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Abstract: Lenalidomide (also known as Revlimid®, CC-5013) is an immunomodulatory 

derivative of thalidomide and has more potent anti-tumor and anti-infl ammatory effects than 

thalidomide. The molecular mechanisms of anti-tumor activity of lenalidomide have been 

extensively studied in multiple myeloma (MM) both preclinical models and in clinical trials. 

Lenalidomide: directly triggers growth arrest and/or apoptosis of drug resistant MM cells; 

inhibits binding of MM cells to bone marrow (BM) extracellular matrix proteins and stromal 

cells; modulates cytokine secretion and inhibits angiogenesis in the BM milieu; and augments 

host anti-tumor immunity. Lenalidomide achieved responses in patients with relapsed refractory 

MM. Moreover, lenalidomide with dexamethasone (Dex) demonstrates more potent anti-MM 

activities than Dex both in vitro and in randomized phase III clinical trials. Specifi cally, the 

combination improved overall and extent of response, as well as prolonged time to progression 

and overall survival, resulting in FDA approval of lenalidomide with Dex for therapy MM 

relapsing after prior therapy.
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Introduction
Multiple myeloma (MM) is a B cell malignancy characterized by excess monotypic 

plasma cells in the BM in association with monoclonal protein in serum and/or urine, 

decreased normal immunoglobulin (Ig) levels, and lytic bone disease. The 2006 

estimate of multiple myeloma incidence in the United States is 16,570 cases, with an 

estimated number of 11,300 deaths. Conventional therapies with alkylating agents, 

anthracyclines, and corticosteroids can extend patient survival to a median of 3–4 

years (Gregory et al 1992; Group 1998), and high dose therapy followed by autolo-

gous transplantation can modestly prolong median survival to 4–5 years (Fermand 

et al 1998; Lenhoff et al 2000). Attempts to improve autografting include repeated 

use of high dose therapies (Desikan et al 2000; Attal et al 2003), as well as immune 

strategies to treat minimal residual disease post-transplant (Massaia et al 1999) can 

improve outcome in some studies, few, if any, patients are cured. MM remains incur-

able due to the development of tumor cell resistance to all therapies, highlighting the 

urgent need for novel treatment strategies.

Thalidomide (Thal) has shown to be useful in various diseases including MM; 

however, it is a potent teratogen and causes side effects including peripheral neuropathy 

(Tseng et al 1996). Attempts were therefore made to develop Thal analogs which are 

more potent and have less adverse effects: lenalidomide (C
13

H
13

N
3
O

3
, MW = 259.26) is 

one such analog belonging to the class ofi mmunomodulatory drugs (IMiDs) developed 

by the drug discovery program.
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Preclinical studies of lenalidomide
Overview (Figure 1)
The interaction of multiple myeloma (MM) cells with bone 

marrow (BM) extracellular matrix (ECM) proteins and BM 

accessory cells, BM stromal cells (BMSCs), osteoblasts, 

osteoclasts, endothelial cells, as well as other factors in 

the BM milieu (ie, cytokines, angiogenesis) plays a crucial 

role in MM pathogenesis and drug resistance (Damiano 

et al 1999; Akiyama et al 2002; Hideshima and Anderson 

2002; Hideshima et al 2003, 2004, 2006; Chauhan et al 

2004). These accessory cells not only physically interact 

with MM cells, but also secrete growth and/or anti-

apoptotic factors such as interleukin (IL)-6, insulin-like 

growth factor (IGF)-1, vascular endothelial growth factor 

(VEGF), and tumor necrosis factor (TNF)-α (Akiyama 

et al 2002; Chauhan et al 1996, 2004, 2005; Catley et al 

2004; Hideshima et al 2006). Delineation of the mecha-

nisms of BM stromal cell (SC)-mediated MM cell prolif-

eration, survival, drug resistance, and migration therefore 

provides the framework for identifi cation and validation 

of novel therapeutic targets.

Within the BM microenvironment, several proliferative/

antiapoptotic signaling cascades are activated in MM cells: 

phosphatidylinositol-3 kinase (PI3K)/Akt (also known as 

protein kinase B); I κ B kinase (IKK)/nuclear factor κ-B 

(NFκB); Ras/Raf/mitogen-activated protein kinase (MAPK) 

kinase (MEK)/extracellular signal-related kinase (ERK); and 

Janus kinase (JAK) 2/signal transducers and activators of 

transcription (STAT)-3 (Figure 1, Table 1). These signaling 

cascades mediate: cytoplasmic sequestration of many tran-

scription factors; upregulation of cyclin D and anti-apoptotic 

Bcl-2 family members; as well as augmentation of telom-

erase activity (Hideshima et al 2001a; Akiyama et al 2002). 

Importantly, these molecular events are triggered by both 

MM cell adherence to BMSCs and by cytokines secreted 

from BMSCs (Dankbar et al 2000; Hideshima et al 2004; 

Mitsiades et al 2004). Cytokines secreted from MM cells 

and BMSCs and other cells may in turn further augment 

cytokine secretion.

Novel biologically based agents target not only the 

MM cell, but also MM cell–host interactions, cytokines, 

and their sequelae in the BM milieu. Thalidomide and 

Figure 1 Potential mechanisms of action of anti-MM activity of lenalidomide. Lenalidomide: directly induces tumor cell apoptosis and/or growth arrest (A); enhances NK 
and/or NK cell activity via activation of CD28/NF-AT2 pathway (B); inhibits MM cell adhesion to host microenvironment (C); inhibits angiogenesis (D); inhibits osteoclasto-
genesis (E); as well as inhibits cytokine secretion (F).
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its immunomodulatory derivative (IMiD) lenalidomide 

(Revlimid®; Celgene Corp., Summit, NJ, USA) are examples 

of such agents targeting the tumor cell in its BM milieu 

which can achieve responses even in refractory relapsed MM. 

Lenalidomide may inhibit MM cell growth by several differ-

ent mechanisms (Figure 1). First, lenalidomide has a direct 

effect on MM cells to induce G1 growth arrest or apoptosis 

even of drug resistant cells (Hideshima et al 2000; Mitsiades 

et al 2002). Second, lenalidomide inhibits adhesion of MM 

cells to BMSCs, and thereby can overcome cell adhesion 

mediated drug resistance (CAM-DR); third, lenalidomide 

inhibits bioactivity and/or secretion in MM cells and/or BM 

stromal cells of cytokines [eg, interleukin (IL)-6, IL-1β, 

IL-10, and tumor necrosis factor (TNF)α] which augment 

MM cell growth, survival, drug resistance, migration, and 

expression of adhesion molecules. Importantly, lenalidomide 

is several thousand fold more potent than Thal at inhibiting 

TNFα/IL-1β secretion from mononuclear cells stimulated 

with lipopolysaccharide (LPS) in vitro (Corral et al 1999; 

Muller et al 1999). Fourth, vascular endothelial growth fac-

tor (VEGF) and basic fi broblast growth factor (bFGF) are 

secreted by MM cells and/or BMSCs, and lenalidomide may 

inhibit activity of VEGF, bFGF, and angiogenesis in MM. 

Lenalidomide also acts against MM through immunomodu-

latory effects such as augmentation of activity of cytotoxic 

T-cells and natural killer (NK) cells, associated with secretion 

of IL-2 and interferon-γ (Davies et al 2001; LeBlanc et al 

2004; Hayashi et al 2005).

Bone destruction is a hallmark of MM, with 70%–80% of 

patients manifesting bone involvement. Recently, Anderson 

et al demonstrated that an IMiD CC-4047 (Actimid®; Celgene 

Corp., Summit, NJ, USA) inhibits osteoclastgenesis via 

downregulation of transcription factor PU.1 (Anderson et al 

2006). Lenalidomide also has inhibitory effect on osteoclas-

togenesis (Terpos et al 2007).

Direct anti-tumor activities
of lenalidomide
Although the targets of whereby lelalidomide mediates anti-

tumor activity of lenalidomide have not been fully delineated, 

several studies have examined the molecular mechanisms 

mediating sequelae of lenalidomide. Our previous studies 

demonstrated that lenalidomide induces G0/G1 growth arrest 

associated with p21Cip1 upregulation and/or apoptosis which 

is mediated via caspase-8 activation (Hideshima et al 2000; 

Mitsiades et al 2002). Lenalidomide inhibits LPS-mediated 

induction of Cox-2 and prostaglandin E2 (PGE2) production by 

a post-transcriptional mechanism in RAW 364.7 cells (Fujita 

et al 2001), suggesting that the anti-tumor activity induced 

by lenalidomide may also be due to inhibition of Cox-2 and 

PGE2. Lenalidomide inhibits nuclear factor (NF)-κB subunit 

activity in MM cell lines (Mitsiades et al 2002), which is 

consistent with reports that Thal inhibits DNA binding activ-

ity of the p50/p65 NF-κB triggered by TNFα and IL-1β in 

Jurkat cell line (Keifer et al 2001) and in PBMCs (Rowland 

et al 2001). Since NF-κB plays an essential role in cell cycle 

regulation, cell survival, anti-apoptosis, and cytokine produc-

tion in MM cells (Hideshima et al 2001b, 2002), inhibition of 

NF-κB activity by lenalidomide may also enhance or restore 

sensitivity to other chemotherapeutic agents. Specifi cally, we 

have demonstrated that MM cell adhesion-mediated upregula-

tion of IL-6 is mediated via NF-κB activation (Chauhan et al 

1996; Hideshima et al 2002). Recently, Stewart et al (2004) 

reported pharmacogenomic studies suggesting that hyperac-

tivation of the Wnt signaling antagonist DKK-1 is associated 

with response to the immunomodulators Thal and lenalido-

mide. Furthermore, β-catenin expression is downregulated 

by lenalidomide in MM cell lines.

Lenalidomide in combination with Dex is one of the most 

promissing MM novel treatment options. It induces at least 

additive direct cytotoxicity in MM cells (Hideshima et al 

2000), associated with activation of dual apoptotic signal-

ing cascades: Dex induces caspase-9 (Chauhan et al 2001; 

Hideshima et al 2001a) and lenalidomide triggers caspase-8 

activation (Mitsiades et al 2002) (Figure 2). Most recently, 

enhanced anti-MM activity of rapamycin, a specifi c mTOR 

inhibitor, in combination with lenalidomide has been reported 

(Raje et al 2004). In this study, the combination of rapamycin 

plus lenalidomide overcomes drug resistance in MM cell 

lines resistant to conventional chemotherapy. Interestingly, 

differential signaling cascades, including the ERK and PI3-

K/Akt pathways, are targeted by these drugs individually 

and in combination, suggesting the molecular mechanism 

by which they inhibits MM growth and survival.

Table 1 Selected ongoing clinical trials of lenalidomide based 
combination treatment in multiple myeloma

Agent Phase Patient

Perifoine + Dex I Rel/ref
Hepatitis B vaccine I Rel/ref
Doxorubicin + Dex I/II Rel/ref
Bortezomib + Dex I/II Newly diagnosed
Bortezomib + Dex II Rel/ref
Bevacizumab + Dex II Rel/ref
Clarithromycin + Dex II Newly diagnosed
Dex III Newly diagnosed
Dex III Previously treated
Dex IV Previously treated
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Anti-angiogenic activity
Previous studies have shown that oral administration of 

lenalidomide attenuates growth factor-induced angiogenesis 

in vivo. This effect is correlated with the inhibitory effect 

of lenalidomide on growth factor-induced Akt phosphoryla-

tion, thereby providing a potential mechanism for its anti-

migratory and subsequent anti-angiogenic effects (Dredge 

et al 2005). In MM, an anti-angiogenic effect of Thal in 

vitro has been demonstrated (D’Amato et al 1004; Singhal 

et al 1999; Lentzsch et al 2002; Fujita et al 2004); however, 

to date no strong evidence of an anti-angiogenic effect of 

lenalidomide in vivo has been demonstrated. Moreover, 

Singhal et al (1999) reported no correlation of BM angiogen-

esis with response to Thal in patients with relapsed refractory 

MM, suggesting that lenalidomide may mediate its anti-MM 

activity via mechanisms other than anti-angiogenesis.

Immunomodulatory activities
A unique feature of the anti-tumor effect of Thal and lenalido-

mide is their ability to modulate and potentiate host immune 

responses against MM. Several studies have demonstrated 

the effects of lenalidomide on peripheral blood lymphocytes 

(Davies et al 2001; Haslett et al 2003; LeBlanc et al 2004; 

Hayashi et al 2005). Co-culture of naive splenocytes with 

anti-CD3 monoclonal antibody and IMiD1 (Actimid®) 

directly costimulates T cells and increases Th-1-type cyto-

kines. Most excitingly, IMiDs augment CTL and NK cell 

activity against MM cell lines and autologous MM cells, 

associated with increased IL-2 levels in serum (Davies et al 

2001). Although Thal/IMiDs induce IL-2 secretion from 

T cells (Corral et al 1999; Shannon et al 2000), the mecha-

nisms whereby these compounds induce IL-2 production 

from T cells has not totally been defi ned. Importantly, our 

recent studies demonstrated that lenalidomide signifi cantly 

costimulates proliferation of CD3+ T cells induced by CD3 

ligation, immature dendritic cells (DCs; SI, 2.1), or mature 

DCs (SI, 2.6). T-cell proliferation triggered by DCs is abro-

gated by cytotoxic T lymphocyte antigen 4-immunoglobulin 

(CTLA-4-Ig). Lenalidomide also overcomes the inhibitory 

effects of CTLA-4-Ig on Epstein-Barr virus and infl uenza-

specifi c CD4 and CD8 T-cell responses, as measured by 

cytokine capture and enzyme-linked immunosorbent spot 

(ELISPOT) assays. Importantly, lenalidomide triggers 

tyrosine phosphorylation of CD28 on T cells, followed by 

activation of NF-κB (LeBlanc et al 2004). Furthermore, we 

have demonstrated that IMiDs facilitate the nuclear translo-

cation of nuclear factor of activated T cells (NF-AT)-2 and 

activator protein-1 via activation of PI3-K/Akt signaling, 

with resultant IL-2 secretion. IMiDs enhance both NK cell 

cytotoxicity and ADCC induced by triggering IL-2 produc-

tion from T cells (Hayashi et al 2005). These studies therefore 

defi ne the molecular mechanisms whereby lenalidomide trig-

gers NK cell-mediated cytotoxicity against MM cells, further 

supporting their therapeutic use in MM. More recently, we 

have shown that lenalidomide enhances ADCC induced by 

SGN-40, a humanized IgG1 anti-CD40 monoclonal antibody 

(Tai et al 2005).

Clinical studies of lenalidomide
Pharmacokinetics
Pharmacokinetics (PK) of lenalidomide in MM patients 

has been reported by Wu and Scheffl er (2004) at American 

Society of Clinical Oncology in 2004. In this single-center, 

open-label, non-randomized, phase I dose escalation study 

in relapsed and refractory MM, the doses of lenalidomide 

used were 5, 10, 25 or 50 mg/day orally for 28 days. Blood 

samples were collected before and at 15 min, 30 min, 45 min, 

1 h, 1.5 h, 2 h, 2.5 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12 h, 18 h, 24 h, 

48 h, and 72 h after administration on both days 1 and 28. No 

lenalidomide dose-limiting toxicity was observed at any dose 

level within the fi rst 28 days. Absorption of lenalidomide was 

rapid on both day 1 and 28, with t
max

 ranging from 0.7 to 2.0 h 

Figure 2 Potential mechanisms of synergistic cytotoxicity by lenalidomide plus 
Dex treatment in MM cells. Lenalidomide triggers caspase-8 dependent apoptosis, 
whereas Dex induces caspase-9 dependent apoptosis. The combination therefore 
triggers dual apoptotic signaling cascades.



Therapeutics and Clinical Risk Management 2008:4(1) 133

Lenalidomide plus dexamethasone in multiple myeloma

at all dose levels. Plasma levels of lenalidomide declined in a 

monophasic manner, with elimination half-life ranging from 

2.8 to 6.1 h on both days 1 and 28 at all four doses. No plasma 

accumulation was observed upon multiple dosing. Importantly, 

daily oral doses of lenalidomide up to 50 mg produced no 

dose-limiting toxicity within the fi rst 28 days.

The other PK study has been reported by Richardson et al 

(2006). In this study, plasma concentration of lenalidomide 

was determined in 39 patients during the fi rst and second 

cycles in both 15 mg and 30 mg dose groups, and when Dex 

was added due to progressive disease (PD) or stable disease 

(SD) on lenalidomide alone. The mean minimum (C
min

) 

plasma lenalidomide concentrations on days 1, 2, 3, 4, and 

21 during the fi rst and second 21-day cycles of lenalidomide 

alone and with the addition of Dex are shown for the 30 mg 

once-daily and 15 mg twice-daily cohorts. The average C
min

 

plasma levels were less in the twice-daily compared with 

daily dosing regimens. No obvious effect on lenalidomide 

plasma concentrations was seen with addition of Dex in either 

once- or twice-daily treatment.

Clinical trials of lenalidomide
Only a limited number of reports are available for clini-

cal studies of lenalidomide (Bartlett et al 2004). A phase I 

clinical study of lenalidomide was completed at Dana-Farber 

Cancer Institute (Richardson et al 2002a). In this study, 

dose-escalation (5 mg/day, 10 mg/day, 25 mg/day, and 

50 mg/day) of lenalidomide was evaluated in 27 patients 

(median age 57 years; range, 40–71 years) with relapsed 

and refractory relapsed MM (Richardson et al 2002b). These 

patients received a median of 3 (range, 2–6) prior regimens, 

including autologous stem cell transplantation and Thal in 

15 and 16 patients, respectively. In 24 evaluable patients, 

no dose-limiting toxicity (DLT) was observed in patients 

treated at any dose level within the fi rst 28 days; however, 

grade 3 myelosuppression developed after day 28 in all 13 

patients treated with 50 mg/day lenalidomide. Dose reduction 

to 25 mg/day was well tolerated in 12 patients and therefore 

considered to be the maximal tolerated dose (MTD). Most 

importantly, no signifi cant somnolence, constipation, or 

neuropathy, the most common toxicities of Thal, have been 

seen in any cohort. Best responses of at least 25% reduction 

in paraprotein occurred in 17 of 24 (71%) patients (90% 

confi dence interval [CI], 52%–85%), including 11 (46%) 

patients who had received prior Thal; stable disease (less 

than 25% reduction in paraprotein) was observed in an addi-

tional 2 (8%) patients. This study therefore demonstrates that 

lenalidomide can overcome conventional drug resistance, 

even resistance to Thal. Given that lenalidomide is an oral 

agent, it is currently being evaluated in a randomized trial 

post autografting in an attempt to prolong progression free 

and overall survival.

A multicenter, open-label, randomized phase II study 

to evaluate 2 dose regimens of lenalidomide for relapsed, 

refractory MM has been performed. In this study, 70 patients 

were randomized to receive either 30 mg once-daily or 15 mg 

twice-daily oral lenalidomide for 21 days of every 28-day 

cycle. An additional 32 patients received 30 mg once daily. 

Patients with progressive or stable disease after 2 cycles 

received additional Dex. Responses were evaluated according 

to European Group for Blood and Marrow Transplantation 

(EBMT) criteria. Overall response rate (CR+PR+MR) to 

lenalidomide alone was 25%; 24% for 30 mg once-daily and 

29% for 15 mg twice-daily cohort. Median overall survival in 

30-mg once-daily and 15 mg twice-daily groups was 28 and 27 

months, respectively. However, median progression-free sur-

vival was 7.7 months on 30 mg once-daily versus 3.9 months 

on 15 mg twice-daily lenalidomide. Dex was added in 68 

patients and 29% responded. Importantly, time to fi rst occur-

rence of clinically signifi cant grade 3/4 myelosuppression 

was shorter in the 15 mg twice-daily group (1.8 months) than 

30 mg once-daily (5.5 months, p = 0.05) group. Moreover, 

analysis of the fi rst 70 patients showed increased grade 3/4 

myelosuppression in patients receiving 15 mg twice-daily 

(41% vs 13%, p = 0.03). This study indicate that lenalidomide 

is active and well tolerated in relapsed, refractory myeloma, 

with the 30-mg once-daily regimen providing the basis for 

future studies as monotherapy and with Dex (Richardson 

et al 2006).

Clinical studies of lenalidomide
in combination with Dex
As described above, preclinical studies have demonstrated 

the effi cacy of combination treatment of lenalidomide with 

Dex in MM and several clinical trials of this combination 

treatment have been completed.

In two double blind, multicenter, international phase 

III clinical trials (MM-009, North American, 353 patients; 

MM-010, Europe, Australia, and Israel, 351 patients), 

patients with relapsed or refractory MM not resistant to Dex 

were treated with Dex 40 mg daily on days 1–4, 9–12, and 

17–20 every 28 days and were randomized to receive either 

lenalidomide 25 mg daily orally on days 1–21 every 28 days 

or placebo. At a median follow-up from randomization of 

17.1 months (MM-009) and 16.5 months (MM-010), both 

studies show signifi cant improvement with lenalidomide 
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plus Dex compared to Dex in overall response (OR) 

(MM-009: 1% vs 20.5%, p � 0.001; MM-010: 59.1% 

vs 24%, p � 0.001, respectively), time to progression 

(TTP) (MM-009: 11.1 months vs 4.7 months, p � 0.001; 

MM-010: 11.3 months vs 4.7 months, p � 0.001, respec-

tively), and overall survival (OS) (MM-009: 29.6 months 

vs 20.5 months, p � 0.001; MM-010: not estimable vs 20.6 

months, p � 0.001, respectively). In a subgroup analysis on 

patients with impaired creatinine clearance, no signifi cant 

difference in response rate, TTP, or OS was observed in 

patients with creatinine clearance above or below 50 mL/

min who were treated with lenalidomide plus Dex; however, 

for 16 patients with creatinine clearance �30 mL/min, 

median TTP and OS was shorter than for those with creati-

nine clearance �30 mL/min, but still signifi cantly longer 

than for patients treated with Dex (Weber et al 2006).

Treatment with lenalidomide plus Dex in newly diagnosed 

MM patients has also reported by Rajkumar et al (2005). In 

this study, lenalidomide was given orally 25 mg daily on days 

1–21 of a 28-day cycle. Dex was given orally 40 mg daily 

on days 1–4, 9–12, and 17–20 of each cycle. Thirty-one of 

34 patients achieved an objective response, including 2 (6%) 

achieving complete response (CR) and 11 (32%) meeting 

criteria for both very good partial response and near complete 

response, resulting in an overall objective response rate of 

91%. This study indicated that lenalidomide plus Dex is a 

highly active regimen with manageable side effects in the 

treatment of newly diagnosed MM.

A number of studies demonstrated that MM is character-

ized by cytogenetic abnormalities causing dysregulation of 

the genes at the breakpoints, and by point mutations (Kuehl 

et al 2002; Fonseca et al 2004; Carrasco et al 2006). Spe-

cifi cally, chromosome 13 deletions are present in over 50% 

of MM patients and considered to be associated with poor 

prognosis. In addition, t(4; 14) in MM also predicts poor 

response to conventional and high dose treatment and short-

ened survival. A recent study has shown that lenalidomide 

overcomes the poor prognosis conferred by chromosome 13 

deletion and t(4; 14) in MM patients, evidenced by event free 

survival and response rate (Bahlis et al 2006).

Recently, a phase I/II 3 combination treatment of 

lenalidomide, Dex and adriamycin (RAD therapy) for 

relapsed MM patient has been reported. In this study, 31 

patients were evaluated for response and toxicity: 26 patients 

achieved reduction of paraprotein levels of at least 50% for 

a response rate of 84%, including one confi rmed CR and 

14 PRs according to the EBMT criteria. Importantly, 8 of 

10 patients who displayed del (13) on cytogenetic analysis 

responded, including 6 confi rmed PRs. One patient each 

experienced acute renal failure due to emesis and hypo-

volemia, pneumocystis pneumonitis, and catheter related 

infection. Somnolence, constipation, thromboembolism, 

or neuropathy was not observed. This study showed that 

RAD induces substantial responses with an acceptable 

toxicity profi le, and thus signifi cantly contributes to the 

therapeutic armamentarium even in heavily pretreated MM 

patients (Knop et al 2006). Most recently, a phase I study of 

lenalidomide and dexamethasone in combination with Akt 

inhibitor perifosine for patients with relapsed or refractory 

MM, and a phase I/II study of lenalidomide, dexamethasone 

and bortezomib combination therapy for newly diagnosed 

MM patients are ongoing.

The common side effects of lenalidomide treatment in 

phase 2 clinical trials of relapsed refractory MM are sum-

marized in Table 1. The most common toxicities associated 

with Thal (eg, constipation, neuropathy, tremors) were not 

observed. Toxicities associated with lenalidomide were 

primarily hematologic and reversible. The most common 

grade 3 or higher adverse events during lenalidomide therapy 

were neutropenia and thrombocytopenia. Grade 4 neutro-

penia occurred in 2 of 34 (5.8%) patients treated at 15 mg 

twice daily vs 4 of 68 (5.9%) patients treated with 30 mg 

daily. Grade 4 thrombocytopenia occurred in 2 (5.8%) of 

34 patients on 15 mg twice daily vs 2 of 68 patients (2.9%) 

treated with 30 mg daily. Deep vein thrombosis (DVT) 

was reported in 1 patient on the 30 mg daily and 2 patients 

(5.8%) on the 15 mg twice-daily treated regimen. Sedation 

or neurologic toxicities were not observed in most of these 

studies (Richardson et al 2006). The differences in the side 

effect profi le between Thal and lenalidomide may refl ect 

distinct patterns of antiangiogenic, cytokine-related, micro-

environmental, and immunomodulatory activity, rather than 

distinct separate mechanisms of action.

In phase III trials of lenalidomide plus Dex for newly 

diagnosed MM patients, 47% of patients experienced grade 

III or higher nonhematologic toxicity. The most common 

adverse effects were fatigue (15%), muscle weakness (6%), 

anxiety (6%), pneumonitis (6%), and rash (6%) (Rajkumar 

et al 2006a). Recently, a randomized phase III trial of 

lenalidomide plus high-dose Dex versus lenalidomide plus 

low-dose Dex in newly diagnosed MM has also reported 

by Rajkumar et al (2006b). In this study, patients in both 

arms received lenalidomide 25 mg/day orally on days 1–21 

every 28 days. In addition, patients in the high-dose Dex 

arm received Dex 40 mg on days 1–4, 9–12, and 17–20 

orally every 28 days, while patients in the low-dose Dex 
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arm received Dex 40 mg on days 1, 8, 15, and 22 orally 

every 28 days. Although response rate (RR) has not yet 

been reported, toxicity rates are higher in the high-dose 

Dex arm than low-dose Dex arm. For example, Grade 3 

and above toxicities in cardiac ischemia (2.7% vs 0.5%), 

hypercalcemia (5.8% vs 1.8%), infection (18.8% vs 9%), 

thromboembolism (18.4% vs 5.4%), and non-hematologic 

toxicities (22% vs 12.6%) are higher in high-dose Dex arm 

than low-dose Dex arm. If RR is similar in both arms, dos-

age of Dex can be reduced to 25 mg.

Conclusion
Lenalidomide plus Dex treatment is highly effective in 

both preclinical and clinical studies. It is one of the prom-

ising treatment options against both relapsed/refractory 

and newly diagnosed MM patients. Adverse effects of this 

combination can be markedly reduced by lowering the 

Dex dosage.

Future directions
Lenalidomide plus Dex treatment can be further combined 

with other novel or conventional agents to improve patient 

outcome in MM. Indeed, potent Akt inhibitor Perifosine, 

proteasome inhibitor bortezomib (Velcade®; Millennium 

Pharmaceuticals Inc.), and anti-angiogenic agent bevaci-

zumab (Avastin®; Genentech) are already under evaluation 

in combination clinical trials.
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