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Sketching is one of the most important processes in the conceptual stage of design.

Previous studies have relied largely on the analyses of sketching process and outcomes;

whereas surface electromyographic (sEMG) signals associated with sketching have

received little attention. In this study, we propose a method in which 11 basic one-stroke

sketching shapes are identified from the sEMG signals generated by the forearm

and upper arm muscles from 4 subjects. Time domain features such as integrated

electromyography, root mean square and mean absolute value were extracted with

analysis windows of two length conditions for pattern recognition. After reducing data

dimensionality using principal component analysis, the shapes were classified using

Gene Expression Programming (GEP). The performance of the GEP classifier was

compared to the Back Propagation neural network (BPNN) and the Elman neural network

(ENN). Feature extraction with the short analysis window (250 ms with a 250 ms

increment) improved the recognition rate by around 6.4% averagely compared with the

long analysis window (2500 ms with a 2500 ms increment). The average recognition

rate for the eleven basic one-stroke sketching patterns achieved by the GEP classifier

was 96.26% in the training set and 95.62% in the test set, which was superior to the

performance of the BPNN and ENN classifiers. The results show that the GEP classifier

is able to perform well with either length of the analysis window. Thus, the proposed GEP

model show promise for recognizing sketching based on sEMG signals.

Keywords: sketching, surface electromyography, gene expression programming, muscle-computer interface,

pattern recognition

1. INTRODUCTION

Conceptual design is one of the earliest stages of product development and is responsible for
defining key aspects of the final product (Briede-Westermeyer et al., 2014). Designers commonly
use freehand sketching to express conceptual design, which is a reflection-in-action process that
occurs during design (Schön, 1983). As a natural and efficient method to communicate ideas
(Van der Lugt, 2005), the potential advantages of sketching have been widely recognized and
exploited in many fields (Pu and Gur, 2009).

Sketching is a visual language, and as with any language, some elements go together to form
more structured forms of communication. However, there is no definitive set of basic shapes. The
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most common are: line/curve/arc, rectangle/square/diamond,
circle/ellipse, arrowhead and triangle (Schmieder et al., 2009).
However, novice designers are trained to precisely and quickly
draw four basic shapes with one stroke: freehand straight lines,
ellipses, circles and smooth curves (Olofsson and Sjölén, 2007;
Robertson and Bertling, 2013). Design sketches can be sketched
with an arbitrary number of these four kinds of basic one-stroke
shape.

Pen and touch medium tablets, interactive pen displays, touch
screens, tablet computers, and mouse have typically been used
to record and transmit sketching messages to computers. Many
of the most robust sketch recognition systems today focus on
gesture or isolated symbol recognition (Field et al., 2010). Hidden
Markov models (Anderson et al., 2004; Cao and Balakrishnan,
2005; Sezgin and Davis, 2005), neural networks (Pittman, 1991),
feature-based statistical classifiers (Rubine, 1991; Cho, 2006),
dynamic programming (Myers and Rabiner, 1981; Tappert,
1982), ad-hoc heuristic recognizers (Wilson and Shafer, 2003;
Notowidigdo and Miller, 2004), proportional shape matching
(Kristensson and Zhai, 2004) and $1 recognizer (Wobbrock et al.,
2007) have been widely used for gesture recognition. Despite
substantial progress in this area, recognizing sketching remains
a difficult problem since sketches are informal, ambiguous, and
implicit (Li, 2003).

A recent trend is toward more accessible and natural
interfaces. Thus, Human Computer Interaction (HCI) has drawn
attention to the voice, hand gesture and posture as important
perceptual interfaces in addition to the traditional computer
peripherals or touch screens (Linderman et al., 2009; Chen et al.,
2015). An interface that converts human bioelectric activity
to external devices, known as bioelectric interface (Linderman
et al., 2009), especially muscle-computer interface (Chowdhury
et al., 2013), has become a new research focus in the field of
HCI. Sketching and its key role in concept design are identified
(Schütze et al., 2003; Tovey et al., 2003) and sketch-based
interfaces can achieve more natural HCI (Kara and Stahovich,
2005), which has led to computer-aided sketching (CAS) systems
(Sun et al., 2014) and sketch-based interfaces for modeling
in computer-aided design (CAD) systems (Olsen et al., 2009).
Although much progress has been made, sketching has received
little attention from the designers of bioelectric interfaces due
to perceived technical limitations (Linderman et al., 2009), the
paucity of models (McKeague, 2005), and intra-class variations
and inter-class ambiguities of sketches (Li et al., 2015).

Surface electromyographic (sEMG) signals have been used
to control computers (Wheeler and Jorgensen, 2003), prosthesis
(Farina et al., 2014; Jiang et al., 2014), robots (Kiguchi and
Hayashi, 2012) and wheelchair (Andreasen and Gabbert, 2006).
Researchers also have used EMG as new interfaces (Ahsan et al.,
2009; Chowdhury et al., 2013) for recognition of hand gestures
(Chen et al., 2007; Fougner et al., 2014), sign languages (Li et al.,
2010), body languages (Chen et al., 2014) and facial expressions
(Chen et al., 2015). However, the sEMG, which reflects to
some extent the underlying neuromuscular activity (Jian, 2000),
has also been found useful for the recognition of handwriting
(Lansari et al., 2003; Linderman et al., 2009; Huang et al., 2010;
Chihi et al., 2012). For instance, Linderman et al. (2009) showed

a method in which EMG signals generated by hand and forearm
muscles during handwriting activity are reliably translated into
both algorithm-generated handwriting traces and font characters
using decoding algorithms. Huang (2013) proposed to use the
dynamic time warping algorithm for the overall recognition of
handwriting signals of the EMG. The fact that brain, hand, and
eye actions are tightly connected in the sketching process (Goel,
1995; Taura et al., 2012; Sun et al., 2014) suggests that bioelectric
interfaces potentially could extract normal sketching patterns
directly from hand and arm EMG signals. However, this question
has rarely been explored so far.

Two things are needed to improve the classification
accuracy of subtle sketching movements: feature extraction and
recognition model construction (Englehart and Hudgins, 2003;
Nielsen et al., 2011). Selecting a proper length of analysis window
and increment for feature extraction can improve classification
accuracy (Smith et al., 2011; Earley et al., 2016). Any algorithm
that enables recognizing the sketching patterns from the features
of sEMG signals should be adopted (Nielsen et al., 2011). It is
expected that advanced algorithms would satisfy the following
requirements (Farina et al., 2014; Hahne et al., 2014): little user
training, high computational efficiency and also performing well
with few electrodes. Those aspects are addressed in the present
study by applying a robust variant of genetic programming,
namely Gene Expression Programming (GEP).

This study proposes an sEMG-based method for the
recognition of 11 basic one-stroke shapes from sketching
in conceptual design. More specifically, our distinctive
contributions are: (1) A new experiment protocol will be
established to record the sEMG signals from 4 forearm and 2
upper arm muscles of 4 participants who will be instructed to
trace and cover each printed one-stroke shape on sketching
templates; (2) we will extract 180 time domain indices of the
sEMG signals with a short analysis window and 18 indices with
a long analysis window. (3) After reducing dimensions with
principal component analysis (PCA), GEP, Back Propagation
neural networks (BPNN) and Elman neural networks (ENN)
will be used to construct recognition models respectively for
comparison.

2. MATERIALS AND METHODS

2.1. Participants
This study was approved by the Ethics Committee of Donghua
University. Four healthy graduate students majoring in industrial
design (2 males and 2 females; mean ± SD, age = 23.5 ± 0.58
years, height = 170.75 ± 8.61 cm, and weight = 65 ± 11.01 kg)
volunteered to participate in the experiment. All participants had
a medical examination to exclude upper limb musculoskeletal
and nervous diseases, and they are right-handed. Before the
experiment, they promised not to do any forearm or hand
strenuous exercise.

2.2. Equipment and Materials
2.2.1. Electromyographer
The sEMG signals were collected, amplified and transmitted
using a 12-channel digital EMG system (ZJE-II, ZJE Studio Ltd.,
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China). It has an amplifier gain of 1000, conditioned with a
digital band-pass filter between 10 and 500 Hz with a notch
filter implemented to remove the 50Hz line interference. The
sEMG signals underwent a 14 bit analog to digital conversion at
a sampling frequency of 1000Hz.

The single disposable Ag/AgCl strip electrodes (5 cm in length
and 3.5 cm in width), filled with conductive electrode paste (Jun
Kang Medical Supplies Ltd., China) were used to measure sEMG
activity. The electrodes can be snapped onto the EMG cable that
connects it to the EMG amplifier.

2.2.2. Tested Shapes and Sketching Materials
Table 1 shows the tested one-stroke shapes that are variations of
the four basic one-stroke shapes. We selected in total 11 one-
stroke shapes: horizontal, vertical, 45◦ and 135◦ straight lines,
horizontal 20◦ and 40◦ ellipses, vertical 20◦ and 40◦ ellipses,
perfect circles, S curves, and arcs. The selection of these tested
shapes was based on the fact that these were short, well-known
and frequently used shapes among the subjects in product design.
The degree of an ellipse is the measure of the angle of the line
of sight into the surface of the ellipse (Robertson and Bertling,
2013).

We printed these 11 one-stroke shapes into a piece of A4
paper with shallow color as a sketching template. We prepared
ten patterns of template paper consisting of 11 shapes each. The
order of the 11 shapes on the list of sketching template paper
was randomized, with a different random order for each pattern.
Subjects were required to draw on the paper to trace and cover
each printed shape. Figure 1 shows an example of the sketching
templates.

A standard mesh computer chair with a 40 cm seat height
and rectangular wooden desktop (length: 100 cm, width: 60 cm,
height: 75 cm) was used to replicate the conditions that are
found in a regular work room. Subjects sketched on a sketching
template, using a blue ink ballpoint pen, model BIC Cristal, with
a hexagonal barrel, a medium point of 1.0 mm and line width of
0.4 mm.

2.2.3. Electrode Placement
After the location of muscles through palpation during voluntary
contraction, the skin of each subject was shaved where necessary
and then carefully cleaned with alcohol and electrolyte gel
to reduce contact impedance and improve the electrical and
mechanical contact of the electrodes (de Almeida et al., 2013).
The electrodes were fixed to the skin with hypoallergenic tape
to reduce movement artifacts and minimize interference in the
sketching performance.

TABLE 1 | Tested one-stroke shapes.

Straight lines Ellipses Circles Smooth curves

Horizontal straight line Horizontal 20◦ ellipse Perfect circle S curve

Vertical straight line Horizontal 40◦ ellipse Arc

45◦ straight line Vertical 20◦ ellipse

135◦ straight line Vertical 40◦ ellipse

Previous research (Lansari et al., 2003; Huang et al., 2010;
Chihi et al., 2012) always recorded surface EMGs from hand
muscles for handwriting recognition. However, according to
Robertson and Bertling (2013) and our experience, designers
should move the whole arm to sketch. Researchers have also
proposed that the increasing number of tested muscles has
a positive effect on improving the accuracy of recognition
(Linderman et al., 2009). Since sketching involves the finger,
wrist, and whole arm movements, sEMG signals can be recorded
from intrinsic hand, forearm and upper arm muscles. However,
the pen is prone to touching sEMG electrodes attached on
hand to arise electrode shift, which will make noises during the
collection of EMG signals, and reduce the recognition accuracy.
Besides, placing electrodes on hand skin is not accessible and
natural for practical use. Therefore, only EMG activity over
the forearm and upper arm muscles was measured for feature
extraction. Thus, four forearm muscles: flexor carpi radialis
(FCR), extensor digitorum (ED), extensor carpi ulnaris (ECU),
extensor carpi radialis brevis (ECRB) and two upper armmuscles:
triceps brachii (TB) and biceps brachii (BB) were selected for
their major role in stabilization and movement of the upper
limb during fine dexterity activities, such as handwriting and
sketching (Linderman et al., 2009; de Almeida et al., 2013).
The locations of the surface EMG electrodes are shown in
Figure 2.

2.3. Experimental Protocol
The experiments were carried out for 10 days in October in 2015.
They were performed twice a day, one from 09:00 to 12:00 for
women and another from 14:00 to 17:00 for men. The experiment
was divided into three stages: a welcome stage, a preparation
stage, and a task stage. During a welcome stage, the procedures
and the equipment used for the experiment were introduced to
the participants. All participants were required to sign a consent
form with a detailed description of the experiment and complete
a background questionnaire about personal information such as
height and weight.

FIGURE 1 | One example of the sketching templates (dots represent

starting points, arrows represent directions).
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FIGURE 2 | Electrode placement over the forearm and upper arm muscles.

During the preparation stage, the task instructions were read
to the participants, and they were given a brief tutorial on how to
complete the task. The objective was to reproduce as accurately
as possible the natural conditions of designers in a workroom
environment. Participants were instructed to practice the task
prior to the data acquisition as many times as necessary to feel
secure about their performance and were informed that they
would be given a sketching template paper. Then they were asked
to sketch on the paper to trace and cover each printed one-stroke
shape, using their trained pen grasp posture and sketching skill in
one stroke.

For the task stage, we prepared 100 sheets of sketching
template paper consisting 11 one-stroke shapes for each
participant. By a trial, we define a recording epoch during which
a subject sketches a single one-stroke shape. Each shape was
successively sketched 100 times. The obtained data were used as
the training and test set. Therefore, each subject sketched 1100
shapes (i.e., performed 1100 trials) during the whole experiment.
Since we sought to recognize basic one-stroke shapes, the subjects
were asked to make pauses between the one-stroke shapes. The

trials were paced by the timer software of mobile phone which
played a beep sound at the beginning of each trial. The duration
of each trial was 3 s of which 1–2.5 s corresponded to each shape
sketching.

At the beginning of the task stage, electrodes were attached
to the participants’ skin and connected to the EMG system. The
locations were marked on skin with a marking pen to ensure
the same locations during every session. In each session, new
electrodes were attached again on the pen marks. Next, a sheet of
sketching template paper was presented to the participant. Each
repetition of the task was initiated with the subject holding the
pen with their usual grasp pattern at a desk in front of a new
sketching template. The subject was instructed to remain in this
position until the maximal relaxation point, and simultaneous
visualization of the EMG signal was registered, as shown in
Figure 3. At this point, the beginning of the task was requested
through a beep sound. EMGs of 6 muscles were simultaneously
recorded. Each subject was instructed to sketch on the sketching
template to trace and cover printed stimuli. To avoid muscle
fatigue, subjects would rest for 5 min after each set of tested
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FIGURE 3 | A photograph of an experimental session.

shapes (i.e., one sheet of sketching template paper) and the
collection of EMG signals was stopped, but the electrodes were
not removed until the subject finished ten sets of tested shapes.

The design of the experiment was a One-stroke shape (11) ×
Repetition (10)× Day (10) within-subjects design, amounting to
1100 trials per participant. Participation in the experiment took
approximately 600 min.

2.4. Feature Extraction
Among the various ways for sEMG feature extraction, the average
Electromyography (aEMG), Root Mean Square (RMS) andMean
Absolute Value (MAV) are able to respond to the changes of
signal amplitude characteristics (Jian, 2000; Ren et al., 2004;
Poosapadi Arjunan and Kumar, 2010; Geethanjali and Ray, 2011)
and are widely used in the sEMG pattern recognition. Therefore,
this paper combined these three time domain characteristics as
features. These features were extracted separately from 6 channels
of sEMG signals during the sketching of each shape. The aEMG,
RMS and MAV are computed as follows:

aEMG =
1

N

N
∑

i= 1

vi (1)

RMS =

√

√

√

√

1

N

N
∑

i= 1

v2i (2)

MAV =
1

N

N
∑

i= 1

|vi| (3)

where vi is the voltage at the ith sampling and N is the number of
sampling points.

We designed a Labview script to control the feature extraction
of sEMG signals. The framework is illustrated in Figure 4. There
are two steps in the windowing scheme for the feature extraction
of sEMG data. The first step is threshold crossing. The aim of

FIGURE 4 | Windowing scheme of sEMG data in the continuous feature

extraction. The size of each epoch of individual shapes is T. The size of

sliding window for detecting threshold crossing is first set as l with a window

increment of s. When the RMS value of the sliding window crossing the

threshold lasts for B segments, the onset of the window will be the epoch

onset of individual shapes. Next, the size of successive analysis windows for

classification will change to L with a window increment of S. RMS, MAV, and

aEMG are calculated at each L intervals. The sEMG data for classification is

divided into C segments for every L that is the length of integrated samples as

a feature extraction and the start point is shifted every S. Although six

channels of sEMG data are used, only the main channel is shown here for

illustrative purposes.

this step is to detect the onset of individual sketching epoch for
classification. The start point of the current sliding window can
be decided as the epoch onset when the calculated RMS value
of it is equal or greater than the presupposed threshold, and the
RMS values of the following certain number of sliding windows
are also crossing the threshold. The main channel that has the
highest RMS value will be used for detecting threshold crossing,
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and the epoch onset of the main channel will be designated for all
channels. The second step is feature extraction of classification
epoch of individual shapes. The feature (RMS, MAV, and aEMG)
values can be calculated using successive analysis windows. The
size of the analysis windows here is different from that of sliding
windows for detecting onset.

There are two major techniques in data windowing: adjacent
windowing and overlapped windowing, depending on the
difference between increment time and the segment length
(Englehart and Hudgins, 2003; Oskoei and Hu, 2007). In this
study, the overlapped windowing technique that results in a
dense decision stream was used for detecting threshold crossing
and onsets precisely, and all data were segmented for feature
extraction using the adjacent windowing technique for saving
computation time. The main channel in this paper is the channel
collecting EMG signals from extensor digitorum (ED). In our
study, sliding window for detecting threshold crossing was
20 ms (20 samples at 1000 Hz sampling), and the window
increment was 5 ms. Two types of analysis window were set for
comparison: short analysis window (window length of 250 ms
with a 250 ms increment), and long analysis window (window
length of 2500 ms with a 2500 ms increment). Rectified sEMGs
from all muscles were segmented into epochs corresponding to
individual shapes using a threshold that detected EMG bursts
and designated the epoch onset. The threshold was set as 0.6
RMS during each set of tested shapes, which can detect all
the trials (sketching epochs) per participant precisely. Then the
epoch onset is determined when the RMS of the EMG signals
crossing the threshold lasts for 300 ms (57 segments of sliding
window for detecting threshold crossing). After these onsets had
been determined, the EMG recording was segmented into 2.5 s
epochs (10 segments of short analysis window; 1 segment of long
analysis window) which represented the sketching of each shape.
For the short analysis window, we can collect Segment (10) ×
Time domain characteristic (3) × Tested muscle (6), amounting
to 180 parameters per participant per sketching shape. For the
long analysis window, we can collect Segment (1)×Time domain
feature (3)× Tested muscle (6), amounting to 18 parameters per
participant per sketching shape.

After collecting all RMS, MAV, and aEMG values, to reduce
data dimensionality, PCA was used to preprocess the EMG data
before the classification step.

2.5. Classification
GEP is applied to the patterns extracted from multi-class, multi-
channel continuous EMG signals for classification. Subsequently,
the classifications were also obtained with two types of artificial
neural networks (BPNN and ENN). The computing programs
implementing the GEP were written with C++ language in
Windows 7 and performed on a computer with a 2.8 G Intel Core
Duo CPU and 8 G RAM. The neural network model is built with
the simulation software NeuroSolutions 6 on Windows 7. The
classifications were carried out with the same training and test
sets.

2.5.1. Gene Expression Programming Classifier
GEP is a genetic algorithm (GA) as it uses populations of
individuals, selects them according to fitness, and introduces

genetic variation by using one or more genetic operators
(Ferreira, 2001). As a global search technique using GA, GEP has
exhibited great potential for solving complex problems (Ferreira,
2001). GEP uses fixed- length, linear strings of chromosomes
to represent computer programs in the form of expression
trees of different shapes and sizes, and implements a GA
to find the best program (Zhou et al., 2003). One of the
advantages of using GEP over other data-driven techniques is
that it can produce explicit formulations of the relationship
that rules the physical phenomenon (Martí et al., 2013).
The reasons to use GEP for classification are the flexibility,
capability, and efficiency of GEP (Zhou et al., 2003). The
procedure of construction for sketching recognition was as
follows.

Step 1: Population Initialization
Each GEP chromosome is composed of a list of symbols
with a fixed length, which can be any element from the
function set and the terminal set. In our study, eight
elements were chosen as the mathematical function set: F =

{+,−,×, /, Sin,Cos, Sqrt,Exp}. Then, the terminal set: T =

{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} was selected, if,
for instance, twelve sEMG features (x1 − x12) were extracted
from 6 channels. Length of head, h = 15, length of tail,
t = 16, three genes per chromosomes were employed. The
linked function was “addition” for algebraic sub tree for our
study.
Step 2: Genetic Operation
Basic genetic operators were applied for each generation,
including mutation, inversion, IS transposition, RIS
transposition, one-point recombination, two-point
recombination, gene recombination and gene transposition.
The details about how these operators implement can be seen
in Ferreira (2001).
Step 3: Fitness Calculation Themaximum fitness (fmax) was set
to 1000, and then the fitness was calculated as follows:

ffitness = 1000×
1

MSEi + 1
(4)

MSEi =
1

m

m
∑

j− 1

(Fij − Tj) (5)

where MSE represents the mean square error, m is the total
number of fitness cases, Fj is the value output by individual
program i for the fitness case j (out ofm fitness cases) and Tj is
the target value for the fitness case j. For a perfect fit, Fij = Tj.
Step 4: Termination Criterion
There were two termination criteria: (1) ffitness = fmax; (2)
the maximum number of generations reached 2000. If either
criterion was satisfied, stopped, else, went to step 2. The
parameters used per run are summarized in Table 2. The GEP
modeling approach is represented in the scheme of Figure 5.
In Figure 5, terminal x1−x4 represent the variables; the alleles
represent the position in the genes; since there is a one-to-
one relationship between the symbols of the genes and the
functions or terminals they represent. According to the GEP
rules, the genes will be expressed as ETs and the ETs can also
be easily decoded as an algebraic equation.
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TABLE 2 | Training parameters of GEP based models.

Parameter Value

Number of chromosomes 50

Function set F = [+,−,×, /,Sin,Cos,Sqrt,Exp]

Terminal T = [x1 − x12]

Number of genes, head size 3, 15

Rounding threshold 0.5

Linking function Addition

Fitness function error type MSE

Mutation rate 0.044

Inversion rate 0.05

IS/RIS/gene transposition rate 0.05

One-Point/ two-point recombination rate 0.2

Gene Recombination Rate 0.05

For a two-class (binary) problem, the GEP expression
performs classification by returning a positive or nonpositive
value indicating whether or not a given instance belongs to that
class, i.e.,

If GEPi(X) > 0, then X ∈ Class i; else X /∈ Class i (i = 0, 1)
(6)

whereX is the input feature vector. For an n-class classification
problem, where n > 2, one-against-all learning method is
used to transform the n-class problem into n 2-class problems.
These are constructed by using the examples of class j as the
positive examples and the examples of classes other than j as
the negative examples (Zhou et al., 2003). Our study is an 11
2-class problem.

2.5.2. Back Propagation Neural Network Classifier
There are many types of artificial neural networks (ANNs).
The ANNs is suitable for modeling nonlinear data and is able
to cover the distinction among different conditions. As one
of the most common ANNs, BPNN has been widely used in
pattern recognition models for sEMG signals (Nan et al., 2003).
Back propagation (BP) learning comprises two processing steps
involving the forward and BP of error. The BP architecture is the
most popular model for complex, multi-layered networks (Xing
et al., 2015). A three-layer network consisting of one input layer,
one hidden layer with a sigmoid function, and one output layer
with a tanh function was used to set up the BPNN classification
models.

2.5.3. Elman Neural Network Classifier
Compared to the BPNN, the ENN was not frequently used
for classifying sEMG signals of motion patterns. However, in
our early work in Chen et al. (2015), the recognition rate of
the ENN-based model was slightly superior to the performance
of the BPNN-based model for eyebrow emotional expression
recognition. As a subclass of recurrent neural networks, the ENN
has a short-term memory function, which has been found to be
particularly useful for the prediction of discrete time series, owing
to its abilities to model nonlinear dynamic systems and to learn

time-varying patterns (Ardalani-Farsa and Zolfaghari, 2010). To
set up the ENN model, we used a four-layer network consisting
of one input layer, one hidden layer with a sigmoid function, one
context layer, and one output layer with a tanh function. More
detailed description of the structure of ENN can be found in
Chen et al. (2015).

2.5.4. Performance Evaluation Criteria
In this paper, the accuracy rate (AR) and AR11 were used
to evaluate the classification performance of five classifiers
mentioned above. The AR can be calculated as follows:

AR =
c

C
× 100% (7)

Where c is the number of correctly classified test samples, and C
is the total number of tested samples. A larger AR value (close to
one) indicate that the performance of the classifier is better. AR11
was the mean AR of 11 sketching shapes for each subject.

3. RESULTS AND DISCUSSION

Feature extraction and recognition algorithms had to be
performed on the data from individual subjects and did not
generalize to other subjects because of inter-subject variability
(Linderman et al., 2009). The dataset was randomly divided into
two subsets, a training set, and test set, for recognition. 70% of
the records from each day were used as the training set, and the
remainder of the records was used as the test set. The training
set contained 770 sEMG samples, whereas the test set contained
330 samples. For our study, the normalization interval was set as
[0.05, 0.95].

3.1. Results of Feature Extraction
Representative examples of the EMG signals and sketching traces
are shown in Figure 6. The channel of ED that had the highest
RMS value among the six sEMG channels was used as the main
channel for epoch onset discrimination. Setting the threshold as
0.6 RMS can help detect 1100 trials per participant precisely.
After these onsets had been determined, the EMG record was
segmented into 2.5 s epochs which represented the sketching
duration of each shape.

For the short analysis window, the number of parameters was
reduced from 180 to 12 principal components using PCA. For
the long analysis window, the number of parameters was reduced
from 18 to 5 principal components.

3.2. Classification Results
The 12 principal components extracted using short analysis
windows (250 ms) and principal components extracted using
long analysis windows (2500 ms) were entered as a 12-element
feature vector and a 5-element feature vector into the GEP
classifiers respectively. The averages of AR of the 11 one-stroke
shapes are shown in Figure 7. These averages are themeans of AR
for the four participants. The error bars represent the standard
error (SE).

According to Figure 7, for the training set, using the short
analysis window, the average values of AR from left to right are
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FIGURE 5 | Scheme of the GEP modeling approach (S : sin(),C : cos()).

98.47, 98.17, 96.93, 99.74, 99.41, 97.7, 98.67, 93.04, 94.38, 98.76,
and 97.56%; using the long analysis window, the average values of
AR from left to right are 98.61, 98.91, 94.72, 98.34, 96.91, 93.37,
97.43, 89.31, 93.08, 92.88, and 91.48%. For the test set, using the
short analysis window, the average values of AR from left to right
are 98.42, 97.46, 96.29, 99.11, 99.17, 97.13, 98.64, 92.17, 93.18,
98.45, and 96.78%; using the long analysis window, the average
values ofAR from left to right are 97.43, 97.28, 93.73, 98.75, 96.42,
91.64, 96.93, 88.14, 92.42, 93, and 91.66%.

For comparison purpose, we used the same training and
test set for the BPNN classifier. For the short analysis window,
we set the number of hidden layer to 1 and the number of
hidden layer nodes to 25. For the long analysis window, we set
the number of hidden layer to 1 and the number of hidden
layer nodes to 11. We defined two termination criteria for the
training phase: the maximum number of iterations was 2000,
and the minimum mean square error (MSE) was less than 0.01.
If either criterion were satisfied, the algorithms would stop.
The averages of AR of the 11 one-stroke shapes are shown in
Figure 8.

According to Figure 8, for the training set, using the short
analysis window, the average values of AR from left to right are
98.53, 100, 97.83, 98.95, 98.48, 98.28, 99.65, 90.4, 95.6, 95.8, and
96.23%; using the long analysis window, the average values of
AR from left to right are 95.43, 96.5, 91.48, 97.25, 93.28, 89.98,
93.28, 76.35, 86, 87.23, and 91.88%. For the test set, using the
short analysis window, the average values of AR from left to right
are 96.88, 96, 96.23, 98.2, 99.35, 99.12, 98.2, 90.45, 95, 98.53, and
96.97%; using the long analysis window, the average values of AR
from left to right are 92.15, 99.05, 87.15, 95.45, 89.35, 91.9, 93.17,
74.18, 85.2, 82.93, and 79.1%.

For comparison purpose, we also used the same training and
test set for the ENN classifier. We establish the same number of
hidden layer, the number of hidden layer nodes and termination
criteria as the BPNN. The averages of AR of the 11 one-stroke
shapes are shown in Figure 9.

According to Figure 9, for the training set, using the short
analysis window, the average values of AR from left to right
are 98.5, 100, 97.4, 98.9, 98.95, 98.2, 95.83, 92.7, 93, 94.55, and
95.25%; using the long analysis window, the average values of AR
from left to right are 95.13, 97.5, 93.98, 98.7, 89.15, 91.8, 90.53,
83.45, 81.83, 84.65, and 85.45%. For the test set, using the short
analysis window, the average values of AR from left to right are
98.63, 96.3, 95.23, 96.63, 97.33, 97.35, 96.15, 80.1, 93.23, 96, and
95.85%; using the long analysis window, the average values of AR
from left to right are 96.48, 94.8, 83.58, 92.45, 77.95, 81.68, 88.95,
71.45, 75.38, 75.9, and 75.98%.

Tables 3, 4 show the AR11 for individual subjects achieved
by the three recognition models. The averages of AR11 achieved
by the three recognition models are shown in Figure 10. These
averages are the means of AR11 for the four participants. The
error bars represent the standard error (SE).

We can conclude that compared with the BPNN and ENN
classifiers, the GEP classifier performed best for the training data
and generalized well to the test data: for both data sets and lengths
of analysis window, all the values of AR11 achieved by the GEP
model are greater than 93%; the averages of AR of 11 one-stroke
shapes achieved by the GEP model are higher than those of
BPNN and ENN.

It can also be observed that compared with the long analysis
window, the short analysis window can help improve the AR by
around 6.4% averagely for all three classifiers. However, for GEP
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FIGURE 6 | Example of discrimination for a representative recording session. Six sEMG channels were used for sketching recognition. Dotted lines represent

epoch onsets. Segments (2.5 s) are marked on the top.

classifier, using short analysis window can only improve the AR
by around 2.6% averagely, significantly less than those achieved
by the BPNN and the ENN classifiers (7.6%, 9.1%), which can
also indicate that the GEP classifier is able to perform well with
either length of analysis window.

3.3. Discussion
Thus, we have shown that EMGs of arm muscles can be
converted into sketching patterns. This technique potentially can
substitute for current computer input devices or touch screens
for sketching transmission. For example, it can provide another
method for implementing sketching in the air. In recent years,
computer vision technology can help recognize handwritten
characters and sketches in the air (Chen et al., 2008; Asano
and Honda, 2010; Hammond and Paulson, 2011; Vikram et al.,

2013). However, it appears that attaining a high recognition rate
using computer-vision based methods is currently only possible
with high-quality input images or videos and is vulnerable to
factors such as camera angle, background and lighting (Zhao,
2012; Chen et al., 2015). This disadvantage of the computer-
vision based methods is avoided by the sEMG-based method.
The sEMG-based approaches have been successfully used for the
recognition of handwriting (Linderman et al., 2009). However, to
our knowledge, there were rare previous studies using sEMG to
recognize sketching.

Each 2.5 s sketching epoch was detected using 0.6 RMS as
the threshold for feature extraction, and then dimensions were
reduced with PCA. The GEP classifier was able to recognize 11
one-stroke shapes with nearly perfect accuracy using 12 or 5
principal components of sEMG signals as input vectors. Very

Frontiers in Neuroscience | www.frontiersin.org 9 October 2016 | Volume 10 | Article 445

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Yang and Chen Sketching Recognition from sEMG

FIGURE 7 | Classification AR achieved by the GEP model vs. type of one-stroke shapes for 250 ms analysis windows and 2500 ms analysis windows

as measured with (A) the training data and (B) the test data.

FIGURE 8 | Classification AR achieved by the BPNN model vs. type of one-stroke shapes for 250 ms analysis windows and 2500 ms analysis windows

as measured with (A) the training data and (B) the test data.

FIGURE 9 | Classification AR achieved by the ENN model vs. type of one-stroke shapes for 250 ms analysis windows and 2500 ms analysis windows

as measured with (A) the training data and (B) the test data.

limited number of studies has been done on using this approach
to extract sEMG features for sketching recognition; however, this
novel approach of feature extraction (Figure 4) reveals the basis
of the excellent classification result of the GEP classifier.

Some researchers used sliding and analysis windows for
feature extraction of sEMG signals in the field of real-time
myoelectric control of prostheses and exoskeletons (Englehart
and Hudgins, 2003; Oskoei and Hu, 2007; Geethanjali and Ray,
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TABLE 3 | AR11 for individual subjects for the training set.

Subjects Analysis window GEP BPNN ENN

(ms) AR11 (%) AR11 (%) AR11 (%)

Man 1 250 98.1 97.2 93.6

2500 95.1 89.1 85.4

Man 2 250 97.7 97.7 98.1

2500 95.2 96.2 95.1

Woman 1 250 96.4 95.1 96.5

2500 94.4 87.8 90.8

Woman 2 250 98.0 98.8 98.3

2500 95.2 89.9 89.3

TABLE 4 | AR11 for individual subjects for the test set.

Subjects Analysis window GEP BPNN ENN

(ms) AR11 (%) AR11 (%) AR11 (%)

Man 1 250 97.9 96.5 94.1

2500 94.9 85.9 79.4

Man 2 250 97.4 98.3 97.9

2500 94.9 94.6 90.6

Woman 1 250 95.0 96.7 91.8

2500 93.1 86.7 81.2

Woman 2 250 97.4 95.5 95.2

2500 94.4 85.3 81.1

2011; Tang et al., 2014). We compared two different lengths
of adjacent analysis window, and the results indicate that the
short analysis window can get higher accuracy rates than the
long one (Figures 7–9, Tables 3, 4), which is in accordance with
the finding of Englehart and Hudgins (2003) who proposed
that a smaller segment increment produces a denser but semi-
redundant stream of class decisions that could improve response
time and accuracy. The short analysis window can divide one-
stroke sketching process into more segments, from which more
important details of features can be extracted. A larger amount
of data will result in features with lower statistical variance
and, therefore, greater classification accuracy. The length of the
short analysis window (250 ms) also conforms with the optimal
window length (150–250 ms) proposed by Smith et al. (2011) for
pattern recognition-based myoelectric control.

Interestingly, it can be observed from Figures 7–9 that the
vertical 40◦ ellipse was recognized worst for each classifier. The
reason may be that the vertical 40◦ ellipse is similar to two shapes
(the vertical 20◦ ellipse and the perfect circle), which can lead to
the increasing rate of false recognitions of it.

It can also be found that the proposed GEP classifier presented
the highest accuracy and robust when compared with the BPNN
classifier and the ENN classifier. One of the advantages of the
GEP classifier is that it can produce simple explicit formulations
(Landeras et al., 2012; Yang et al., 2016), which gives a better

understanding of the derived relationship between the sEMG
signals and one-stroke sketching shapes and makes the model
suitable for application in real time. Although the ENN classifier
achieved higher accuracy rate than the BPNN classifier in our
previous work (Chen et al., 2015), it performed worst in this
study. The recognition results (AR, AR11) of the GEP classifier
were slightly better than those of the BPNN and ENN classifiers
with the short analysis window. This finding suggests that
the sEMG-based sketching recognition method with the short
analysis window should be robust to variations of the recognition
algorithm.

Overall, our methodmay contribute to an efficient and natural
way to sketch freely and precisely in computers or digital devices,
and may be appropriate for clinical applications, including
computer-aided design, virtual reality, prosthetics, remote
control, entertainment as well as muscle-computer interfaces in
general. For further optimization of our method, we plan to deal
with the contradictions between the accuracy of recognition and
natural applications through finding the optimal combination
of muscle channels, window lengths, and sEMG features. In
future work, we plan to develop a new HCI tool with a wearable
armband that can be used as a muscle-computer interface
(Chowdhury et al., 2013) for sketching in the air. However, our
findings and the general approach have several limitations:

(1) Three time domain indices of sEMG signals were extracted
as features. To further improve the robustness and
discriminatory accuracy of similar shapes (e.g., vertical
20◦ ellipse, perfect circle and vertical 40◦ ellipse), other
time domain indices, frequency domain indices and time-
frequency domain indices could be additionally extracted.

(2) In our study, subjects were required to sketch on a template
paper with fixed dimensions (Figure 1). However, these basic
shapes can also be shown with different degrees and scales in
practical drawings. Whether our method can recognize these
additional one-stroke shapes needs further research.

(3) We specified the sequence of shapes, the starting point and
the direction of movements using sketching templates. This
makes the problem simplified as compared to a real-life
scenario, in which people have their habits of drawing the
same shape. To prove the actual usability of the method, our
future work will consider more flexible and variable ways of
freehand sketching in a more general setting.

(4) To test our approach, we selected 11 one-stroke shapes,
which are variations of four basic one-stroke shapes
(Robertson and Bertling, 2013) and frequently used among
the users in product design. However, there is no definitive
set of basic sketching shapes. In the future work, we will
enlarge the number of the tested shapes and offer more
general basic shapes that users would need or not, in the
intended context.

(5) Our method recognized 11 one-stroke shapes from the
EMG patterns, showing outstanding classification rates
on discrete symbols and shapes. Thus, we can note that
discrete symbol classification has been a relatively easy
task. Recently, a much more challenging task is continuous
decoding of handwritten/drawn traces. This was attempted
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FIGURE 10 | Histogram bars and error bars of AR11 as measured with (A) the training data and (B) the test data. (Error bars denoteSE of the means; SW,

short analysis window; LW, long analysis window).

by Linderman et al. (2009), Huang et al. (2010), and
Li et al. (2013) and improved recently by Okorokova
et al. (2015). The later one attempted to use dynamical
properties of the written coordinates to aid continuous
decoding of the coordinates based on EMG. Another attempt
of using more information was done by Rupasov et al.
(2012), who complemented EMG during handwriting with
EEG recordings, but they only found weak correlations
between the two sets of data. One goal of our future
work is continuous sketching recognition or reconstruction.
Therefore, we will try to construct the prediction model
between EMG signals and the coordinates (x, y) of pen traces
for reconstruction of free-form curves using some linear or
nonlinear decoding algorithms.

(6) Although it seems that there was sufficient data to achieve
extremely high accuracy with our method, the recognition
performance can be further improved with more training
samples. Our method is heavily dependent on the size of the
training dataset. In future work, we can use some other state-
of-the-art methods that can achieve high performance with
small training samples, which is convenient for users.

4. CONCLUSION

In this paper, we attempted to verify whether a robust
variant of GP, namely GEP could be derived to recognize
sketching patterns from arm sEMG signals. While the results are

encouraging, additional research is needed to develop themethod

further. The technique mentioned in this work potentially can
bring significant change for the conventional human-machine
interface, and make great convenience for the healthy persons
and the disabled with hand deficiency. Our future work will
concentrate on the development of a wearable armband that can
be used as a natural perceptual interface for sketching in the air.
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