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Abstract: In this paper, a method to discriminate between two target RNA sequences that differ
by one nucleotide only is presented. The method relies on the formation of alternative structures,
i.e., quadruplex–duplex hybrid (QDH) and duplex with dangling ends (Dss), after hybridization
of DNA or RNA G-rich oligonucleotides with target sequences containing 5′–GGGCUGG–3′ or 5′–
GGGCGGG–3′ fragments. Using biophysical methods, we studied the effect of oligonucleotide types
(DNA, RNA), non-nucleotide modifications (aliphatic linkers or abasic), and covalently attached G4
ligand on the ability of G-rich oligonucleotides to assemble a G-quadruplex motif. We demonstrated
that all examined non-nucleotide modifications could mimic the external loops in the G-quadruplex
domain of QDH structures without affecting their stability. Additionally, some modifications, in
particular the presence of two abasic residues in the G-rich oligonucleotide, can induce the formation
of non-canonical QDH instead of the Dss structure upon hybridization to a target sequence containing
the GGGCUGG motif. Our results offer new insight into the sequential requirements for the formation
of G-quadruplexes and provide important data on the effects of non-nucleotide modifications on
G-quadruplex formation.

Keywords: quadruplex–duplex hybrid; RNA G-quadruplexes; non-canonical nucleic acid structures;
non-nucleotide chemical modifications; abasic; aliphatic linkers; o-BMVC G-quadruplexes ligand;
single nucleotide change

1. Introduction

In addition to the well-known double helix, nucleic acids can form a variety of different
conformations. G-quadruplexes (G4) are structures that have received significant attention
in recent years. The canonical, unimolecular G4 structures are formed from DNA or RNA
G-quadruplex forming sequences (G4FS) comprising four G-tracts, and they fold into stacks
of at least two guanine tetrads stabilized by Hoogsteen hydrogen bonds. Four G-tracts
are necessary to form a G-quadruplex; however, they can also be part of two (bimolecu-
lar G4) or four separate strands (tetramolecular G4) [1]. The folding of G-quadruplexes
into parallel, antiparallel, or hybrid-type topologies and their stabilities depends on the
intramolecular factors, including sequence (number of G residues in G-tracts, the sequence
of the loops, 5′/3′-flanking sequences) [2], environmental conditions (type of cations,
pH, co-solvent) [3], and presence of small molecules (G4-stabilizing or G4-destabilizing
ligands) [4] or proteins [5,6]. Polymorphism is inherent in G4 formation for most DNA
G4-forming sequences. In contrast, RNA G-quadruplexes have long been considered as
structurally monomorphic. However, RNA G4s with unusual motifs and arrangements
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of G-tetrads have been reported recently [7,8]. For example, in G4 cores of Spinach and
Mango aptamers, some guanosine residues assume the syn conformation, consequently
inducing the unusual antiparallel topology of G4 RNA [9–11]. Many modified nucleotides
or non-nucleotide linkers have been used to manipulate G-quadruplex structures [12–18].
Rational incorporation of these modifications into G4FS can be used to stabilize particu-
lar conformers. Although the presence of G-tetrads is required to form G-quadruplexes,
non-canonical tetrads have also been observed in high-resolution structures or models
of G4s [8,19–27]. G4s are more tolerant to mutations than was previously thought. For
example, it was found that G4 structures with G-tetrads replaced by non-guanosine tetrads
can retain their biological functions [28]. Environmental conditions are one of the fac-
tors that can trigger the formation of unusual tetrads. For example, molecular crowding
can destabilize the hairpin structure, thus promoting the formation of a G-quadruplex
containing a GGUU tetrad [29]. It was also observed that intracellular mRNA can be
entrapped in the formation of kinetically favored metastable hairpin-like structures that
disturb the formation of the thermodynamically favored G-quadruplex [30]. At present,
it is increasingly clear that the principles of predicting G4FS are more complicated than
originally thought. Recently, the G4-seq technique, developed to detect G4 structures
(next-generation sequencing, NGS), was used to identify over 700,000 DNA G4-forming
sequences in the human genome [31]. This G4 mapping doubled the number of DNA
G-quadruplexes predicted in silico by standard algorithms [32]. Using a similar rG4-seq
approach, more than 13,000 G4FS were identified in 3000 human mRNAs [33]. In addition
to mRNA, RNA G4 may also be present in mitochondrial RNA, tiRNA, piRNA, lncRNA,
and miRNA [34–38]. Taking into account that these newly identified G4-forming sequences
have the potential to fold into an unconventional class of G4 structures containing two-layer
G-tetrads, bulges, or longer loops, the known repertoire of G4 structures may still be incom-
plete [31,33]. The most recent research has revealed that G-tracts involved in G-quadruplex
formation can be located as far as 7–20 nucleotides away in the human genome [39]. The
long loop sequences may adopt stem-loop secondary structures, and their formation was
reported to accelerate DNA G4 folding [40]. G-quadruplexes containing stem-loop motifs
are called quadruplex–duplex hybrid structures (QDHs). Structural studies highlighted a
large diversity across their conformations [41–47]. The same G-rich sequence can adopt
more than one hybrid form. For example, the coexistence of two different structures of
DNA QDHs was observed for fragments of PIM1 or EGFR oncogenes [48,49]. Two separate
oligonucleotides can assemble into bimolecular QDHs involving DNA-DNA, RNA-RNA,
or DNA-RNA strands [50–54]. The endogenous QDH structures have been proposed as
an attractive target for the regulation of oncogene expression in cells. When designing
new small-molecule drugs, differences in QDH structure generating different potential
sites for interaction with G4 stabilizing ligands should be taken into account [54–56]. For
example, for quadruplex–duplex hybrid structures, an interesting approach based on the
simultaneous binding of two ligands connected by a linker, PIP and cIKP, with different
affinities for the duplex and G-quadruplex, has been proposed [55].

Previous reports suggested that most RNA G-quadruplexes exist in living cells in
an unfolded state; however, recent studies proposed a model of a dynamic G4 RNA fold-
ing equilibrium controlled mainly by ions and G-quadruplex binding proteins [5,57–59].
The visualization of G4 RNA using the QUMA-1 ligand that binds only to the existing
G4 structure confirmed a dynamic equilibrium between G4 RNA folded and unfolded
states [60]. In general, the number of G4 RNA structures detected in cells depends on the
technique used [33,60]. Nevertheless, detection of G4 RNA with G4-specific antibodies [61],
G4 ligands [57,60], and a G-quadruplex-triggered fluorogenic hybridization probe [62,63]
unequivocally confirmed their presence, both in vitro and in cells. Currently, G4 RNAs
are important objects of research in biology, with a particular emphasis on the role of
G4 in the flow of genetic information in cells [30] and G4-associated diseases [36,64–69].
Recently, we have demonstrated the sequence-specific targeting of a 56 nt long EGFR
mRNA fragment comprising two distant GGGG tracts by RNA oligonucleotides composed
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of a chemically modified G-rich segment and a flanking 16 nt fragment complementary to
mRNA EGFR [52]. As a consequence, the formation of a bimolecular RNA quadruplex–
duplex hybrid structure containing a 28 nt long external loop adopting two duplex-stem
structures was observed in vitro and in cells. We also noted the possibility of using RNA
G-rich oligonucleotides conjugated to a fluorescent probe in a visualization of the density
of the endogenous EGFR mRNA in MCF-7, HeLa, and A431 cancer cells.

Here, we demonstrate that target G-rich sequences that differ by a single nucleotide
(5′–GGGCUGG–3′ vs. 5′–GGGCGGG–3′) can be targeted by G-rich oligonucleotides (QD)
in a structure-specific manner. The change in a single nucleotide from uridine to guanosine
results in the formation of a second 3 nt GGG tract in a target sequence and triggers the
formation of a G-quadruplex motif (Figure 1). Using biophysical methods, we demon-
strated the formation of two alternative structures, quadruplex–duplex hybrid (QDH)
and duplex with dangling ends (Dss), depending on the target sequence (Figure 1). We
undertook systematic studies on the effects of the type of oligonucleotide (DNA, RNA),
non-nucleotide modifications (aliphatic linkers or abasic), and the covalently attached G4
ligand on the ability of G-rich oligonucleotides to recognize target molecules and to fold
into QDH and Dss structures. Additionally, we proved that the replacement of a single
nucleotide loop or junction with a non-nucleotide modification led to the formation of
the QDH structures without affecting their stabilities. We also found that the presence of
chemical modifications can induce the formation of the G4 motif on the UT target sequence
despite the lack of one of the guanosine residues in the G-tract. The presented results may
have implications for the structure-based design of G-rich antisense oligonucleotides and
enable a more rational design of G-rich oligonucleotides in anticancer therapy.
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Figure 1. Schematic presentation of the recognition of GT and UT targets by the CCC oligonucleotide. CCC oligonucleotide
(A) and target sequence with two GGG-tracts, GT (B) forms a quadruplex–duplex structural hybrid (QDH) (D). CCC
oligonucleotide hybridized to the UT target (C) forms a duplex with long dangling ends (Dss) (E).

2. Materials and Methods

All RNA and DNA sequences used in the study are shown in Table 1.

Table 1. List of RNA and DNA Sequences (5′→3′) Analyzed in This Work.

Name RNA G-Rich Oligonucleotide Sequences (QD) 5′-3′ Bimolecular Complexes

CCC C-GGG-C-GGG-C-CUUCAAGUCCGGCA CCC/GT, CCC/UT

CCC-OMe C-GGG-C-GGG-C-(CUUCAAGUCCGGCA)2′OMe CCC-OMe/GT, CCC-OMe/UT

paa p-GGG-a-GGG-a-CUUCAAGUCCGGCA paa/GT, paa/UT

Aaa A-GGG-a-GGG-a-CUUCAAGUCCGGCA Aaa/GT, Aaa/UT

paC p-GGG-a-GGG-C-CUUCAAGUCCGGCA paC/GT, paC/UT

AaC A-GGG-a-GGG-C-CUUCAAGUCCGGCA AaC/GT, AaC/UT

pCa p-GGG-C-GGG-a-CUUCAAGUCCGGCA pCa/GT, pCa/UT
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Table 1. Cont.

Name RNA G-Rich Oligonucleotide Sequences (QD) 5′-3′ Bimolecular Complexes

pL2C p-GGG-L2-GGG-a-CUUCAAGUCCGGCA pL2C/GT, pL2C/UT

pL3C p-GGG-L3-GGG-a-CUUCAAGUCCGGCA pL3C/GT, pL3C/UT

pL4C p-GGG-L4-GGG-a-CUUCAAGUCCGGCA pL4C/GT, pL4C/UT

DNA G-rich Oligonucleotide Sequence

DNA-CCC C-GGG-C-GGG-C-CTTCAAGTCCGGCA DNA-CCC/GT, DNA-CCC/UT

G4 Ligand Bearing RNA G-rich Oligonucleotide

L-CCC o-BMVC-C3-aminolinker-C-GGG-C-GGG-C-
CUUCAAGUCCGGCA L-CCC/GT, L-CCC/UT

Target Oligonucleotide Sequences

GT UGCCGGACUUGAAG-UA-GGGCGGGC
UT UGCCGGACUUGAAG-UA-GGGCUGGC

Control Oligonucleotide Sequences

DX UGCCGGACUUGAAG/CUUCAAGUCCGGCA
2Q CGGGCGGGC

p: phosphate group; a: abasic; L2: 1,2-ethanediol; L3: 1,3-propanediol; L4: 1,4-butanediol; o-BMVC: G-quadruplex binder.

2.1. Synthesis and Purification of DNA and RNA Oligonucleotides

Synthesis of DMT-ON DNA and RNA oligonucleotides at the 1.0 µmole scale was
performed according to routine procedures on a MerMade12 (BioAutomation, Irving,
TX, USA) or a Gene World DNA synthesizer (K&A, Schaafhein, Germany) under the
conditions recommended by the manufacturer. Samples were cleaved from the solid
support, deprotected using standard procedures (Glen Research, Glen-Pak RNA, or DNA
Cartridge Purification (DMT-ON), Sterling, VA, USA). The only exception was MMTr-C6-
amino oligoribonucleotide (NH2-CCC), which was removed from the solid support and
deprotected by overnight treatment with concentrated ammonia and ethanol (3:1) at 55 ◦C.
Next, the solvent was evaporated to dryness, and the 2′-silyl protection was removed
by treatment with 1.0 M triethylammonium fluoride at 65 ◦C for 2.5 h. In the next step,
the precipitation was made by the addition of 5 mL of 1-butanol, and the samples were
stored at −20 ◦C for 1 h. The precipitate was separated from the solution by spinning at
5000 rpm, 4 ◦C, for 10 min. The MMTr group was removed using 80% acetic acid/water
for 30 min, and the solvent was evaporated to dryness. The NH2-CCC oligonucleotide was
precipitated in the presence of 2% NaClO4/acetone. All oligonucleotides (Table 1) were
then purified by RP-HPLC on a 1260 Infinity HPLC system (Agilent Technologies, Santa
Clara, CA, USA) using XTERRA 5 µm, C18, 150 × 4.6 mm column with buffer A (0.1 M
NH4HCO3/H2O) and buffer B (100% CH3CN) at a 1.5 mL/min flow rate, 70 ◦C. The buffer
gradient was as follows: (1) 0–2 min 0% B; (2) 2–10 min 0–10% B; (3) 10–12 min 10–50%
B; (4) 12–13 min 50–0% B; and (5) 13–30 min 0% B. UV detection was performed at λmax
268 nm.

All oligonucleotides were desalted using Amicon® Ultra 3K centrifugal filters (Merck,
Millipore, Darmstadt, Germany) by loading on the filter, washing several times with 4000 µL
MilliQ water, and then washing successively against ∼150 mM LiCl and against water.

To prevent dimerization of G-quadruplexes, experiments were performed in the
presence of 50 mM KCl instead of 150 mM KCl [22,52].

2.2. NH2-CCC Labeling with o-BMVC-C3

o-BMVC-C3-NHS was coupled to the NH2-CCC according to a published proce-
dure [52]. The purity and homogeneity of the oligo-o-BMVC-C3 conjugates were verified
by 15% denaturing gel electrophoresis (Figure S1).
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2.3. Denaturing Electrophoresis of RNA Oligo-o-BMVC-C3

First, 350 pmole RNA oligo-o-BMVC-C3 was suspended in 4 µL water and 4 µL of
8 M urea (in 8 µL final volume). Next, the sample was heated at 95 ◦C for 4 min, cooled to
room temperature, and loaded on 15% TBE-Urea gels (Invitrogen, Thermo Fisher Scientific,
Pittsburgh, PA, USA). Denaturing gel electrophoresis experiments were performed in
1.5 × TBE buffer. The electrophoresis experiment was run at 180 V for 2 h, and the gel was
visualized by UV shadowing (Figure S1).

2.4. Non-Denaturing Electrophoresis of Oligonucleotides

First, 350 pmole of oligonucleotides were suspended in 50 mM KCl, 10 mM phosphate
potassium buffer, pH 6.8 or 150 mM NaCl, 10 mM phosphate sodium buffer, pH 6.8
(in 6 µL final volume). Next, samples were heated at 95 ◦C for 3 min and gradually
cooled to room temperature. Subsequently, samples were mixed with 2 µL of 50% glycerol
and loaded on 20% TBE gels (Invitrogen, Thermo Fisher Scientific, Pittsburgh, PA, USA).
O’RangeRuler 5 bp and DNA ladder containing 50 and 100 bp as brighter bands (Thermo
Fisher Scientific, Pittsburgh, PA, USA) were used as molecular markers. Gel electrophoresis
experiments performed in a 0.5× TBE buffer were run at 160 V for ~2 h at 4 ◦C (an ice bath),
and the gels were first visualized by UV shadow (image) and then stained by N-methyl
mesoporphyrin IX (NMM; Frontier Scientific, Newark, DE, USA). After post-staining the
gels with NMM, the gels were scanned with a Fuji FLA-5100 imaging system (Fujifilm Life
Sciences, Cambridge, MA, USA).

The last gel was viewed by UV shadow to visualize all RNA (image) and exposed to
473 nm light to visualize fluorescently labeled G-quadruplex (o-BMVC-C3-CCC/GT hybrid).

2.5. NMR Experiments

NMR experiments were performed on a 700 MHz Bruker AVANCE III spectrometer
(Bruker Corporation, Billerica, MA, USA) equipped with a QCI CryoProbe. The oligonu-
cleotides were annealed by heating to 90 ◦C and then slowly cooled to room temperature.
The 1H NMR spectra of oligonucleotides were recorded at 25 ◦C or in the 25–75 ◦C range in
3 mm thin wall tubes with a sample volume of 200 µL. The final concentration of QD/GT,
QD/UT was ~0.1 mM in a buffer containing 50 mM KCl, 10 mM phosphate potassium,
or 150 mM NaCl, 10 mM phosphate sodium at pH 6.8. A mixture of 90% H2O and 10%
D2O was used for experiments undertaken to study imino protons. The water signal was
suppressed by excitation sculpting with a gradient pulse. Spectra were processed and
prepared with TopSpin 3.2 Bruker Software.

2.6. UV Thermal Denaturation Curves

First, 590 pmole of QD/GT and QD/UT oligonucleotides were dissolved in a buffer
containing 50 mM KCl, 10 mM phosphate potassium buffer, or 150 mM NaCl, 10 mM
phosphate sodium buffer at pH 6.8. Thermal denaturation curves were obtained by
monitoring at 260 and 295 nm with a JASCO V-650 spectrophotometer (JASCO International
Co., Ltd., Tokyo, Japan) using quartz optical cuvettes of 0.5 path length with the sample
volume of 150 µL. Samples were protected against evaporation by silicone oil. Before
measurements, the cuvettes filled with samples were spun at 5000 revolutions per minute
for 3 min to avoid the formation of air bubbles during measurements. The temperature
range was 20–90 ◦C, using a scan rate of 0.5 ◦C min−1. Spectra were processed and
prepared using Origin 8 Software (OriginLab Corporation, Northampton, MA, USA). The
melting temperature was determined by the local maximum of the first derivatives of the
absorbance vs. temperature curve.

2.7. Fluorescence Measurements

One equivalent of NMM was mixed with QD/GT or QD/UT (25 µmol/L) in a buffer
containing 10 mM potassium phosphate, 50 mM KCl, 6.8 pH at 25 ◦C. Fluorescence spectra
were measured from 550 to 750 nm with a 2 nm step, 800 V detector sensitivity using 400 nm
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excitation. Fluorescence spectra were recorded using a JASCO J-815 CD/fluorescence
spectropolarimeter (JASCO International Co., Ltd., Tokyo, Japan).

2.8. CD Measurements

CD spectra of oligonucleotides were recorded using a JASCO J-815 spectropolarimeter
(JASCO International Co., Ltd., Tokyo, Japan) equipped with a temperature controller. For
each sample, 3 spectral scans were accumulated at 25 ◦C over wavelengths in the range
from 220 to 320 nm. Samples of each oligonucleotide were prepared at a concentration
of 8.0 µM in 50 mM KCl, 10 mM potassium phosphate buffer, or 150 mM NaCl, 10 mM
sodium phosphate buffer at 6.8 pH using a 0.5 cm path length quartz cuvette with a volume
of 1750 µL. Next, samples were prepared by heating the oligonucleotides at 90 ◦C for 5 min
and gradually cooling to room temperature. CD spectra were expressed in the units of
molar ellipticity ∆E(cm2 mmol−1), without normalization by the number of residues in the
oligonucleotide. Spectra were processed and prepared using the Origin 8 Software.

3. Results
3.1. Formation of Alternative Structures by Hybridization of G-Rich Oligonucleotide to Target
Sequences That Differ by a Single Nucleotide Residue

The proposed method to discriminate between two target RNA sequences that differ
by one nucleotide only is schematically presented in Figure 1. Generally, it relies on the
formation of alternative structures, i.e., a quadruplex–duplex hybrid (QDH) or duplex
with long dangling ends (Dss) (Figure 1D,E), after the binding of G-rich oligonucleotides
(Figure 1A) to target sequences that differ by a single U/G change (Figure 1B,C). We
designed two model target sequences (Table 1), GT and UT, containing 5′–GGGCGGG–3′

or 5′–GGGCUGG–3′ fragments, respectively. The CCC oligonucleotide (Figure 1A, Table 1)
is composed of two segments, duplex forming (D) and G-quadruplex forming (Q). The
duplex forming segment consists of 14 nt and is complementary to 14 nt fragments of
both targets (GT and UT, Figure 1B,C) being responsible for the formation of a duplex
domain (Figure 1D,E). The G-rich segment of the CCC strand was designed to assemble
into a G-quadruplex motif only with the GT target (CCC/GT, Figure 1D) but not with UT

(CCC/UT, Figure 1E).

3.2. Evaluation of Secondary Structures of CCC/GT and CCC/UT RNA:RNA Complexes

Both target sequences, GT and UT, were hybridized to CCC RNA G-rich oligonu-
cleotides (Table 1) and characterized by several experimental methods. To determine
the type of structure formed in the solution, we used 1H NMR spectroscopy. In gen-
eral, imino proton signals associated with Watson–Crick base pairs typically appear at
12–15 ppm, and those between 10.5 and 12 ppm are characteristic of guanosine imino
protons involved in G-tetrad formation [70]. The imino region of 1H NMR spectra of
CCC/GT and CCC/UT are shown in Figure 2A and compared with 1H NMR spectra
of individual strands of the CCC/GT and CCC/UT molecules (UT, GT, and CCC), the
CGGGCGGGC G-quadruplex (2Q), and the 14 bp duplex (DX). In the presence of K+

ions, the NMR spectrum of CCC/GT displayed imino proton signals in both duplex and
G-quadruplex regions, and the peak distribution patterns resembled that of the individ-
ual components, duplex, and G-quadruplex. This was consistent with the formation of
the quadruplex–duplex hybrid structure (QDH) by CCC/GT. When CCC RNA oligonu-
cleotide was hybridized to the UT target, only signals characteristic of the imino protons
involved in the formation of Watson–Crick base pairs were observed. This suggests that
the replacement of one of the guanosine residues by uridine, such as the UT target, can
prevent G-quadruplex formation (Figure 1C,E and Figure 2A). For the CCC/UT complex,
only signals corresponding to the duplex domain were observed while G-rich fragments
remained unstructured (Figures 1E and 2A), indicating the formation of a duplex structure
with long dangling ends (Dss).
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Figure 2. The imino region of the 1H NMR spectra of UT, GT, CCC, 2Q, DX, CCC/GT, and CCC/UT,
recorded in 90% H2O/10% D2O (v/v) in the presence of 50 mM KCl, 10 mM potassium phosphate,
and 0.1 mM EDTA, pH 6.8; 25 ◦C (A). Proposed secondary structures (2Q, QDH, Dss) and predicted
by RNAstructure (hairpins, DX) (B).

Next, we performed native polyacrylamide gel electrophoresis (PAGE) in the presence
of 50 mM KCl to assess the molecularity of CCC/GT and CCC/UT and to verify structural
differences between these two complexes (Figure 3). The bands were first visualized by
UV shadowing at 254 nm and immediately after electrophoresis were stained with NMM,
a dye that exhibits significantly increased fluorescence only upon binding to parallel G-
quadruplexes [71,72]. The first lane in Figure 3 corresponds to DNA markers (10–100 bp),
and lanes 2–6 correspond to CCC, GT, UT, CCC/GT, and CCC/UT, respectively. The
mobilities of the bands corresponding to oligonucleotides CCC, GT, and UT (lanes 2–4) were
in agreement with the formation of the hairpin structures as predicted by the RNAstructure
software (Figure 2B). As expected, the main bands in lanes 5 and 6 migrated similarly to
that of the 50 bp DNA marker, indicating the formation of bimolecular structures. In lane
6, bands of non-associated strands of CCC and UT were observed. After staining with
NMM, only the band corresponding to CCC/GT (Figure 3, lane 5′) was clearly visible, thus
supporting the formation of the G-quadruplex domain.
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The binding of NMM to the G-quadruplex domain of CCC/GT suggested its parallel
topology [71,72], which was further confirmed by the presence of a characteristic positive
band at ~265 nm and a negative band at 240 nm in the CD spectrum (Figure S2). The CD
spectrum of CCC/UT differed from that of CCC/GT only in the intensity of the band at
~265 nm. Unfortunately, CD spectra of parallel G-quadruplexes are very similar to those of
A-form duplex structures. As a result, they have little use in structural analysis of RNA
quadruplex–duplex hybrids [73].

The thermal stabilities of CCC/GT and CCC/UT structures were determined by ana-
lyzing UV-melting profiles at 260 and 295 nm in the presence of potassium cations (Table 2,
Figure S3). The melting temperature of CCC/GT determined at 260, and 295 nm was 69.4 ◦C
and 68.8 ◦C, respectively (Table 2, Figure S3). The profile of the melting curve at 295 nm did
not reflect the typical reverse sigmoid. This resulted from the overlapping of two opposing
effects, hypochromic and hyperchromic, for the melting of G-quadruplex and duplex motifs
at this wavelength (Figure S3). A similar profile of the melting curve at 295 nm was ob-
served previously for the RNA hairpin structure in equilibrium with the G-quadruplex, but
this phenomenon was not discussed [74]. The melting temperature of the CCC/UT duplex
determined at 260 nm was 61.0 ◦C. The higher stability of the CCC/GT hybrid relative to
the CCC/UT duplex (∆Tm = 8.4 ◦C) confirmed the G4-dependent stabilization effect.

Table 2. Thermal stability for QDH and Dss structures in potassium phosphate buffer.

QD/GT 60 mM K+ QD/UT 60 mM K+

Tm (◦C) Tm (◦C)

CCC/GT 69.4 CCC/UT 61.0

CCC-OMe/GT 71.7 CCC-OMe/UT 63.5

paa/GT 68.0 paa/UT 61.5

Aaa/GT 69.0 Aaa/UT 61.0

paC/GT 67.5 paC/GT 61.0

AaC/GT 68.5 AaC/GT 62.0

pCa/GT 67.4 pCa/GT 60.5

pL2C/GT 68.0 pL2C/GT 61.5

pL3C/GT 68.5 pL3C/GT 61.5

pL4C/GT 68.5 pL4C/GT 60.5

DNA-CCC/GT 61.4 DNA-CCC/UT 59.5

3.3. Evaluation of Secondary Structures of DNA-CCC/GT and DNA-CCC/UT Complexes

Next, we compared the tendency of G-rich RNA and DNA molecules to form QDH
and Dss structures. We hybridized the DNA equivalent of the CCC sequence, DNA-CCC
(Table 1), with GT and UT RNA targets in the presence of potassium cations.

Figure 4A shows the 1H NMR spectra of two DNA:RNA hetero-complexes: DNA-
CCC/UT and DNA-CCC/GT. The spectrum of the DNA-CCC/GT displayed signals both in
duplex (11.5–15 ppm) and G-quadruplex (10.5–12 ppm) regions, indicating the formation of a
hybrid quadruplex–duplex structure. The 1H NMR spectrum of DNA-CCC/UT showed that
signals in the region of 10.5–12 ppm characteristic of G-quadruplex formation were missing,
thus suggesting the formation of a Dss structure. However, comparison of the 1H NMR
spectrum of DNA-CCC/UT with DNA-CCC and UT clearly showed that it was a sum of
signals characteristic of two separate strands, i.e., DNA-CCC and UT, thus suggesting that the
structure of a DNA: RNA heteroduplex with dangling ends was not formed (Figure 4A,B).
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Figure 4. The imino region of the 1H NMR spectra of DNA-CCC/UT, DNA-CCC/GT, DNA-CCC,
and UT, recorded in 90% H2O/10% D2O (v/v) in the presence of 50 mM KCl, 10 mM potassium
phosphate, and 0.1 mM EDTA, pH 6.8; 25 ◦C (A). Red stars—imino signals of DNA-CCC, blue dots—
imino signals of UT. Proposed secondary structures (2Q, QDH, Dss) and predicted by RNAstructure
(hairpins, DX) (B).

Figure 5 compares the electrophoretic mobility of hetero-complexes DNA-CCC/GT,
DNA-CCC/UT (lanes 4–5), and single-strand DNA-CCC (lane 6) relative to RNA homo-
complexes CCC/GT and CCC/UT (lanes 2–3). Bands corresponding to bimolecular struc-
tures DNA-CCC/GT and DNA-CCC/UT migrated faster than their RNA:RNA counter-
parts. The smaller intensity of the band corresponding to DNA-CCC/UT (lane 5) than that
of CCC/UT (lane 3), and the presence of unhybridized single-strands DNA-CCC and UT

in lane 5, were indicative of a poor hybridization of DNA to RNA strands. When the gel
was post-stained with NMM, fluorescence bands were observed only for CCC/GT and
DNA-CCC/GT and indicated the formation of the G-quadruplex domain in both cases
(Figure 5, bands 2′, 4′). Additionally, the presence of a minor band characterized by slow
electrophoretic mobility for CCC/GT indicated the formation of higher-order structures
(HOS) (Figure 5, lane 2 and lane 2′). An increase in intensity with time was observed for
those retarded bands for CCC/GT (Figure S4). This structure could be a dimer of two
G-quadruplex domains of QDH structures. The parallel topology of the G4 domain of
the DNA-CCC/GT hybrid was additionally confirmed by a characteristic CD spectrum
(Figure S5). The DNA-CCC/GT structure was less stable than that of CCC/GT, as indicated
by the comparison of melting temperatures, which were 61.4 and 69.4 ◦C, respectively
(Figure S6, Table 2). Data obtained from the NMR spectra showed that the DNA-CCC/UT

complex was not formed at room temperature (Figure 4). Therefore, for further studies,
we decided to use RNA G-rich oligonucleotides because they are definitely more stable
when hybridized to RNA targets, thus enabling the determination of secondary structures.
In addition, the sequential requirements for the formation of RNA quadruplex–duplex
hybrids are less known.



Biomolecules 2021, 11, 1236 10 of 23Biomolecules 2021, 11, x  10 of 23 
 

 
Figure 5. Analysis of the migration of CCC/GT, CCC/UT, DNA-CCC/GT, DNA-CCC/UT, and DNA-
CCC by non-denaturing PAGE 20%; gel was visualized by UV light (254 nm) to detect all RNAs and 
post-stained with NMM solution to detect G4 motifs. Red star–DNA-CCC, blue star–UT, HOS–
higher-order structure, QDH–quadruplex-duplex hybrid. The first lane corresponds to the DNA 
ladder marker in the range of 10 to 100 bp (W). 

3.4. Impact of the Chemical Modifications on the Ability to Form Alternate QDH and  
Dss Structures  

The modified G-rich oligoribonucleotides used in this study, and their corresponding 
names and notations used to describe the bimolecular complexes, are summarized in Ta-
ble 1. Bolded cytidine residues in the CCC sequence point to the modification sites (Table 
1, Figure 6). Non-nucleotide modifications, such as abasic (a), aliphatic 1,2-ethanediol (L2), 
1,3-propanediol (L3), and 1,4-butanediol (L4) linkers, were chosen to study their effect on 
the formation of the G-quadruplex domain. It was previously reported that the presence 
of abasic residues and long aliphatic linkers in the loop region promoted and stabilized 
the formation of parallel G-quadruplex topologies [16,17,75]. In turn, the presence of a 
phosphate group (p) or additional nucleotide residues at the 5′-end should prevent dimer-
ization of G-quadruplexes [76,77]. A 2′O-Me modification in a duplex segment was used 
to estimate its potential to stabilize QDH and Dss structures.  

 
Figure 6. The chemical formulas and the sites of chemical modifications in the QD strand. 

To determine the impact of the chemical modifications on the formation and stability 
of G-quadruplex motifs, we compared the 1H NMR spectra of unmodified and modified 
G-rich oligoribonucleotides hybridized to GT and UT targets in the presence of K+ and Na+ 
cations. The corresponding 1H NMR spectra of QD/GT complexes recorded in buffers con-
taining K+ or Na+ cations are presented in Figures 7 and S6, respectively. All modified G-
rich oligoribonucleotides after hybridization to GT target display the imino peak patterns 

Figure 5. Analysis of the migration of CCC/GT, CCC/UT, DNA-CCC/GT, DNA-CCC/UT, and
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3.4. Impact of the Chemical Modifications on the Ability to Form Alternate QDH and Dss Structures

The modified G-rich oligoribonucleotides used in this study, and their correspond-
ing names and notations used to describe the bimolecular complexes, are summarized
in Table 1. Bolded cytidine residues in the CCC sequence point to the modification
sites (Table 1, Figure 6). Non-nucleotide modifications, such as abasic (a), aliphatic 1,2-
ethanediol (L2), 1,3-propanediol (L3), and 1,4-butanediol (L4) linkers, were chosen to
study their effect on the formation of the G-quadruplex domain. It was previously re-
ported that the presence of abasic residues and long aliphatic linkers in the loop region
promoted and stabilized the formation of parallel G-quadruplex topologies [16,17,75]. In
turn, the presence of a phosphate group (p) or additional nucleotide residues at the 5′-end
should prevent dimerization of G-quadruplexes [76,77]. A 2′O-Me modification in a duplex
segment was used to estimate its potential to stabilize QDH and Dss structures.
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Figure 6. The chemical formulas and the sites of chemical modifications in the QD strand.

To determine the impact of the chemical modifications on the formation and stability
of G-quadruplex motifs, we compared the 1H NMR spectra of unmodified and modified
G-rich oligoribonucleotides hybridized to GT and UT targets in the presence of K+ and
Na+ cations. The corresponding 1H NMR spectra of QD/GT complexes recorded in
buffers containing K+ or Na+ cations are presented in Figure 7 and Figure S6, respectively.
All modified G-rich oligoribonucleotides after hybridization to GT target display the
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imino peak patterns typical of the structure containing Watson–Crick and Hoogsteen-type
hydrogen bonds. In general, all these spectra were similar to that of the model CCC/GT

hybrid, regardless of the type of modification, their modification site, and the type of ions
present in the solution, K+ or Na+. For two complexes in a solution containing potassium
ions, AaC/GT and Aaa/GT, a slightly different pattern was observed in the Hoogsteen
region, which could be due to the presence of adenosine residues at the 5′-end in AaC and
Aaa strands (Figure 7).
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Figure 7. Comparison of imino region of the 1H NMR spectra of CCC/GT, CCC-OMe/GT, paa/GT, Aaa/GT, paC/GT,
AaC/GT, pCa/GT, pL2C/GT, pL3C/GT, pL4C/GT (A) and CCC/UT, CCC-OMe/UT, paa/UT, Aaa/UT, paC/UT, AaC/UT,
pCa/UT, pL2C/UT, pL3C/UT, pL4C/U complexes (B) at 25 ◦C in the presence of 50 mM KCl, 10 mM potassium phosphate,
0.1 mM EDTA, pH 6.8.

When modified G-rich oligoribonucleotides were hybridized to the UT target (QD/UT

complexes) in the presence of K+, in addition to the imino protons from Watson–Crick base
pairs, broad resonances were observed in the 10.5–12.0 ppm region for several complexes
containing modified residues (for instance: paa/UT, Aaa/UT, pL4C/UT, AaC/UT, or
pCa/UT) (Figure 7). In sodium phosphate buffer, a broad resonance suggesting the presence
of a G4 motif was clearly visible only for molecules containing two abasic residues (paa/UT,
Aaa/UT), whereas for AaC/UT these G4 imino signals were very broad (Figure S7). These
results suggest that the incorporation of chemical modifications into G-rich strands can
promote the formation of structures other than Dss after hybridization to the UT strand.
These structures may contain G-quadruplex motifs instead of dangling ends.

The effect of the chemical modification on the formation of QDH and Dss structures
was further analyzed by native PAGE (Figure 8, UV and NMM visualization). In the
presence of K+ cations, the migration rate of bands corresponding to modified QD/GT

complexes (Figure 8A, lines 3–20) was in agreement with the formation of the CCC/GT
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quadruplex–duplex hybrid (Figure 8A, lines 1) and these bands were efficiently stained
with NMM (Figure 8B, lines 1′). Slower migration of pL2C/GT, pL3C/GT, and pL4C/GT

bands probably reflected the reduced negative charge of these hybrids resulting from the
introduction of aliphatic linkers. Moreover, for QD/GT complexes comprising two abasic
residues or L3 and L4 aliphatic linkers and a phosphate group at the 5′-end (paa/GT,
pL3C/GT, pL4C/GT, Figure 8B, lines: 7′, 13′, 15′ respectively), the main bands were
split into two bands with similar fluorescence intensity after staining with NMM. The
presence of two bands suggested the formation of two different conformers. For this
parallel G-quadruplex motif, there are two forms possible that differ in the directionality of
the hydrogen bonds within the G-tetrads (Figure S8). Additionally, similarly to CCC/GT

molecule, the presence of minor bands characterized by slow electrophoretic mobility for
most modified QD/GT complexes indicated the formation of higher-order structures (HOS)
(Figure 8B).
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A comparison of the migration of QD/GT hybrids containing a phosphate group
or adenosine at the 5′-end of QD (Figure 8B, band 3′ vs. 5′ and 7′ vs. 9′) showed that
the presence of adenosine prevented the dimerization of two G-quadruplex units of the
QDH structure more than the phosphate group. The QD/UT complexes containing non-
nucleotide linkers migrated with a mobility similar to that of the model CCC/UT (Figure 8).
Most of the bands corresponding to bimolecular structures did not stain with NMM
(even lines), confirming the formation of duplexes with dangling ends as the dominant
form. However, for paa/UT (lane 8′), Aaa/UT (lane 10′) low-intensity fluorescence bands
were observed after staining with NMM (Figure 8B). To confirm the formation of a G-
quadruplex motif in paa/UT and Aaa/UT, we performed an experiment in which we
compared fluorescence emissions after adding equimolar ratios of representative QD/GT

and QD/UT to a solution of NMM (Figure S9). The intensity of the fluorescence signal of
NMM and NMM after the addition of CCC/UT (1:1) was similarly low, indicating a weak
affinity of NMM towards CCC/UT. For NMM complexes with Aaa/GT and paa/GT, we
observed a moderate 7- to 9-fold enhancement of NMM fluorescence emission, whereas,
for Aaa/UT and paa/UT, a 4–6.5-fold enhancement of NMM fluorescence emission was
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determined. The intensities of the fluorescence signals of the NMM in complex with
Aaa/UT and paa/UT were significantly higher compared to those obtained for NMM in
complex with CCC/UT duplex. These results confirmed the selective binding of NMM to
the non-canonical G-quadruplex domain of Aaa/UT and paa/UT.

Additionally, we recorded 1H NMR spectra after the addition of one equivalent of
NMM to NMR samples containing paa/GT, paa/UT, or Aaa/UT (Figure S10). Ligands
binding to paa/GT resulted in a significant broadening of the imino signals corresponding
to G-tetrads and the appearance of signals from the NMM ligand in the 10.3–9.0 ppm
region (Figure S10a). NMM-dependent broadening of the imino signals was also observed
in the 1H NMR spectra of Aaa/UT and paa/UT (Figure S10b,c). These results strongly
supported data obtained from native PAGE and fluorescence experiments, indicating that
a noncanonical G-quadruplex domain could form in the Aaa/UT and paa/UT molecules.
The formation of G-quadruplex motifs in Aaa/UT and paa/UT structures, which was
observed in the presence of K+ ions, was also observed in native PAGE performed in the
presence of Na+ ions (Figure S11, lines 5′ vs. 6′ and 7′ vs. 8′).

To further characterize QD/GT and QD/UT complexes, we analyzed their UV-melting
profiles in solutions containing K+ or Na+ ions. The apparent melting temperatures
determined based on measurements at 260 nm are collected in Table 2 and Table S1 and
presented graphically in Figures S12a,b and S13a,b (melting curves at 260 and 295 nm). For
several quadruplex–duplex hybrid structures, accurate determination of Tm at 295 nm was
not possible (Figures S12 and S13). However, analysis of melting profiles at 295 nm was
used to estimate the stability of the G-quadruplex motif and to confirm the formation of
QDH or Dss structures in both K+ and Na+ solutions. Profiles of melting curves at 295 nm
indicated the presence of G-quadruplex motifs for all QD/GT hybrid molecules and for
paa/UT, Aaa/UT, and AaC/UT in potassium phosphate buffer (Figures S12a and S13a).
All QD/GT structures had comparable Tm values in the range of 67.4–69.0 ◦C, regardless of
the type and site of modification, and were very close to that of CCC/GT (69.4 ◦C) (Table 2).
The only exception was observed for 2’OMe modification, which is well known to stabilize
RNA duplex structures (Table 2). In addition, we confirmed that the introduction of
non-nucleotide modifications does not affect the kinetics of QDH structure formation (no
hysteresis was observed, K+, data not shown). In general, in potassium phosphate buffer,
all QD/GT structures were more stable than the corresponding QD/UT complexes; their
Tm values were higher at least by 6.0 ◦C. For paa/UT, Aaa/UT, and AaC/UT, molecules
for which the presence of noncanonical G-quadruplex motifs was suggested, analysis of
the melting curves at 295 nm indicated that these motifs were less stable than their QD/GT

counterparts (in average by 7.25 ◦C). Apparent Tm values determined for the quadruplex–
duplex hybrid structures in the presence of sodium cations (Table S1) were comparable to
the corresponding melting temperatures of duplexes with dangling ends. This was due to
the increased stability of the duplex motif ascribed to the different ionic strengths of the
buffers (60 mM K+ versus 160 mM Na+). By comparison, the exchange of K+ with Na+

caused a significant decrease in the stability of the G-quadruplex domain of QD/GT, which
could be estimated from the melting curve recorded at 295 nm and in 1H NMR spectra
(Tables S1, S12b, and S14b).

Different thermal stabilities of duplex and G-quadruplex motifs depending on the
solution conditions were best illustrated by 1H NMR spectra recorded as a function of
temperature. Figure S14 shows the 1H NMR spectra of CCC/GT, paa/GT, and pL3C/GT

obtained in the range of 25–75 ◦C in buffers containing 60 mM K+ and 160 mM Na+

(Figure S14a,b). In the potassium environment, with increasing temperature, Watson–Crick
imino signals disappeared faster than those from G-tetrads. Moreover, the stability of the
G-quadruplex motifs appeared to be higher for molecules containing modified residues.
By comparison, in 1H NMR spectra recorded in the presence of sodium cations, the G4
signals tend to disappear at a faster rate compared to Watson–Crick base pairs.

Although CD spectra of RNA G-quadruplexes were very similar to those of A-form
duplexes, the presence of a clear positive peak at 260 nm and a negative peak at 240 nm for
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all QD/GT complexes studied (Figure S15, Na+, K+) verified the parallel topology of their
G-quadruplex motifs. For QDH structures containing chemically modified G-rich strands,
an increase in the intensities of the Cotton effects at 265 nm was observed compared
to CCC/GT. As expected, the shape of the CD spectrum of the CCC/UT duplex with
dangling ends was similar to that of the quadruplex–duplex hybrids; however, the bands
at 265 nm were of lower intensity than the spectra of the corresponding QDH structures
(Figures S2 and S15). For paa/UT and Aaa/UT molecules, the observation of increased
intensity of the ellipticity values in CD spectra was consistent with the presence of the
G-quadruplex motif in their structures (Figure S16).

3.5. Influence of CCC Oligonucleotide with Covalently Attached G4 Ligand on the Formation and
Stability of QDH and Dss Structures

Several small-molecule ligands are known to specifically bind and stabilize G-quadrup
lexes and are considered to be promising therapeutic targets. However, few ligands are
known that are specific to a given G-quadruplex topology [78]. Therefore, we decided
to covalently attach a well-known o-BMVC ligand to the CCC oligoribonucleotide and
investigate its impact on the secondary structure formation after hybridization to the target
sequence GT or UT. We chose the o-BMVC ligand due to its properties, which are ideal
for the purpose of our study, i.e., a large difference in fluorescent intensity after binding
to G4 structures or duplexes [79,80]. Derivative of o-BMVC, propionic acid NHS ester
(o-BMVC-C3-NHS) was made in-house [52,81] and then attached to the 5′-end of the CCC
molecule via a C6-aminolinker (o-BMVC-C3-CCC) (Figure S17).

The structure and stability of complexes of o-BMVC-C3-CCC (L-CCC, Table 1) an-
nealed to GT or UT (Figure 9) were investigated using 1H NMR, UV, CD, and fluorescence
spectroscopy. 1H NMR spectra of CCC/GT, o-BMVC-C3-CCC/GT, and o-BMVC-C3-
CCC/UT are shown in Figure 10A. The presence of imino signals in the o-BMVC-C3-
CCC/GT spectrum in the region typical of Watson–Crick base pairs and of G-tetrads
confirmed the formation of both duplex and G-quadruplex domains (Figure 10A). Fur-
thermore, a significant broadening of signals only in the 10.5–12 ppm region indicated
that ligand bounds selectively to the G-quadruplex motif. In the 1H NMR spectrum of the
o-BMVC-C3-CCC/UT, signals corresponding to the duplex domain remained sharp, but a
broad signal of low intensity additionally appeared in the 10.5–12 ppm region. This sug-
gested that o-BMVC-C3 could possibly interact nonspecifically with G-rich dangling ends.
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o-BMVC-C3-CCC/GT, and o-BMVC-C3-CCC/GT in non-denaturing PAGE 20%. Gel was visualized
by UV light (254 nm) to detect all RNAs (B, left), and the same gel was exposed to 473 nm light to
visualize the RNA structure adopting the ligand–quadruplex domain (B, right) in the presence of
50 mM KCl, 10 mM potassium phosphate and 0.1mM EDTA, pH 6.8.

Structures of o-BMVC-C3-CCC/GT and o-BMVC-C3-CCC/UT were further investi-
gated using native PAGE gel electrophoresis. The migration of o-BMVC-C3-CCC/GT

(Figure 10B, lane 2) and o-BMVC-C3-CCC/UT (Figure 10B, lane 3) visualized in UV
light appeared to be undoubtedly slower than that of the o-BMVC-C3-CCC single-strand
(Figure 10B, lane 1), clearly showing the presence of bimolecular complexes. After exposure
of the gel to 473 nm light, strong fluorescence was observed only for o-BMVC-C3-CCC/GT

when visualized at 532 nm. The large difference in fluorescence intensity observed between
o-BMVC-C3-CCC/GT and o-BMVC-C3-CCC/UT molecules confirmed the formation of
a G-quadruplex domain only in the o-BMVC-C3-CCC/GT hybrid (Figure 10B). The pres-
ence of a weak fluorescent band corresponding to the o-BMVC-C3-CCC/UT conjugate
supported the earlier observation from analysis of the 1H NMR spectra, suggesting that the
covalently attached ligand o-BMVC-C3 could interact nonspecifically with G-rich dangling
ends. Additionally, the formation of higher-order species was observed for both complexes.
To determine the impact of the covalently attached ligand on the thermal stabilities of the
studied molecules, we performed UV-melting experiments in the presence of potassium
cations. The melting temperature obtained for o-BMVC-C3-CCC/GT (Tm = 72.1 ◦C) was
2.7 ◦C higher than that for CCC/GT (Figure S18). In turn, attachment of the G4 ligand
to CCC/UT did not affect its thermal stability; Tm values of o-BMVC-C3-CCC/UT and
CCC/UT were the same within experimental error, 61.2 ◦C and 61.0 ◦C, respectively.

The CD spectra of o-BMVC-C3-CCC/GT and o-BMVC-C3-CCC/UT are compared to
the CD spectrum of CCC/GT in Figure S19. The presence of a strong maximum at 265 nm
indicated that the G-quadruplex domain of o-BMVC-C3-CCC/GT maintained a parallel
topology. As can be seen, the intensity of this band was significantly higher than that of
o-BMVC-C3-CCC/UT, which further supported the formation of a stable G-quadruplex
domain. By comparison, the lower intensity of this band observed for CCC/GT relative
to o-BMVC-C3-CCC/GT suggested that in a molecule without an attached ligand, the
G-quadruplex domain could be less structured.

4. Discussion
4.1. Quadruplex–Duplex Hybrid Structures (RNA vs. DNA)

Thousands of RNA and DNA sequences that are able to form stem-loop-containing
G-quadruplexes have been identified in the human genome and transcriptome using
bioinformatic methods [39]. Systematic studies of the unimolecular DNA QDH structures
comprising a hairpin or multiple stems in place of at least one of the loops suggest that
the junction between the G-quadruplex and duplex motifs is characteristic of a particular
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G4 topology: parallel, antiparallel, or hybrid [41,44]. Recently, QDH structures with a
duplex stem incorporated into a bulge of a G-quadruplex or structures with a duplex
stem build from the G4 flanking regions have also been demonstrated [45–47,82]. QDH
structures identified in RNA aptamers (Spinach, Mango, and FMRP-binding) were found
to have unique G-core architectures [82]. By comparison, all known bimolecular RNA:RNA
or DNA:RNA quadruplex–duplex structures tend to be structurally conservative and
are constructed of a parallel G-quadruplex domain and a duplex stem located in the
place of an external loop [50–52]. This is in agreement with our results showing that all
RNA-RNA homohybrids studied in this work and DNA-CCC/GT heterohybrids adopt
this architecture (Figures 1D, 2B and 4B). This structural conservatism of bimolecular
RNA:RNA or DNA:RNA QDHs allows stable hybrid structures to be predicted, and this
could help in the future to design drugs that selectively stabilize G-quadruplex motifs.

4.2. Stability of QDH and Dss Structures

Although a type of G-rich oligonucleotide (DNA or RNA) did not change the struc-
tural preferences of QD/GT complexes, the use of DNA strands instead of RNA reduced
the stability of DNA-CCC/GT heterohybrid by 8 ◦C. This destabilizing effect was even
more pronounced in the case of the DNA-CCC/UT complex. We showed that this complex
was unstable and did not form at room temperature. In the presence of potassium cations,
the thermal stability of the examined quadruplex–duplex hybrid structures increased by
~8 ◦C compared to the corresponding duplexes with dangling ends. Due to the significant
destabilization of the G-quadruplex domain (Figure S14b) in a solution containing Na+ ions,
this duplex domain was responsible for the stability of the QDH. The other important factor
that could influence the stability and/or structure of G-quadruplexes was the incorporation
of non-nucleoside modifications, such as an aliphatic linker or abasic residues, into a G-rich
region. It was previously shown that the replacement of TTA loops with aliphatic linkers
of different lengths in the human telomeric repeat sequences (GGGTTA)3G3 resulted in a
conversion of G-quadruplex topology from antiparallel to parallel [16]. The stability of the
modified G-quadruplexes was strongly correlated with the length of the linker in the order
1,8-octanediol > hexaethylene glycol > 1,3-propanediol. Interestingly, the G-quadruplex
bearing the 1,8-octanediol loop was found to adopt several stable conformations, includ-
ing the formation of the two-layer G-quadruplex structure as proposed by the authors.
Replacement of one nucleoside loop with abasic residue resulted in the most stable DNA
G-quadruplexes. Furthermore, it was shown that RNA G-quadruplexes containing 1 nt
external loops are the most stable [83]. In the present study, the replacement of a single
nucleoside loop with a non-nucleotide modification led to the formation of stable QDH
structures irrespective of the modification type or the length of the linker. When the external
loop was replaced by L3 or L4 aliphatic linkers, the formation of two bands corresponding
to two conformers of pL3C/GT and pL4C/GT quadruplex–duplex hybrids were observed
in the native PAGE experiment. The formation of two conformers was also detected for the
paa/GT complex containing abasic residues located in loop and junction positions. It has
been previously reported that base composition proximal to the junction between duplex
and G-quadruplex motifs can also play an important role in both the structure and stability
of the hybrids. For example, when the terminal C:G base pair was substituted with a less
stable T:A base pair in a junction, two bands appeared in gel electrophoresis, probably due
to two different conformations present in solution [84]. In general, non-nucleotide linkers
can contribute to the increased flexibility of the loop or influence the interaction between
the loop and G-tetrads. Our results indicate that the replacement of the loop or junction
residues with a flexible linker did not change the structure and stability of QDHs. Further-
more, flexible linkers appeared to have a high propensity to form external loops. When
the G4-selective ligand was conjugated to the G-rich oligonucleotide, a moderate increase
in stability was observed for o-BMVC-C3-CCC/GT relative to CCC/GT. In contrast, the
presence of the non-nucleotide modifications or G4 ligand did not affect the stability of
duplexes with dangling ends.
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4.3. Formation of Non-Canonical Hybrid Structures

Here, we demonstrated that one nucleotide change in a G-rich oligonucleotide (change
from 5′–GGGCGGG–3′ to 5′–GGGCUGG–3′) prevented the formation of the G-quadruplex
domain in the CCC/UT complex. For the CCC/UT molecule, we considered the possibility
of the formation of structures other than Dss. For this purpose, we used the RNAstructure
software, which suggested several stable secondary structures with additional canonical
Watson-Crick or non-canonical base pairs (Figure S20). However, analysis of the imino
region of the 1H NMR spectrum (Figure 2) indicated that the duplex with the dangling
ends was a dominant form of CCC/UT. The number of imino signals observed in the 1H
NMR spectrum precluded the formation of additional stable base pairs in the structure
of CCC/UT. However, in the 1H NMR spectra of paa/UT and Aaa/UT, we surprisingly
noticed an appearance of signals indicating the formation of G-tetrads, even in the solution
containing Na+ cations. The formation of this G-quadruplex motif was also confirmed by
the observation of low-intensity fluorescence bands in native PAGE after staining with
NMM. UV-melting experiments showed that thermal stabilities of paa/UT and Aaa/UT

were lower than those determined for their counterparts paa/GT and Aaa/GT. These
results suggest that G-quadruplex domains in paa/UT and Aaa/UT could be composed of
two G-tetrads, or two G-tetrads and one mixed GGGU tetrad (Figure S21). The binding
of NMM to this atypical G-quadruplex motif was additionally confirmed by 1H NMR
experiments and an increased emission in fluorescence spectra after the addition of paa/UT

or Aaa/UT to a solution containing NMM. It was previously reported that the hairpin in di-
lute solution could undergo the transition to a G-quadruplex containing one mixed GGUU
tetrad. This type of G-quadruplex exhibited reduced thermal stability and fluorescence
intensity after NMM binding [29]. In summary, our data suggest that the formation of
G-quadruplexes is possible even when the sequences lack regular G-tracts, which were not
predicted by algorithms developed to search for putative G-quadruplex forming sequences.
Moreover, the obtained results advance our knowledge regarding the influence of non-
nucleotide modifications on the formation of non-canonical G-quadruplexes. In this respect,
a recent report should be mentioned that demonstrated that the presence of non-guanosine
residues or bulges in the G-core generally destabilized the G-quadruplex structure but
nevertheless did not prevent G-quadruplex formation [33,85,86]. Another study has shown
that G-quadruplexes with mixed central tetrads were able to compensate for the lack of a
G-tetrad in the context of both GTP-binding and peroxidase activity [28]. These data shed
light on the possible biological functionality of non-canonical G-quadruplexes.

4.4. Application Potential of G-Rich Oligonucleotides

We have recently shown that the formation of a stable G4 motif on an mRNA template
was an effective steric hindrance for ribosomes and results in stalling and inhibition
of protein synthesis. The silencing activity of oligoribonucleotides modified with 1,6-
hexanediol and an abasic linker toward the EGFR mRNA target appeared to be at least 20%
higher than for classical 16 nt antisense oligonucleotides [52]. Several studies indicated
that a correlation exists between G-quadruplex stability and efficacy of gene expression
silencing [50,87,88]. Our data revealed that RNA:RNA QDH was more stable, by 8 ◦C, than
the corresponding DNA:RNA heterohybrid. Additionally, we demonstrated that abasic
residues and L2-L4 aliphatic linkers could perfectly mimic external loops. A previous study
indicated that the incorporation of the methylene unit (L1) into the TBA sequence could
enhance the lifetime of the G-quadruplex in blood [89]. Another study has shown that
the presence of a long aliphatic linker between G-tracts can prevent the hybridization of
a G-rich oligonucleotide to a C-rich sequence [16]. We strongly believe that chemically
modified RNA G-rich antisense oligonucleotides forming stable quadruplex–duplex hybrid
structures with mRNA have significant application potential [52]. The ability of these G-
rich oligonucleotides to recognize a single nucleotide change in the target sequences in
a secondary structure-dependent manner (Figure 1) increases their attractiveness. For
therapeutic purposes, the advantages of using G-rich oligonucleotides with a duplex
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forming segment that is complementary to the target sequence rely on the ability to guide
these oligonucleotides to a specific mRNA site. Reviewing the group of representative
human mRNAs, we found that over 90% of mRNA annotated in the human genome
(RefSeq) contain at least one potential target sequence composed of two neighboring
blocks of consecutive guanosine residues separated by one or two non-guanosine residues:
HGGGH(H)GGGH, HGGGGH(H)GGGGH (H denotes A, C or T). With the use of mRNA
sequences retrieved from the RefSeq database (www.ncbi.nlm.nih.gov/refseq) and the IGV
tool (www.broadinstitute.org/igv (accessed on 31th October 2019)), we identified potential
target sequences in protooncogenes EGFR, KRAS, HER2, and genes implicated in human
Mendelian dominant disorders, such as PTPN11 and FGF23. The G-rich oligonucleotides
may also be considered for allele-specific targeting. For example, the well-recognized
cancer-driving EGFR mutation, L858R (c.2573T>G), introduces a 5′–GGGCUGG–3′ to 5′–
GGGCGGG–3′ change in the sequence of the EGFR mRNA, creating a potential target
for G-rich oligonucleotides [90]. L858R next to exon 19 in-frame deletions are the most
frequent EGFR mutations (cumulatively accounting for ~90% of all EGFR mutations), well
recognized as biomarkers of targeted therapy of non-small cell lung cancer and other
cancers with the use of EGFR-specific tyrosine kinase inhibitors.

4.5. G4 Ligand Conjugated to Oligonucleotide

Ligands interacting with G4s have attracted significant attention as potential anti-
cancer therapeutics [91,92]. In view of the high number of G-quadruplex forming sequences
identified in a human genome, the possibility of non-specific interactions with G4 ligands
cannot be neglected [93]. The attractiveness of G4 ligands may be enhanced by determining
a means to increase their ability to specifically bind and stabilize G4 structures. In this
paper, we presented the concept of covalent attachment of G4 ligands to G-rich oligoribonu-
cleotides. The use of such conjugates creates the possibility of inducing and stabilizing the
bimolecular G-quadruplexes on the G-rich mRNA template in a sequence-specific manner.
We showed recently that oligonucleotides with a covalently attached fluorescent carbazole
derivative (o-BMVC-Q-ASO) recognized the target site on EGFR mRNA comprising two
G-tracts separated by 28 residues by forming a ligand–quadruplex–duplex hybrid structure.
The observed level of green fluorescence of an o-BMVC moiety in three different cancer
cells correlated well with the amount of EGFR mRNA [52]. We believe that the formation
of QDH or Dss structures is dependent on a single nucleotide change in the target sequence
(Figure 1), and the possibility to selectively stabilize the G-quadruplex domain by attaching
the G4 ligand (Figure 9) may become an attractive alternative therapy for patients with
an EGFR-L858R mutation. Furthermore, o-BMVC-C3-oligonucleotides can be used as
fluorescent hybridization probes to visualize the single nucleotide EGFR-L858R mutation
of mRNA. The use of sequence-guided G4 ligands acting as a G4 stabilizer can minimize
the problem of the dynamic nature of the RNA G-quadruplex by slowing the action of
G4-helicases [60,94,95]. In our opinion, the results obtained in this work provide new
perspectives to solve the problem of multi-target binding of G4 ligands.

5. Conclusions

In this article, we proposed a method to discriminate between two similar target
RNA sequences, GT and UT, that differ in one nucleotide only, based on the formation of
alternative structures, i.e., quadruplex–duplex hybrids or duplexes with dangling ends,
respectively. We designed DNA and RNA G-rich oligonucleotides with the ability to
trigger the formation of a G-quadruplex motif only when hybridized to the GT target and
leaving an unstructured G-rich fragment when hybridized to the UT sequence. We also
showed that the replacement of RNA G-rich oligonucleotides with DNA decreased the
thermal stability of the quadruplex–duplex hybrid structure and the duplex with dangling
ends. Subsequently, we demonstrated that abasic residues and aliphatic linkers can mimic
the external loops of bimolecular RNA G-quadruplexes. The quadruplex–duplex hybrid
structures containing these non-nucleotide modifications exhibited similar stability as
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their unmodified counterparts. Unexpectedly, we noticed that the presence of two abasic
modifications in G-rich strands induced the formation of non-canonical G-quadruplexes
after hybridization to the UT target. Finally, RNA G-rich oligonucleotides with a covalently
attached carbazole derivative, o-BMVC-C3, were shown to selectively bind and stabilize a
G-quadruplex domain of QDH. The obtained results advance our knowledge and ability to
predict structures adopted by G-rich sequences and can be used as a starting point to design
anti-EGFR G-rich antisense oligonucleotides. Moreover, o-BMVC-C3 covalently attached
to an oligonucleotide allows fluorescent probe visualization of sequences containing two
GGG tracts.
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dichroism (CD) spectra of molecules indicated in the legend in the presence of 50 mM KCl, 10 mM
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