.K. and J.M.P. are employees of Philips. A.V.S. receives
institutional research support and / or personal fees from Elucid Bioimaging
and Siemens. T.E. received a speaker fee and travel support from Siemens,
institutional research support by Siemens and is a consultant at Circle CVI. The
remaining authors declare no conflicts of interest.

Statistics and biometry
No complex statistical methods were necessary for this paper.

Informed consent
Written informed consent was obtained from all subjects (patients) in
this study.

Ethical approval
Institutional Review Board approval was obtained.

Study subjects or cohorts overlap
None.

Methodology

● Prospective
● Cross-sectional
● Single-center study

Author details
1Department of Diagnostic and Interventional Radiology, University Hospital
Bonn, Bonn, Germany. 2Quantitative Imaging Laboratory Bonn, Bonn, Germany.
3Division of Cardiovascular Imaging, Department of Radiology and
Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
4Philips MR Clinical Science, Best, Netherlands. 5Philips GmbH Market DACH,

Hamburg, Germany. 6Department of Diagnostic and Interventional Radiology,
University Medical Center of the Johannes Gutenberg-University, Mainz,
Germany. 7German Centre for Cardiovascular Research, Partner site Rhine-Main,
Mainz, Germany.

Received: 27 July 2024 Revised: 22 August 2024 Accepted: 22 September
2024
Published online: 23 October 2024

References
1. Ammirati E, Moslehi JJ (2023) Diagnosis and treatment of acute myo-

carditis: a review. JAMA 329:1098–1113
2. Torlasco C, Castelletti S, Soranna D et al (2022) Effective study: develop-

ment and application of a question-driven, time-effective cardiac mag-
netic resonance scanning protocol. J Am Heart Assoc 11:e022605

3. Kravchenko D, Isaak A, Zhang S et al (2023) Free-breathing pseudo-
golden-angle bSSFP cine cardiac MRI for biventricular functional assess-
ment in congenital heart disease. Eur J Radiol 163:110831

4. Küstner T, Fuin N, Hammernik K et al (2020) CINENet: deep learning-based
3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D
spatio-temporal convolutions. Sci Rep. 10:13710

5. Krumm P, Keuler JD, Mangold S et al (2017) Single-breath-hold evaluation
of cardiac function with use of time-resolved parallel cardiac magnetic
resonance. Tex Heart Inst J 44:252–259

6. Pednekar AS, Jadhav S, Noel C, Masand P (2019) Free-breathing cardior-
espiratory synchronized cine MRI for assessment of left and right ven-
tricular volume and function in sedated children and adolescents with
impaired breath-holding capacity. Radiol Cardiothorac Imaging 1:e180027

7. Monteuuis D, Bouzerar R, Dantoing C, Poujol J, Bohbot Y, Renard C (2024)
Prospective comparison of free-breathing accelerated cine deep learning
reconstruction versus standard breath-hold cardiac mri sequences in
patients with ischemic heart disease. AJR Am J Roentgenol. https://doi.
org/10.2214/ajr.23.30272

8. Atweh LA, Dodd NA, Krishnamurthy R, Pednekar A, Chu ZD, Krishna-
murthy R (2016) Comparison of two single-breath-held 3-D acquisitions
with multi-breath-held 2-D cine steady-state free precession MRI acqui-
sition in children with single ventricles. Pediatr Radiol 46:637–645

9. Kido T, Kido T, Nakamura M et al (2016) Compressed sensing real-time cine
cardiovascular magnetic resonance: accurate assessment of left ventricular
function in a single-breath-hold. J Cardiovasc Magn Reson 18:50

10. Kocaoglu M, Pednekar AS, Wang H, Alsaied T, Taylor MD, Rattan MS (2020)
Breath-hold and free-breathing quantitative assessment of biventricular
volume and function using compressed SENSE: a clinical validation in
children and young adults. J Cardiovasc Magn Reson 22:54

11. Altmann S, Halfmann MC, Abidoye I et al (2021) Compressed sensing
acceleration of cardiac cine imaging allows reliable and reproducible
assessment of volumetric and functional parameters of the left and right
atrium. Eur Radiol 31:7219–7230

12. Bischoff LM, Katemann C, Isaak A et al (2022) T2 turbo spin echo with
compressed sensing and propeller acquisition (sampling k-space by uti-
lizing rotating blades) for fast and motion robust prostate MRI: compar-
ison with conventional acquisition. Invest Radiol. https://doi.org/10.1097/
RLI.0000000000000923

13. Ke Z, Cheng J, Ying L, Zheng H, Zhu Y, Liang D (2020) An unsupervised
deep learning method for multi-coil cine MRI. Phys Med Biol 65:235041

14. Bischoff LM, Peeters JM, Weinhold L et al (2023) Deep learning super-
resolution reconstruction for fast and motion-robust T2-weighted pros-
tate MRI. Radiology 308:e230427

15. Look DC, Locker DR (1970) Time saving in measurement of NMR and EPR
relaxation times. Rev Sci Instrum 41:250–251

16. Pezzotti N, Weerdt ED, Yousefi S et al (2019) Adaptive-CS-Net: FastMRI
with adaptive intelligence. arXiv 1912.12259

17. Zhang J, Ghanem B (2018) ISTA-Net: interpretable optimization-inspired
deep network for image compressive sensing. In: 2018 IEEE/CVF con-
ference on computer vision and pattern recognition. IEEE, Salt Lake City,
pp 1828–1837

18. Harder FN, Weiss K, Amiel T et al (2022) Prospectively accelerated T2-
weighted imaging of the prostate by combining compressed SENSE and

Kravchenko et al. European Radiology (2025) 35:2877–2887 2886

https://doi.org/10.1007/s00330-024-11145-0
https://doi.org/10.1007/s00330-024-11145-0
https://doi.org/10.2214/ajr.23.30272
https://doi.org/10.2214/ajr.23.30272
https://doi.org/10.1097/RLI.0000000000000923
https://doi.org/10.1097/RLI.0000000000000923


deep learning in patients with histologically proven prostate cancer.
Cancers 14:5741

19. Peeters JMCH, Valvano G, Yakisikli D, van Gemert J, de Weerdt E, K vdV
(2021) Philips SmartSpeed. No compromise image quality and speed
at your fingertips. Available via https://images.philips.com/is/content/
PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-
white_paper_philips_smartspeed.pdfApril. Last accessed April 2024

20. Chaudhari AS, Fang Z, Kogan F et al (2018) Super-resolution muscu-
loskeletal MRI using deep learning. Magn Reson Med 80:2139–2154

21. Kim J, Lee JK, Lee KM (2015) Accurate image super-resolution using very
deep convolutional networks. 2016 IEEE conference on computer vision
and pattern recognition (CVPR). IEEE Xplore 1063–6919

22. Dong C, Loy CC, He K, Tang X (2015) Image super-resolution using deep
convolutional networks. arXiv 1501.00092

23. Li Y, Sixou B, Peyrin F (2021) A review of the deep learning methods for
medical images super resolution problems. IRBM 42:120–133

24. Pednekar AS, Wang H, Flamm S, Cheong BY, Muthupillai R (2018) Two-
center clinical validation and quantitative assessment of respiratory trig-
gered retrospectively cardiac gated balanced-SSFP cine cardiovascular
magnetic resonance imaging in adults. J Cardiovasc Magn Reson 20:44

25. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. J Chiropr Med 15:155–163

26. Edalati M, Zheng Y, Watkins MP et al (2022) Implementation and pro-
spective clinical validation of AI-based planning and shimming techni-
ques in cardiac MRI. Med Phys 49:129–143

27. Frick M, Paetsch I, Harder CD et al (2011) Fully automatic geometry
planning for cardiac MR imaging and reproducibility of functional cardiac
parameters. J Magn Reson Imaging 34:457–467

28. Rudie JD, Gleason T, Barkovich MJ et al (2022) Clinical assessment of deep
learning-based super-resolution for 3D volumetric brain MRI. Radiol Artif
Intell 4:e210059

29. Sartoretti E, Sartoretti T, Binkert C et al (2019) Reduction of procedure
times in routine clinical practice with compressed SENSE magnetic
resonance imaging technique. PLoS One 14:e214887

30. Hossain MB, Shinde RK, Oh S, Kwon K-C, Kim N (2024) A systematic review
and identification of the challenges of deep learning techniques for under-
sampled magnetic resonance image reconstruction. Sensors (Basel) 24:753

31. Kim M, Lee S-M, Park C et al (2022) Deep learning-enhanced parallel
imaging and simultaneous multislice acceleration reconstruction in knee
MRI. Invest Radiol 57:826–833

32. Almansour H, Herrmann J, Gassenmaier S et al (2023) Deep learning
reconstruction for accelerated spine MRI: prospective analysis of inter-
changeability. Radiology 306:e212922

33. Kim KH, Park S-H (2017) Artificial neural network for suppression of
banding artifacts in balanced steady-state free precession MRI. Magn
Reson Imaging 37:139–146

34. Han Y, Yoo J, Kim HH, Shin HJ, Sung K, Ye JC (2018) Deep learning with
domain adaptation for accelerated projection-reconstruction MR. Magn
Reson Med 80:1189–1205

35. Küstner T, Armanious K, Yang J, Yang B, Schick F, Gatidis S (2019) Ret-
rospective correction of motion-affected MR images using deep learning
frameworks. Magn Reson Med 82:1527–1540

36. Antun V, Renna F, Poon C, Adcock B, Hansen AC (2020) On instabilities of
deep learning in image reconstruction and the potential costs of AI. Proc
Natl Acad Sci U S A 117:30088–30095

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Kravchenko et al. European Radiology (2025) 35:2877–2887 2887

https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdfApril
https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdfApril
https://images.philips.com/is/content/PhilipsConsumer/Campaigns/HC20140401_DG/Documents/HC05072022-white_paper_philips_smartspeed.pdfApril

	Deep learning super-resolution reconstruction for fast and high-quality cine cardiovascular magnetic resonance
	Introduction
	Materials and methods
	Study participants
	CMR protocol and normal resolution reconstructions
	DL image reconstruction
	Objective image analysis
	Subjective image analysis
	Statistical analysis

	Results
	Participant characteristics
	Objective image analysis results
	Subjective image analysis results
	Inter-rater agreement
	Subgroup analysis

	Discussion
	Supplementary information
	Acknowledgements




